CE EMC TEST REPORT

Report No．：DDT－R21020802－1E1

Applicant	：	TPV Electronics（Fujian）Co．，Ltd．
Address	：	Rongqiao Economic and Technological Development Zone，Fuqing City，Fujian Province
Equipment under Test	：	LCD Monitor
Model No．	：	＊＊32V4＊＊＊＊＊＊＊＊（＂＊＂$=0-9, \mathrm{~A}-\mathrm{Z}, \mathrm{a}-\mathrm{z}, \quad+,-$, ／or blank． All models difference are in sale marketing）
Trade Mark		AOCTESTINU

Issued By：Tianjin Dongnan ITEstinqusprice Co．，Ltd．
Address：No．19，Weisi Read，MIP，Dêyelop Area，Tianjin，China， 300385
Tel：＋86－22－58038033， E Email：ondgddt com，http：／／www．dgddt．com检验检测专用章
Inspection \＆Testing Serices
Table of Contents

1. Summary of Test Results 8
2. General Test Information 9
2.1. Description of EUT 9
2.2. Primary Function of EUT 9
2.3. Port of EUT 10
2.4. Accessories of EUT 10
2.5. Test peripherals 10
2.6. Block diagram EUT configuration for test 11
2.7. EUT operating mode(s) 11
2.8. Performance Criteria 12
2.9. Deviations of test standard 12
2.10. Test laboratory 13
2.11. Measurement uncertainty 13
3. Conducted Emission (mains power port) 14
3.1. General information 14
3.2. Test Equipment 14
3.3. Reference standard 14
3.4. Block diagram of test setup 14
3.5. Limits 15
3.6. Test procedure 15
3.7. Test result 17
4. Conducted Emission (Telecommunication Port) 18
4.1. General information 18
4.2. Test equipment 18
4.3. Reference standard 18
4.4. Block diagram of test setup 18
4.5. Limits for conducted disturbance at the mains ports of class B 19
4.6. Test procedure 19
4.7. Test result 19
5. Radiated Emissions (30 MHz to 1 GHz) 20
5.1. General information 20
5.2. Test equipment 20
5.3. Reference standard 20
5.4. Block diagram of test setup 21
5.5. Limits 21
5.6. Test procedure 22
5.7. Test result 24
6. Radiated Emissions (Above 1GHz) 25
6.1. General information 25
6.2. Test equipment 25
6.3. Reference standard 25
6.4. Block diagram of test setup 26
6.5. Limits 26
6.6. Test procedure 26
6.7. Test result 29
7. Harmonics current 30
7.1. General information 30
7.2. Test equipment 30
7.3. Reference standard 30
7.4. Block diagram of test setup 30
7.5. Limits 30
7.6. Test result 31
8. Voltage fluctuation \& Flicker 34
8.1. General information 34
8.2. Test equipment 34
8.3. Reference standard 34
8.4. Block diagram of test setup 35
8.5. Limits 35
8.6. Test result 35
9. Electrostatic Discharge 37
9.1. General information 37
9.2. Test equipment 37
9.3. Test and reference standards 37
9.4. Block diagram of test setup 37
9.5. Test levels and performance criterion 38
9.6. Test procedure 38
9.7. Test result 39
10. Continuous Radio Frequency Disturbances 41
10.1. General information 41
10.2. Test equipment 41
10.3. Test and reference standards 41
10.4. Block diagram of test setup 41
10.5. Test levels and performance criterion 42
10.6. Test procedure 43
10.7. Test result 44
11. Electrical Fast Transients (EFT) 45
11.1. General information 45
11.2. Test equipment 45
11.3. Test and reference standards 45
11.4. Block diagram of test setup 45
11.5. Test levels and performance criterion 46
11.6. Test Procedure 46
11.7. Test result 47
12. Surges 48
12.1. General information 48
12.2. Test equipment 48
12.3. Test and reference standards 48
12.4. Block diagram of test setup 48
12.5. Test levels and performance criterion 48
12.6. Test Procedure 49
12.7. Test result 50
13. Continuous Conducted Disturbances 51
13.1. General information 51
13.2. Test Equipment 51
13.3. Test and reference standards 51
13.4. Block diagram of test setup 51
13.5. Test levels and performance criterion 52
13.6. Test procedure 53
13.7. Test result 54
14. Power-Frequency Magnetic Fields 55
14.1. General information 55
14.2. Test equipment 55
14.3. Test and reference standards 55
14.4. Block diagram of test setup 55
14.5. Test levels and performance criterion 55
14.6. Test procedure 56
14.7. Test result 56
15. Voltage Dips and Interruptions 57
15.1. General information 57
15.2. Test equipment 57
15.3. Test and reference standards 57
15.4. Block diagram of test setup 57
15.5. Test levels and performance criterion 57
15.6. Test procedure 58
15.7. Test result 58
16. Test Setup Photos 59
16.1 Conducted emission at the mains ports 59
16.2 Radiated emission (Below 1 GHz) 60
16.3 Radiated emission (Above 1 GHz) 61
16.4 Harmonic current 62
16.5 Voltage fluctuation \& Flicker 62
16.6 Electrostatic discharge test 63
16.7 Continuous Radio Frequency Disturbances 63
16.8 Electrical fast transients(EFT) 64
16.9 Surge 65
16.10 Continuous conducted disturbances 65
16.11 Power-frequency magnetic fields test 66
16.12 Voltage dips and interruptions. 66

Test Report Declare

Applicant	$:$	TPV Electronics (Fujian) Co.,Ltd.
Address	$:$Rongqiao Economic and Technological Development Zone,Fuqing City,Fujian Province	
Equipment Under Test	$:$	LCD Monitor
Model No.	$:$$* * 32 V 4^{* * * * * * * *(" * " ~}=0-9$, A-Z, a-z, +, ,, / or blank. All models difference are in sale marketing)	
Trade Mark	$:$ AC	

Test Standard Used:
EN55032:2012+AC:2013(Class B), EN55032:2015, EN55032:2015+AC:2016, CISPR32:2012 CISPR32:2015+COR1:2016, AS/NZS CISPR 32:2015, EN 61000-3-2:2014, EN 61000-3-3:2013 EN55035:2017
Test Procedure Used:
IEC-61000-4-2:2008, IFC 61000-4-3:2006+A1:2007+A2:2010, IEC-61000-4-4:2012, IEC-61000-4-5:2014
IEC-61000-4-6:2013, IEC-61000-4-8:2009, IEC-61000-4-11:2004, IEC-61000-4-11:2004+A1:2017

We Declare:

The equipment described above is tested and assessed by Tianjin Dongdian Testing Service Co., Ltd. and in the configuration assessed the equipment complied with the standards specified
 Testing Service Co., Ltd. is assumed of full responsibility for the accuracy ayomamprefeness of these assessments.
After test and evaluation, our opinion is that the equipment in accord with above standards.

Prepared By:
Ethan Bay

Ethan Bao/Engineer

Approved By:
Aaron Bhang

Aaron Zhang/EMC Manager

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Tianjin Dongdian Testing Service Co., Ltd.

Revision History

Rev.	Revisions	Issue Date	Revised By
---	Initial issue	Feb. 26, 2021	

1. Summary of Test Results

Emission				
Description of Test Item	Standard		Result	
Conducted emission at AC mains terminals	$\begin{gathered} \text { EN55032:2012+AC:2013 } \\ \text { EN55032:2015 } \\ \text { EN55032:2015+AC:2016 } \end{gathered}$		PASS	
Conducted emission at telecommunication port	$\begin{gathered} \text { EN55032:2012+AC:2013 } \\ \text { EN55032:2015 } \\ \text { EN55032:2015+AC:2016 } \end{gathered}$		N/A	
Radiated emission	$\begin{gathered} \text { EN55032:2012+AC:2013 } \\ \text { EN55032:2015 } \\ \text { EN55032:2015+AC:2016 } \end{gathered}$		PASS	
Harmonic current	EN 61000-3-2:2014		N/A	
Voltage fluctuation \& Flicker	EN 61000-3-3:2013		PASS	
Immunity				
Description of Test Item	Standard	Result	Performance Criteria	
			Required	Observation
Electrostatic discharge (ESD)	IEC-61000-4-2:2008	Pass	B	A
Radiated, radiofrequency, electromagnetic field	$\begin{gathered} \text { IEC 61000-4- } \\ 3: 2006+\mathrm{A} 1: 2007+\text { A2:2010 } \end{gathered}$	Pass	A	A
Electrical fast transients (EFT)	IEC-61000-4-4:2012	Pass	B	A
Surges	IEC-61000-4-5:2014	Pass	B	A
Continuous conducted disturbances	IEC-61000-4-6:2013	Pass	A	A
Power frequency magnetic field	IEC-61000-4-8:2009	Pass	A	A
Voltage dips, < 5\%	$\begin{gathered} \text { IEC-61000-4-11:2004 } \\ \text { IEC-61000-4- } \\ 11: 2004+A 1: 2017 \\ \hline \end{gathered}$	Pass	B	A
Voltage dips, 70\%		Pass	C	A
Voltage interruptions		Pass	C	B
Note: N/A is an abbreviation for Not Applicable.				

2. General Test Information

2.1. Description of EUT

EUT* Name	$:$ LCD Monitor
Model Number	$:$ Q32V4
Serial Number	$:-$
EUT function description	$:$ Please refer to user manual of this device
Power supply	$: 100-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
EUT Class	$:$ Class B
Maximum work frequency	$: 296 \mathrm{MHz}$
Dimensions $(\mathrm{W} \times \mathrm{L} \times \mathrm{H})$	$: 730 \times 200 \times 530 \mathrm{~mm}$

Note: EUT is the abbreviation of equipment under test.

2.2. Primary Function of EUT

Note: " \boxtimes " means the product does not have this function, " $『$ " means the product has this function, N/A means not applicable

2.3. Port of EUT

Note: " \boxtimes " means the product does not have this port, " \downarrow " means the product has this port, N/A means not applicable

2.4. Accessories of EUT

Description of Accessories	Manufacturer	Model number	Description	Remark
AC Cable	N/A	N/A	Length: $1.5 \mathrm{~m} / 1.8 \mathrm{~m}$, Unshielded	N/A
HDMI Cable	N/A	N/A	Length: $1.5 \mathrm{~m} / 1.8 \mathrm{~m}$, Shielded	N/A
DP Cable	N/A	N/A	Length: $1.5 \mathrm{~m} / 1.8 \mathrm{~m}$, Shielded	N/A
AUDIO Cable	N/A	N/A	Length: $1.5 \mathrm{~m} / 1.8 \mathrm{~m}$, Shielded	N/A

2.5. Test peripherals

Device	Manufacturer	Model No.	Serial No.	Remark
Desktop PC	HP	TPC-W058- MT	8CG0321Q58	N/A
Desktop PC	Samsung	DM700T6A- A99	JVTG98EJ2C004QX	N/A
Desktop PC	Samsung	DM700T6A- A99	JVTG98EJ2C0087L	N/A
Keyboard	DELL	N/A	N/A	N/A
Mouse	DELL	N/A	N/A	N/A
DVD	PHILIPS	TAEP200/93	HCPE2025000750	N/A
Speaker	JBL	GO2+	N/A	N/A
Headphone	N/A	N/A	N/A	N/A

2.6. Block diagram EUT configuration for test

Ferrite Core
\square Terminal

2.7. EUT operating mode(s)

Mode1: HDMI	Connect HDMI cable from PC's HDMI port to EUT's HDMI Port. The test signal is color bars with moving picture element according to ITU-R BT $471-1$.
Mode2: DP	Connect DP cable from PC's DP port to EUT's DP Port. The test signal is color bars with moving picture element according to ITU-R BT $471-1$.

2.8. Performance Criteria

During and/or after immunity testing for EN55035:2017, the EUT was monitored to the following performance criterion.

\begin{tabular}{|c|c|c|}
\hline Criterion \& Operating mode(s) \& Description \\
\hline A \& 1,2 \& \begin{tabular}{l}
No noticeable degradation or loss of function is allowed during the test. The EUT shall continue to operate as intended without operator intervention. \\
The product conforms with the requirements of clause 8 of EN55035:2017. \\
The product conforms with the requirements of Annex of EN55035:2017.
Annex A \(\square\) Annex B \(\square\) Annex C \(\square\) Annex D Annex E
\(\square\) Annex \(F \boxtimes\) Annex \(G\)
\end{tabular} \\
\hline B \& 1,2 \& \begin{tabular}{l}
No noticeable degradation or loss of function is allowed after the test. The EUT shall continue to operate as intended without operator intervention. During the test, degradation of performance is allowed.. No change of operating state or stored data is allowed to persist after the test. \\
The product conforms with the requirements of clause 8 of EN55035:2017. \\
The product conforms with the requirements of Annex of EN55035:2017.
\(\square\) Annex A \(\square\) \\
\(\square\) Annex B \(\square\) \\
Annex C
Annex E
Annex F Annex G
\end{tabular} \\
\hline C \& 1,2 \& \begin{tabular}{l}
Loss of function is allowed, provided that the function is self recoverable or can be restored by the operation of the controls by the user. The product conforms with the requirements of clause 8 of EN55035:2017. \\
The product conforms with the requirements of Annex of EN55035:2017.
\(\square\) Annex A

\square Annex B \square Annex C Annex D Annex E Annex F \square Annex G
\end{tabular}

\hline
\end{tabular}

2.9. Deviations of test standard

[Standard deviation 1] Surge immunity test was done according to IEC 61000-4-5:2014 instead of IEC 61000-4-5:2005.
[Standard deviation 2] Radio-frequency conducted immunity test was done according to IEC 61000-4-6:2013 instead of IEC 61000-4-6:2008.

2.10. Test laboratory

Tianjin Dongdian Testing Service Co., Ltd.
Address: No.19, Weisi Road, MIP, Develop Area, Tianjin, China, 300385
Tel: +86-22-58038033, http://www.dgddt.com, Email: ddt@dgddt.com
NVLAP (National Voluntary Laboratory Accreditation Program) CODE: 500036-0
CNAS (China National Accreditation Service for Conformity Assessment) CODE: L13402
FCC Designation Number: CN5004; FCC Test Firm Registration Number: 368676
2.11. Measurement uncertainty

Test Item		Uncertainty
Conducted emission	Main terminal	3.4 dB ($150 \mathrm{KHz-30MHz} \mathrm{)}$
	Telecommunication (ISN T800)	4.59 dB
	Telecommunication (ISN ST08)	3.5 dB
Uncertainty for 10 m Radiation Emission test$(30 \mathrm{MHz}-1 \mathrm{GHz})$		5.2 dB (Antenna Polarize: H)
		5.2 dB (Antenna Polarize: V)
Uncertainty for Radiation disturbance test$(1 \mathrm{GHz} \text { to } 6 \mathrm{GHz})$		5.0 dB
Harmonics current		3.1 \%
Voltage fluctuation \& Flicker		1.7 \%

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95\% confidence level using a coverage factor of $\mathrm{k}=2$.
We have conducted the Electrostatic discharge, Electrical fast transient/burst, Surge, Voltage dips, short interruptions and voltage variations tests to check the uncertainty. Radiated, radio-frequency, electromagnetic field 5.4 dB . Conducted disturbances, induced by radio-frequency fields 1.1 dB .

3. Conducted Emission (mains power port)

3.1. General information

Test date	Feb. 22, 2021	Test engineer	Sam	
Climate condition	Ambient temperature	$22.9 \pm 2^{\circ} \mathrm{C}$	Relative humidity	$25 \pm 1 \%$
	Atmospheric pressure	$102.5 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 2\#			

3.2. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Test Receiver	R\&S	ESCl	101032	Mar. 02, 2020	1 Year
LISN 1	R\&S	ENV216	101122	Mar. 02, 2020	1 Year
LISN 2	R\&S	ENV216	101059	Mar. 02, 2020	1 Year
Test software	TOYO	EP5/CE	V 5.4.40	N/A	N/A

3.3. Reference standard

```
EN55032:2012+AC:2013(Class B)
EN55032:2015
EN55032:2015+AC:2016
```


3.4. Block diagram of test setup

For table-top equipment
Shield Room

For floor standing equipment
Shield Room

For combinations equipment

Shield Room

3.5. Limits

Class A

Frequency		Quasi-Peak Level $\mathrm{dB}(\mu \mathrm{V})$	Average Level $\mathrm{dB}(\mu \mathrm{V})$	
150 kHz	\sim	500 kHz	79	66
500 kHz	\sim	30 MHz	73	60

Class B

Frequency		Quasi-Peak Level dB $(\mu \mathrm{V})$	Average Level $\mathrm{dB}(\mu \mathrm{V})$
150 kHz	\sim	500 kHz	$66 \sim 56^{*}$
500 kHz	\sim	5 MHz	56
5 MHz	\sim	30 MHz	60

Notes: 1. * Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.

3.6. Test procedure

(1) The EUT was placed on a non-metallic table, 80 cm above the ground plane.
(2) The EUT's power adapter was connected to the power mains through a line impedance stabilization network (L.I.S.N). which this provided a 50 -ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted disturbance. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed according to EN 55032 on conducted disturbance emission test.
(3) The bandwidth of test receiver is set at 9 kHz .
(4) The frequency range from 150 kHz to 30 MHz is checked.
(5) Pre-scan measurements were performed in all operating mode or resolution.

But final measurements were performed in worst cases based on pre-scan measurements.

The EUT with following test modes were pre-tested:

No.	Test Voltage	Operation Mode	Cable Length	Resolution
1.	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	Mode 1 HDMI	1.8m	2560*1440@75Hz
2.			1.8 m	2560*1440@60Hz
3.			1.8 m	1920*1080@60Hz
4.			1.8 m	800*600@60Hz
5.			1.5 m	800*600@60Hz
6.			1.8 m	DVD
7.		Mode 2 DP	1.8 m	2560*1440@75Hz
8.			1.8 m	2560*1440@60Hz
9.			1.8 m	1920*1080@60Hz
10.			1.8 m	800*600@60Hz
11.			1.5 m	Worst case from above
12.	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \\ & \hline \end{aligned}$	HDMI 800*600@60Hz with 1.5m power cord		
13.	$\begin{aligned} & 110 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	HDMI 800*600@60Hz		
* Means the worst test mode.				

3.7. Test result

Operating Mode 1: HDMI

Final Result
$-\quad$ N Phase --_
No. Frequency

c.f	Result QP	Result CAV
$[\mathrm{dB}]$	$[\mathrm{dB}(\mathrm{uV})]$	$[\mathrm{dB}(\mathrm{uV})]$
9.6	56.0	50.1
9.7	45.3	32.8
9.7	48.9	40.5
9.7	50.7	43.0
c.f	Result	Result
	QP	CAV
$[\mathrm{dB}]$	$[\mathrm{dB}(\mathrm{uV})]$	$[\mathrm{dB}(\mathrm{uV})]$
9.6	55.2	49.8
9.6	43.6	27.6

Limit
QP
$[\mathrm{dB}(\mathrm{uV})]$
64.1
56.0
59.9
62.2

Limit
QP
$[\mathrm{dB}(\mathrm{uV})]$
64.4
56.0
$\left.\begin{array}{ccc}\text { Limit } & \text { Margin } & \text { Margin } \\ \text { AV } & \begin{array}{c}\text { QP } \\ {[\mathrm{CAV}(\mathrm{uV})]}\end{array} & {[\mathrm{dB}]}\end{array}\right][\mathrm{dB}]$.

Note1) Level (Quasi-Peak and/or C/Average) $=$ Meter Reading + Factor
Note2) Line = Polarity of input power (Live or Neutral)
N : Abbreviation of Neutral Polarity, L1: Abbreviation of Live Polarity,
Note3) Factor = LISN Insertion Loss + Cable Loss
Note4) Margin = Limit - Level (Quasi-Peak and/or C/Average)
Note5) C/Average : Abbreviation of CISPR Average

4. Conducted Emission (Telecommunication Port)

4.1. General information

Test date	N/A	Test engineer	N/A	
Climate condition	Ambient temperature	N/A	Relative humidity	N/A
	Atmospheric pressure	N/A		
Shield Room 2\#				
Test place				

4.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Test Receiver	R\&S	ESCI	101032	Mar. 02, 2020	1 Year
ISN	TESEQ	T800	30844	Feb. 27, 2020	1 Year
ISN	TESEQ	ST08	33992	Feb. 27, 2020	1 Year
Test software	TOYO	EP5/CE	V 5.4 .40	N/A	N/A

4.3. Reference standard

EN55032:2012+AC:2013(Class B)

EN55032:2015
EN55032:2015+AC:2016

4.4. Block diagram of test setup

EUT means Equipment Under Iest
AE means Associated Equipment.

4.5. Limits for conducted disturbance at the mains ports of class B

Frequency	Quasi-Peak Level $\mathrm{dB}(\mu \mathrm{V})$	Average Level $\mathrm{dB}(\mu \mathrm{V})$
$150 \mathrm{kHz} \sim \sim 500 \mathrm{kHz}$	$84 \sim 74^{*}$	$74 \sim 64^{*}$
$5 \mathrm{MHz} \sim 30 \mathrm{MHz}$	74	64

Notes: 1. * Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.

4.6. Test procedure

The EUT was placed on a 0.8 m high non-metallic table in shielded room.
Connect ISN directly to reference ground plane.
The measured voltage at the measurement port of the ISN should correct the reading by adding the voltage division factor of the ISN, and compare to the voltage limit.

For Local Area Network (LAN) device, in order to make reliable emission measurements representative of high LAN utilization it is only necessary to create a condition of LAN utilization in excess of 10% and sustain that level for a minimum of 250 ms . The content of the test traffic should consist of both periodic and pseudo-random messages in order to emulate realistic types of data transmission (e.g. random: files compressed or encrypted; periodic: uncompressed graphic files, memory dumps, screen updates, disk images). If the LAN maintains transmission during idle periods measurements shall also be made during idle periods.

When disturbance voltage measurements are performed on a single unscreened balanced pair, an adequate ISN for two wires shall be used; when performed on unscreened cables containing two balanced pairs, an adequate ISN for four wires shall be used.

4.7. Test result

Not applicable: This product does not have a communication port

5. Radiated Emissions (30 MHz to 1 GHz)

5.1. General information

Test date	Feb. 20, 2021	Test engineer	Jason	
Climate condition	Ambient temperature	$19.6 \pm 2^{\circ} \mathrm{C}$	Relative humidity	$23 \pm 1 \%$
	Atmospheric pressure	$100.4 \pm 0.2 \mathrm{kPa}$		
Test place	10 m Chamber			

5.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	R\&S	ESCI	101024	Mar. 02, 2020	1 Year
EMI Test Receiver	R\&S	ESCI	101030	Mar. 02, 2020	1 Year
Bilog Antenna	TESEQ	CBL6112D	30997	Jan, 17, 2020	2 Year
Bilog Antenna	TESEQ	CBL6112D	30999	Jan, 17, 2020	2 Year
Amplifier	Sonoma	310 N	300913	Feb. 28, 2020	1 Year
Amplifier	Sonoma	310 N	300914	Feb. 28, 2020	1 Year
Ant Mast	Innco	MA4000	N/A	N/A	N/A
Ant Mast	Innco	MA4000	N/A	N/A	N/A
Mast Controller	Innco	CO2000	N/A	N/A	N/A
Mast Controller	Innco	CO2000	N/A	N/A	N/A
RF Selector 4CH	TOYO	NS4904N	Selector1	N/A	N/A
RF Selector 4CH	TOYO	NS4904N	Selector2	N/A	N/A
Test software	TOYO	EP5/RE	V 5.7.10	N/A	N/A
Notes. N/A means Not applicable.					

5.3. Reference standard

EN55032:2012+AC:2013(Class B)
EN55032:2015
EN55032:2015+AC:2016

5.4. Block diagram of test setup

Below 1GHz
For table-top equipment

5.5. Limits

Class A

Equipment	Frequency	Field Strengths Limits at 10 m measuring distance $\mathrm{dB}(\mu \mathrm{V}) / \mathrm{m}$	Field Strengths Limits at 3 m measuring distance $\mathrm{dB}(\mu \mathrm{V}) / \mathrm{m}$
Class A Equipment	30 MHz to 230 MHz	40	50
	230 MHz to 1000 MHz	47	57

Class B

Equipment	Frequency	Field Strengths Limits at 10 m measuring distance $\mathrm{dB}(\mu \mathrm{V}) / \mathrm{m}$	Field Strengths Limits at 3 m measuring distance $\mathrm{dB}(\mu \mathrm{V}) / \mathrm{m}$
Class B Equipment	30 MHz to 230MHz	30	40
	230 MHz to 1000 MHz	37	47
FM receivers*	30 MHz to 1000 MHz	Fundamental 50	Fundamental 60
	30 MHz to 300 MHz	Harmonics 42	Harmonics 52
	300 MHz to 1000 MHz	Harmonics 46	Harmonics 56

*: these relaxed limits apply only to emission at the fundamental and harmonic frequencies of the local oscillator signals at all other frequencies shall be compliant with the limits of class B equipment given above.
Note: (1) The smaller limit shall apply at the cross point between two frequency bands.
(2) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

5.6. Test procedure

For Radiated emissions:

(1) The EUT was placed on a non-metallic table, 80 cm above the ground plane inside an semianechoic chamber.
(2) Test antenna was located $\square 3 \mathrm{~m} / \boxtimes 10 \mathrm{~m}$ (see note) from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed according to EN 55032 on radiated emission test.
(3) Spectrum frequency from 30 MHz to $\boxtimes 1 \mathrm{GHz} / \square 2 \mathrm{GHz}$ was investigated.
(4) For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed according to EN 55032 on Radiated Emission test.
(5) For emissions from 30 MHz to 1 GHz , Quasi-Peak values were measured with EMI Receiver and the bandwidth of Receiver is 120 kHz .
(6) Final measurements consisted of 3 steps.

First step, frequency fine tuning to find exact emission frequency.
Second step, rechecking to search for maximum height and azimuth for interference from EUT
In final step, there are conducted measuring with quasi-peak detector for points which are detected from 1st step \& 2nd step.
Results checked manually and points close to the limit line were re-measured.
(7) Pre-scan measurements were performed in all operating mode or resolution. But final measurements were performed in worst cases based on pre-scan measurements.

The EUT with following test modes were pre-tested:

No.	Test Voltage	Operation Mode	Cable Length	Resolution
1.			1.8m	2560*1440@75Hz
2.			1.8m	2560*1440@60Hz
3.		Mode 1 HDM	1.8m	1920*1080@60Hz
4.		(1 dinl	1.8 m	800*600@60Hz
5.			1.5 m	2560*1440@75Hz
6.			1.8m	DVD
7.			1.8 m	2560*1440@75Hz
8.			1.8m	2560*1440@60Hz
9.		Mode 2 DP	1.8m	1920*1080@60Hz
10.			1.8 m	800*600@60Hz
11.			1.5 m	2560*1440@60Hz
12.	$\begin{aligned} & \hline 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	DP 2560*1440@	Hz with	. 5 m power cord
13.	$\begin{aligned} & 110 \mathrm{~V} \\ & 60 \mathrm{~Hz} \end{aligned}$	DP 2560*1440@	Hz	
14.	DP 1920	080@60Hz with h	adphone	
15.	DP 1920	080@60Hz without	headph	
* Means the worst test mode.				

5.7. Test result

PASS. (See below detailed test result)

Note: All emissions not reported below are too low against the prescribed limits.

Operating Mode 2: DP IN

Note) Receiving antenna polarization : Horizontal and/or Vertical
Test Distance : 10 m , Antenna Height : 1 m to 4 m
Level QP (Quasi-Peak) = Reading QP + Factor (Antenna Factor + Cable Loss - Amp. Gain)
Margin QP (Quasi-Peak) = Limit - Level QP

6. Radiated Emissions (Above 1 GHz)

6.1. General information

Test date	Feb. 24, 2021	Test engineer	Jason	
Climate condition	Ambient temperature	$19.5 \pm 2^{\circ} \mathrm{C}$	Relative humidity	$24 \pm 1 \%$
	Atmospheric pressure	$102.2 \pm 0.2 \mathrm{kPa}$		
Test place	10 m Chamber			

6.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	R\&S	ESU26	100244	Mar. 02, 2020	1 Year
Double Ridged Horn Antenna	TESEQ	BHA9118	31754	Sep. 14, 2019	2 Year
Pre-amplifier	TOYO	TPA0108-40	0934	Feb. 28,2020	1 Year
Test software	TOYO	EP5/RE	V 5.7.10	N/A	N/A

6.3. Reference standard

EN55032:2012+AC:2013(Class B)

EN55032:2015

EN55032:2015+AC:2016

6.4. Block diagram of test setup

Above 1GHz

For table-top equipment

6.5. Limits

Frequency range Limits (GHz)	Limits of Class $\mathrm{A}, \mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$			Limits of Class $\mathrm{B}, \mathrm{dB}(\mu \mathrm{V} / \mathrm{m})$
	Peak	C/Average	Peak	C/Average
$1 \sim 3$	76	56	70	50
$3 \sim 6$	80	60	74	54
NOTE The lower limit shall apply at the transition frequency				

6.6. Test procedure

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.
If the highest frequency of the internal sources of the EUT is less than 108 MHz , the measurement shall only be made up to 1 GHz .
If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz , the measurement shall only be made up to 2 GHz .
If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz , the measurement shall only be made up to 5 GHz .

If the highest frequency of the internal sources of the EUT is above 1 GHz , the measurement shall be made up to 5 times the highest frequency or 6 GHz , whichever is less.
For emissions above 1 GHz , both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1 MHz .
Measurements within 20 dB of the limit were then maximized by adjusting turntable position.
Final measurements were made using an $\mathrm{C} /$ Average detector.
Results checked manually and points close to the limit line were re-measured.
Pre-scan measurements were performed in all operating mode or resolution. But final measurements were performed in worst cases based on pre-scan measurements.

The EUT with following test modes were pre-tested:

No.	Test Voltage	Operation Mode	Cable Length	Resolution
1.			1.8m	2560*1440@75Hz
2.			1.8m	2560*1440@60Hz
3.		Mode 1 HDMI	1.8 m	1920*1080@60Hz
4.		Mode 1 HDM	1.8m	800*600@60Hz
5.			1.5m	800*600@60Hz
6.			1.8 m	DVD
7. *			1.8m	2560*1440@75Hz
8.			1.8m	2560*1440@60Hz
9.		Mode 2 DP	1.8m	1920*1080@60Hz
10.			1.8m	800*600@60Hz
11.			1.5 m	2560*1440@75Hz
12.	$\begin{aligned} & 230 \mathrm{~V} \\ & 50 \mathrm{~Hz} \end{aligned}$	DP 2560*1440@	5 Hz with	1.5 m power cord
13.	$\begin{aligned} & 110 \mathrm{~V} \\ & 60 \mathrm{H} \end{aligned}$	DP 2560*1440@	5 Hz	
14.	DP 1920*1080@60Hz with headphone			
15.	DP 1920*1080@60Hz without headphone			
* Means the worst test mode.				

6.7. Test result

PASS. (See below detailed test result)

Note: All emissions not reported below are too low against the prescribed limits.

Operating Mode 2: DP IN

Final Result

No.	Frequency $[\mathrm{MHz}]$	(P)	Reading PK $[\mathrm{dB}(\mu \mathrm{V})]$	Reading CAV $[\mathrm{dB}(\mu \mathrm{V})]$	c. f $[d B(1 / m)]$	$\begin{gathered} \text { Result } \\ \text { PK } \\ {[\mathrm{dB}(\mu \mathrm{~V} / \mathrm{m})]} \end{gathered}$	$\begin{gathered} \text { Result } \\ \mathrm{CAV} \\ {[\mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})]} \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { PK } \\ {[\mathrm{dB}(\mu \mathrm{~V} / \mathrm{m})]} \end{gathered}$	$\begin{gathered} \text { Limit } \\ A V \\ {[\mathrm{~dB}(\mu \mathrm{~V} / \mathrm{m})]} \end{gathered}$	Margin PK [dB]	Margin CAV [dB]	Height $[\mathrm{cm}]$	Angle
1	1479.989	H	75.0	60.5	-17.2	57.8	[43.3	70.0	50.0	12.2	6.7	135.0	153.7
2	1480. 024	V	75.6	61.0	-17.2	58.4	43.8	70.0	50.0	11.6	6. 2	136.0	160.1
3	2072. 003	H	64.8	57.9	-14.7	50.1	43.2	70.0	50.0	19.9	6.8	184.0	242. 2
4	1776. 001	V	70.3	56.5	-16.0	54.3	40.5	70.0	50.0	15.7	9.5	108.0	169. 1
5	1776. 001	H	70.1	56.4	-16.0	54.1	40.4	70.0	50.0	15.9	9. 6	114.0	170.0
6	4440.014	H	58.3	42.2	-7.8	50.5	34.4	74.0	54.0	23.5	19.6	128.0	210. 3
7	4439.966	V	61.0	43.8	-7. 8	53.2	36.0	74.0	54.0	20.8	18.0	175.0	186.2
8	2072.007	V	64.3	52.1	-14.7	49.6	37.4	70.0	50.0	20.4	12.6	100.0	119.4

Note1) (P) : Abbreviation of Antenna Polarity
Note2) Reading PK / C/AV : Received raw Peak / C/Average signal
Note3) Factor = Antenna factor + Cable loss - Amplifier gain
Note4) Level PK / C/AV = Reading PK / C/AV + Factor, Real signal Peak / C/Average level
Note5) Margin PK / C/AV = Limit - Level PK / C/AV
PK : Abbreviation of Peak
C/AV : Abbreviation of CISPR Average

7. Harmonics current

7.1. General information

Test date	Feb. 09, 2021	Test engineer	Ethan	
Climate condition	Ambient temperature	$20.5 \pm 2^{\circ} \mathrm{C}$	Relative humidity	$22 \pm 1 \%$
	Atmospheric pressure	$103.1 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 1\#			

7.2. Test equipment

Equipment	Manufactur er	Model No.	Serial No.	Last Cal.	Cal. Interval
Power Analyzer	N4L	PPA5511	$162-04584$	Jan. 13, 2021	1 year
Reference Impedance Network	Voltech	IEC61000-3	1 G16412021	Jan. 13, 2021	1 year
AC Power Source	Pacific	$360-A M X$	1235	Feb. 28, 2020	1 year
AC Power Source	Pacific	$360-A M X$	1234	Feb. 28, 2020	1 year
Notes. N/A means Not applicable.					

7.3. Reference standard

EN 61000-3-2:2014 (Class D)

7.4. Block diagram of test setup

7.5. Limits

Limits for Class A equipment

Harmonic order
Odd harmonics

7.6. Test result

PASS. (See below detailed test result)

Operating Mode 2: DP IN

8. Voltage fluctuation \& Flicker

8.1. General information

Test date	Feb. 09, 2021	Test engineer	Ethan	
Climate condition	Ambient temperature	$20.5 \pm 2^{\circ} \mathrm{C}$	Relative humidity	$22 \pm 1 \%$
	Atmospheric pressure	$103.1 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 1\#			

8.2. Test equipment

Equipment	Manufactur er	Model No.	Serial No.	Last Cal.	Cal. Interval
Power Analyzer	N4L	PPA5511	162-04584	Jan. 13, 2021	1 year
Reference Impedance Network	Voltech	IEC61000-3	1G16412021	Jan. 13, 2021	1 year
AC Power Source	Pacific	360-AMX	1235	Feb. 28, 2020	1 year
AC Power Source	Pacific	360-AMX	1234	Feb. 28, 2020	1 year

8.3. Reference standard

EN 61000-3-3:2013

8.4. Block diagram of test setup

8.5. Limits

short-term flicker indicator, Pst	the relative steady- state voltage change, dc	the value of $d(t)$ during a voltage change, $\mathrm{d}(\mathrm{t})$ $>3.3 \%$	the maximum relative voltage change, dmax
1.0	3.3%	500 ms	4%

8.6. Test result

PASS. (See below detailed test result)

Operating Mode 2: DP IN

9. Electrostatic Discharge

9.1. General information

Test date	Feb. 25, 2021	Test engineer	Novak	
Climate condition	Ambient temperature	$22.3 \pm 1^{\circ} \mathrm{C}$	Relative humidity	$36 \pm 1 \%$
	Atmospheric pressure	$102.7 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 3\#			

9.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
ESD Generator	TESEQ	NSG 438	1040	Oct. 09, 2020	1 Year

9.3. Test and reference standards

IEC-61000-4-2:2008

9.4. Block diagram of test setup

(1) Table-top equipment

(2) Floor-standing equipment

9.5. Test levels and performance criterion

Test Level		Performance Criteria
Air Discharge	$\pm 2 \mathrm{kV}, \pm 4 \mathrm{kV}$ and $\pm 8 \mathrm{kV}$	B
Contact Discharge	$\pm 4 \mathrm{kV}$	

Performance criteria B description: During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended.

9.6. Test procedure

Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times for each pre-selected test point. This procedure was repeated until all the air discharge completed.

Contact Discharge:
All the procedure was same as air discharge. Except that the generator was re-triggered for a new single discharge. The tip of the discharge electrode was touching the EUT before the discharge switch was operated.

Indirect discharge for horizontal coupling plane:
At least 20 single discharges were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1 m from the EUT and with the discharge electrode touching the coupling plane.

Indirect discharge for vertical coupling plane:
At least 20 single discharges were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$, was placed parallel to, and positioned at a distance of 0.1 m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.7. Test result

Power supply: $\mathrm{AC} 230 \mathrm{~V} / 50 \mathrm{~Hz}, \mathrm{AC} 110 \mathrm{~V} / 60 \mathrm{~Hz}$
Test Times: 20 times at each point for contact discharge; 20 times at each point for air discharge.

Operation Mode			Type of discharge		Test Level	Test Point		Performance			$\begin{gathered} \text { Result } \\ \hline \text { (Pass/Fail) } \end{gathered}$	
								quired	Observation			
Mode 1			Contact to EUT			$\pm 4 \mathrm{kV}$	5,7			B	A	Pass
			Contact to Coupling Planes		$\pm 4 \mathrm{kV}$	Coupling Planes			B	A	Pass	
			Air		$\begin{gathered} \pm 2 \mathrm{kV}, \pm 4 \mathrm{kV}, \\ \text { and } \pm 8 \mathrm{kV} \end{gathered}$	1,2,3,4,5,6			B	A	Pass	
Mode 2			Contact to EUT		$\pm 4 \mathrm{kV}$	4,7			B	A	Pass	
			Contact to Coupling Planes		$\pm 4 \mathrm{kV}$	Coupling Planes			B	A	Pass	
			Air		$\begin{gathered} \pm 2 \mathrm{kV}, \pm 4 \mathrm{kV}, \\ \text { and } \pm 8 \mathrm{kV} \end{gathered}$	1,2,3,4,5,6			B	A	Pass	
Test Point:												
No.	Description			No.	Descrip		No	O.		Descrip		
1	Panel			5	DP		9			1		
2	Button			6	Audi		10	0		/		
3	Gap			7	Screw		11			/		
4	HDMI			8	/		12			/		

Observation Description:
A: Operation as intend, no loss of function during test and after test.

Photo of ESD point on EUT

10. Continuous Radio Frequency Disturbances

10.1. General information

Test date	Feb. 24, 2021	Test engineer	Thomas	
Climate condition	Ambient temperature	$18.2 \pm 2^{\circ} \mathrm{C}$	Relative humidity	$26 \pm 1 \%$
	Atmospheric pressure	$103.2 \pm 0.2 \mathrm{kPa}$		
Test place	RS Chamber			

10.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Signal Generator	R\&S	SMB100A	104909	Feb. 26, 2020	1 Year
Amplifier	BONN	BLMA 1060-250	1811750	Sep. 23, 2020	1 Year
Amplifier	TESEQ	CBA 1G-1200B	V2303-0618	Sep. 23, 2020	1 Year
Power meter	R\&S	NRP	102424	Feb. 26, 2020	1 Year
Power sensor	R\&S	NRP-Z91	100937	Feb. 26, 2020	1 Year
Power sensor	R\&S	NRP-Z91	100938	Feb. 26, 2020	1 Year
Log-periodic antenna	Schwarzbeck	STLP 9149	$9149-059$	N/A	N/A
Log-periodic antenna	Schwarzbeck	STLP 9128 E special	$9128 E S-171$	N/A	N/A
Audio Analyzer	R\&S	UPV	101525	Feb. 27, 2020	1 Year

10.3. Test and reference standards

IEC 61000-4-3:2006+A1:2007+A2:2010

10.4. Block diagram of test setup

10.5. Test levels and performance criterion

Swept frequency test		Performance Criteria
Frequency (MHz)	80 to 1000	
Field Strength	$3 \mathrm{~V} / \mathrm{m}$ rms voltage level of the unmodulated signal	
Modulation	AM modulated to a depth of 80% by a sine wave of $\boxtimes 1 \mathrm{kHz}, \square 400 \mathrm{~Hz}$ (note 1)	A
Step Size	1% increments	
Dwell time	$<5 \mathrm{Sec}$.	

Spot frequency test		Performance Criteria
Frequency (MHz)	$1800,2600,3500,5000$	
Field Strength	$3 \mathrm{~V} / \mathrm{m}$ rms voltage level of the unmodulated signal	A
Modulation	AM modulated to a depth of 80% by a sine wave of $\boxtimes 1 \mathrm{kHz}, \square 400 \mathrm{~Hz}($ note 1$)$	
Dwell time	$<5 \mathrm{Sec}$.	

Note 1: The 1 kHz modulation may be replaced by a different audio modulation frequency more appropriate for a given EUT if, for example, 1 kHz is not within the operating audio range of the EUT.

Performance criteria A description for devices with the audio output function: The measured acoustic interference ratio and/or the measured electrical interference ratio during the test shall be - 20 dB or better.
For equipment with audio output function:
\square The acoustic measurement method was selected according to clause G6.4.1 of EN 55035.
区The electrical measurement method was selected according to clause G6.4.2 of EN 55035 .
Performance criteria A for devices with the telephony function.

Frequency range MHz	Acoustic or electrical interference ratio	Equivalent direct measurement				
	-0 dB	75	DBL)	Digital dBm0	Analogue dBm0	-30
:---:						

Note: At the step in the frequency range, the lower limit shall be applied.
The interference ratio (electrical or acoustic) shall meet the limits in column 2; or,
The acoustic level of the demodulated audio shall be less than the limits in column 3; or The digitally coded level of demodulated audio shall be less than limits in column 4; or, The analogue level of the demodulated audio shall be less than the limits in column 5.

Performance criteria A description for other devices: During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended.

10.6. Test procedure

The field sensor is placed on the EUT table (0.8 meter above the ground) which is 3 meters away from the transmitting antenna. Through the signal generator, power amplifier and transmitting antenna to produce a uniformity field strength ($3 \mathrm{~V} / \mathrm{m}$ measured by field sensor) around the EUT table from frequency range specified and records the signal generator's output level at the same time for whole measured frequency range. Then, put EUT and its simulators on the EUT turn table and keep them 3 meters away from the transmitting antenna which is mounted on an antenna tower and fixes at 1.4 meter height above the ground. Using the recorded signal generator's output level to measure the EUT from frequency range specified and both horizontal \& vertical polarization of antenna must be set and measured. Each of the four sides of EUT must be faced this transmitting antenna and measures individually.

10.7. Test result

Power supply: $\mathrm{AC} 230 \mathrm{~V} / 50 \mathrm{~Hz}, \mathrm{AC} 110 \mathrm{~V} / 60 \mathrm{~Hz}$
Field Strength : $\boxtimes 3 \mathrm{~V} / \mathrm{m} \square 10 \mathrm{~V} / \mathrm{m}$ Steps: $\boxtimes 1 \% \square$ other: Dwell time: $\boxtimes 1 \mathrm{~s} \square$ other:
Swept Frequency Range: $\boxtimes 80 \mathrm{MHz}---1 \mathrm{GHz}$; $\boxtimes 1800 \mathrm{MHz}, 2600 \mathrm{MHz}, 3500 \mathrm{MHz}, 5000 \mathrm{MHz}$; other:
Modulation: \square None \boxtimes AM $\boxtimes 1 \mathrm{kHz} \square 400 \mathrm{~Hz}$ Modulation depth: $\boxtimes 80 \% \square$ other:

Operation Mode	EUT Position towards antenna	Antenna: Horizontal		Antenna: Vertical		Result(Pass/Fail)
		- Required	Observation	Required	Observation	
Mode 1	Front	A	A	A	A	Pass
	Right	A	A	A	A	Pass
	Rear	A	A	A	A	Pass
	Left	A	A	A	A	Pass
Mode 2	Front	A	A	A	A	Pass
	Right	A	A	A	A	Pass
	Rear	A	A	A	A	Pass
	Left	A	A	A	A	Pass

HDMI mode: Acoustic interference ratio $=-31.60 \mathrm{~dB} \leq-20 \mathrm{~dB}$.
DP mode: Acoustic interference ratio $=-33.11 \mathrm{~dB} \leq-20 \mathrm{~dB}$.
Note 1: this row only for the device with audio output function.
Note 2: this device without the telephony function.
Observation Description:
A: Operation as intend, no loss of function during test and after test.

11. Electrical Fast Transients (EFT)

11.1. General information

Test date	Feb. 22, 2021	Test engineer	Novak	
Climate condition	Ambient temperature	$22.1 \pm 1^{\circ} \mathrm{C}$	Relative humidity	$34 \pm 1 \%$
	Atmospheric pressure	$103.0 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 3\#			

11.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EFT Generator	TESEQ	NSG3060	210	Feb. 28, 2020	1 Year
Coupling/Decoup ling Network	TESEQ	CDN3061	210	Feb. 28, 2020	1 Year

11.3. Test and reference standards

IEC-61000-4-4:2012

11.4. Block diagram of test setup

11.5. Test levels and performance criterion

Test Level			Performance Criteria
Test voltage	$\pm 1 \mathrm{kV}$ For AC mains Port	$\pm 0.5 \mathrm{kV}$ for DC input or signal Port	
Repetition Frequency	5 kHz	5 kHz	
Burst Duration	15 ms	15 ms	B
Burst Period	300 ms	300 ms	
Inject Time(s)	120 s		
Inject Method	Direct for AC mains port	Direct for signal port Direct for dc input port	
Inject Line	AC Mains of adapter	DC input of adapter or Capacitive coupling clamp	

Note: This test shall be additionally performed on analogue/digital data ports, and DC network power ports, of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m .
Performance criteria B description: During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended.

11.6. Test Procedure

The EUT and its simulators were placed on the ground reference plane and were insulated from it by a wood support $0.1 \mathrm{~m} \pm 0.01 \mathrm{~m}$ thick. The ground reference plane was 1 m 1 m metallic sheet with 0.65 mm minimum thickness. This reference ground plane was project beyond the EUT by at least 0.1 m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane was more than 0.5 m . All cables to the EUT was placed on the wood support, cables not subject to EFT/B was routed as far as possible from the cable under test to minimize the coupling between the cables.
For DC input and AC power ports:
The EUT was connected to the power mains by using a coupling device that couples the EFT interference signal to AC power lines. Both positive transients and negative transients of test voltage were applied during compliance test and the duration of the test can't less than 2 mins . For signal ports:
The capacitive coupling clamp was connected to the power by using a coupling device that couples the EFT interference signal to capacitive coupling clamp. Both positive transients and negative transients of test voltage were applied during compliance test and the duration of the test can't less than 2 mins .

11.7. Test result

Power supply: AC $230 \mathrm{~V} / 50 \mathrm{~Hz}, \mathrm{AC} 110 \mathrm{~V} / 60 \mathrm{~Hz}^{\text {c }}$						
Port \boxtimes AC Mains \square DC Supply \square Signal			Burst Period: $\boxtimes 300 \mathrm{~ms}$ 可 ${ }^{\text {Other: }}$			
Coupling: \backslash Direct \square Capacitive Clamp			Test Time: $\boxtimes 120 \mathrm{~S} \quad \square$ Other:			
Repetition Frequency: $\boxtimes 5 \mathrm{KHz} \square$ Other:			Burst Durations: $\boxtimes 15 \mathrm{~ms} \quad \square$ Other:			
Operation Mode	Line/port	Test Voltage	Performance			Result
			Required	Observation (+)	Observation (-)	(Pass/Fail)
Mode 1	L	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	N	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	L-N	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	L-PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	N-PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	L-N-PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass
Mode 2	L	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	N	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	L-N	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	L-PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	N-PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass
	L-N-PE	$\pm 1 \mathrm{kV}$	B	A	A	Pass

Observation Description:

A: Operation as intend, no loss of function during test and after test.

12. Surges

12.1. General information

Test date	Feb. 22, 2021	Test engineer	Novak	
Climate condition	Ambient temperature	$22.1 \pm 1^{\circ} \mathrm{C}$	Relative humidity	$34 \pm 1 \%$
	Atmospheric pressure	$103.0 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 3\#			

12.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Surge Generator	TESEQ	NSG3060	210	Feb. 28, 2020	1 Year
Coupling/Decoupling	TESEQ	CDN3061	210	Feb. 28, 2020	1 Year
Network	CWM3650	196	Feb. 28, 2020	1 Year	
Surge Impulse Module	TESEQ	CWM			

12.3. Test and reference standards

IEC-61000-4-5:2014

12.4. Block diagram of test setup

12.5. Test levels and performance criterion

Test level for AC mains ports		Performance Criterion
Line to Line	$1 \mathrm{kV} \mathrm{1.2/50(8/20)} \mathrm{\mu s}$	B
Line to Ground	$2 \mathrm{kV} \mathrm{1.2/50(8/20)} \mu \mathrm{~s}$	B
Analogue/digital data port, Port type: unshielded symmetrical		Performance Criterion
Line to Ground	1 kV and 4kV 10/700(5/320)prion (used with the primary protection)	C
Line to Ground	$1 \mathrm{kV} \mathrm{10/700(5/320)} \mathrm{\mu s} \mathrm{(used} \mathrm{without} \mathrm{the} \mathrm{primary}$protection)	C

Note: Applicable only to ports which, according to the manufacturer's specification, the cable lengths greater than 3m.

Analogue/digital data port, Port type: coaxial or shielded		Performance Criterion
Shield to ground	$0.5 \mathrm{kV} 1.2 / 50(8 / 20) \mu \mathrm{s}$	B
Note: Applicable only to ports which, according to the manufacturer's specification, the cable lengths greater than 3 m .		
DC network power port		Performance Criterion
Line to reference ground	$0.5 \mathrm{kV} 1.2 / 50(8 / 20) \mu \mathrm{s}$	B

Note: Applicable only to ports which, according to the manufacturer's specification, 1. The cable lengths greater than 3m; 2. May connect directly to outdoor cables.
Performance criteria B description: During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended.

12.6. Test Procedure

For line-to-neutral coupling mode, provide a $0.5 \mathrm{kV} / 1 \mathrm{kV} 1.2 / 50$ us voltage surge (at open-circuit condition) and $8 / 20$ us current surge to EUT selected points.
For line-to-ground coupling mode, provide a $0.5 \mathrm{kV} / 1 \mathrm{kV} / 2 \mathrm{kV} 1.2 / 50$ us voltage surge (at opencircuit condition) and $8 / 20$ us current surge to EUT selected points.

The number of pulses applied shall be as follows:

- Five positive pulses line-to-neutral at 90° phase
- Five negative pulses line-to-neutral at 270° phase

The following additional pulses are required only if the EUT has an earth connection or if the EUT is earthed via any AE.

- Five positive pulses line-to-earth at 90° phase
- Five negative pulses line-to-earth at 270° phase
- Five negative pulses neutral-to-earth at 90° phase
- Five positive pulses neutral-to-earth at 270° phase

Maximum $1 / \mathrm{min}$ repetition rate are applied during test.
Different phase angles are done individually.
For telecommunication surge test, each line of internet port to ground coupling mode, provide a 1.0kV $10 / 700$ us voltage surge (at open-circuit condition) and $5 / 320$ us current surge to EUT selected points.

At least 5 positive and 5 negative (polarity) tests with a maximum $1 / \mathrm{min}$ repetition rate are applied during test.

Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.7. Test result

Power supply: AC $230 \mathrm{~V} / 50 \mathrm{~Hz}, \mathrm{AC} 110 \mathrm{~V} / 60 \mathrm{~Hz}$											
Line: \boxtimes AC Mains \square DC Supply \square Telecommunication port \square Signal port											
Wave Type: $\boxtimes 1.2 / 50$ us-8/20us $\square 10 / 700$ us-5/320us Internal impedance: $\backslash 2 \Omega \boxtimes 12 \Omega \square 25 \Omega \square 40 \Omega \square 160 \Omega$											
Pulse times: 5 times at each polarity Pulse Interval: 60 S Voltage Phase: $\square 0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ} \boxtimes 90^{\circ}, 270^{\circ}$											
Operation Mode	Line/ Port	0.5 kV			1kV			2kV			Result Pass/Fail
		Required	Observation		Required	Observation		Required	Observation		
			+	-		+	-		+	-	
Mode 1	L-N	B	A	A	B	A	A	1	1	1	Pass
	L-Pe	B	A	A	B	A	A	B	A	A	Pass
	$\mathrm{N}-\mathrm{Pe}$	B	A	A	B	A	A	B	A	A	Pass
Mode 2	L-N	B	A	A	B	A	A	/	1	1	Pass
	L-Pe	B	A	A	B	A	A	B	A	A	Pass
	$\mathrm{N}-\mathrm{Pe}$	B	A	A	B	A	A	B	A	A	Pass

Observation Description:

A: Operation as intend, no loss of function during test and after test.

13. Continuous Conducted Disturbances

13.1. General information

Test date	Feb. 25, 2021	Test engineer	Novak	
Climate condition	Ambient temperature	$22.3 \pm 1^{\circ} \mathrm{C}$	Relative humidity	$36 \pm 1 \%$
	Atmospheric pressure	$102.7 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 3\#			

13.2. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Signal Generator	R\&S	SMB100A	103231	Feb. 26, 2020	1 Year
CDN	TESEQ	CDN M016	28987	Feb. 28,2020	1 Year
Audio Analyzer	R\&S	UPV	101525	Feb. 27,2020	1 Year
RF Power Amplifiers	AR	75A250A	0332892	Feb. 27,2020	1 Year
Test Software	R\&S	EMC 32	Ver 10.28.0	N/A	N/A

13.3. Test and reference standards

IEC-61000-4-6:2013

13.4. Block diagram of test setup

For audio output function (electrical measurement, direct connection to EUT)

For audio output function (acoustic measurement)

For audio output function (on-ear acoustic measurement)

13.5. Test levels and performance criterion

$\left.$| Test Level | | |
| :---: | :---: | :---: | | Performance |
| :---: |
| Criteria | \right\rvert\,

Note 1: The 1 kHz modulation may be replaced by a different audio modulation frequency more appropriate for a given EUT if, for example, 1 kHz is not within the operating audio range of the EUT.

Performance criteria A description for devices with the audio output function: The measured acoustic interference ratio and/or the measured electrical interference ratio during the test shall be -20 dB or better.
\square The acoustic measurement method was selected according to clause G6.4.1 of EN 55035.
マThe electrical measurement method was selected according to clause G6.4.2 of EN 55035.
Performance criteria A for devices with the telephony function.

Frequency range	Acoustic or electrical	Equivalent direct measurement		
MHz	interference ratio	$\mathrm{dB}(\mathrm{SPL})$	Digital dBm0	Analogue dBm0
0.15 to 30	-20 dB	55	-50	-50
30 to 80	-10 dB	65	-40	-40

Note: At the step in the frequency range, the lower limit shall be applied.
The interference ratio (electrical or acoustic) shall meet the limits in column 2; or,
The acoustic level of the demodulated audio shall be less than the limits in column 3; or The digitally coded level of demodulated audio shall be less than limits in column 4; or, The analogue level of the demodulated audio shall be less than the limits in column 5. Performance criteria A description for other devices: During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended.

13.6. Test procedure

The EUT are placed on an insulating support 0.1 m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3 m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

The disturbance signal described below is injected to EUT through CDN.
The EUT operates within its operational mode(s) under intended climatic conditions after power on.
The frequency range is swept from 0.150 MHz to $\boxtimes 80 \mathrm{MHz} / \square 230 \mathrm{MHz}$, the interference signal level according to clause 10.5, and with the disturbance signal 80% amplitude modulated with a $\boxtimes 1 \mathrm{kHz} / \square 400 \mathrm{~Hz}$ sine wave.
The rate of sweep shall not exceed $1.5^{*} 10^{-3}$ decades $/ \mathrm{s}$. Where the frequency is swept incrementally; the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

13.7. Test result

Power supply: $\mathrm{AC} 230 \mathrm{~V} / 50 \mathrm{~Hz}, \mathrm{AC} 110 \mathrm{~V} / 60 \mathrm{~Hz}$						
Modulation Signal: $\boxtimes 1 \mathrm{kHz} \square 400 \mathrm{~Hz} 80 \%$ AM \square Other: Steps: $\boxtimes 1 \% \square$ other: Dwell time: $\boxtimes 1 \mathrm{~s} \square$ other:						
Operation mode	Frequency Range	Injected Position	Strength(e.m.f) (unmodulated)	Required	Observation	Result (Pass/Fail)
Mode 1	0.15MHz-10MHz	AC port	3 V	A	A	Pass
	$10 \mathrm{MHz}-30 \mathrm{MHz}$	AC port	3V-1V	A	A	Pass
	$30 \mathrm{MHz}-80 \mathrm{MHz}$	AC port	1 V	A	A	Pass
Mode 2	$0.15 \mathrm{MHz}-10 \mathrm{MHz}$	AC port	3 V	A	A	Pass
	$10 \mathrm{MHz}-30 \mathrm{MHz}$	AC port	3V-1V	A	A	Pass
	$30 \mathrm{MHz}-80 \mathrm{MHz}$	AC port	1 V	A	A	Pass
HDMI mode: Acoustic interference ratio $=-33.06 \mathrm{~dB} \leq-20 \mathrm{~dB}$. DP mode: Acoustic interference ratio $=-34.20 \mathrm{~dB} \leq-20 \mathrm{~dB}$. Note 1: this row only for the device with audio output function. Note 2: this device without the telephony function.						
Observation Description: A: Operation as intend, no loss of function during test and after test.						

14. Power-Frequency Magnetic Fields

14.1. General information

Test date	Feb. 22, 2021	Test engineer	Novak	
Climate condition	Ambient temperature	$22.1 \pm 1^{\circ} \mathrm{C}$	Relative humidity	$34 \pm 1 \%$
	Atmospheric pressure	$103.0 \pm 0.2 \mathrm{kPa}$		
	Shield Room 3\#			

14.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Magnetic Field Coil	TESEQ	INA 702	199	Feb. 27, 2020	1 Year
Magnetic Field Option	TESEQ	MFO 6502	123	Feb. 27, 2020	1 Year

14.3. Test and reference standards

IEC-61000-4-8:2009

14.4. Block diagram of test setup

14.5. Test levels and performance criterion

Level	Magnetic Field Strength $(\mathrm{A} / \mathrm{m})$	Performance Criterion
1	1	A

Performance criteria A description: During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended.

14.6. Test procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions ($1 \mathrm{~m}^{*} 1 \mathrm{~m}$) and shown in Section 14.4 Then induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

14.7. Test result

Power supply: $\mathrm{AC} 230 \mathrm{~V} / 50 \mathrm{~Hz}, \mathrm{AC} 110 \mathrm{~V} / 60 \mathrm{~Hz}$						
Operation Mode	Test Level	Testing Duration	$\begin{gathered} \text { Coil } \\ \text { Orientation } \end{gathered}$	Required	Observation	Result
						(Pass/Fail)
Mode 1	1A/m	$5 \mathrm{~min} /$ coil	X	A	A	Pass
		$5 \mathrm{~min} / \mathrm{coil}$	Y	A	A	Pass
		$5 \mathrm{~min} / \mathrm{coil}$	Z	A	A	Pass
Mode 2	1A/m	$5 \mathrm{~min} /$ coil	X	A	A	Pass
		$5 \mathrm{~min} / \mathrm{coil}$	Y	A	A	Pass
		$5 \mathrm{~min} / \mathrm{coil}$	Z	A	A	Pass

Observation Description:
A: Operation as intend, no loss of function during test and after test.

15. Voltage Dips and Interruptions

15.1. General information

Test date	Feb. 22, 2021	Test engineer	Novak	
Climate condition	Ambient temperature	$22.1 \pm 1^{\circ} \mathrm{C}$	Relative humidity	$34 \pm 1 \%$
	Atmospheric pressure	$103.0 \pm 0.2 \mathrm{kPa}$		
Test place	Shield Room 3\#			

15.2. Test equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
VAR	TESEQ	$3005-D 16$	94	Feb. 28, 2020	1 Year

15.3. Test and reference standards

IEC-61000-4-11:2004, IEC-61000-4-11:2004+A1:2017

15.4. Block diagram of test setup

15.5. Test levels and performance criterion

Test Level \%UT	Duration (in period)	Performance Criterion
<5	0.5	B
70	25 for $50 \mathrm{~Hz} / 30$ for 60 Hz	C
<5	250 for $50 \mathrm{~Hz} / 300$ for 60 Hz	C

Performance criteria B description: During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended.
Performance criteria C description: During and after testing, a temporary loss of function is allowed, provided the function is self recoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

15.6. Test procedure

The EUT and test generator were setup as shown. The interruptions are introduced at selected phase angles with specified duration. Record any degradation of performance.

15.7. Test result

Power Supply: AC $100 \mathrm{~V} / 60 \mathrm{~Hz}$						
Memo:						
Operation Mode	Voltage Dips \& Short Interruptions \%Ur	Duration (in period)	Phase Angle	Required	Observation	Result
						(Pass/Fail)
Mode 1	0	0.5P	0 ${ }^{\circ} 180$	B	A	Pass
	70	30P	0 0,180	C	A	Pass
	0	300P	$0^{0}, 180$	C	B	Pass
Mode 2	0	0.5P	$0^{\circ}, 180$	B	A	Pass
	70	30P	0 0,180	C	A	Pass
	0	300P	0 ${ }^{\circ} 180$	C	B	Pass

Observation Description:

A: Operation as intend no loss of function during test and after test.
B: Temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention

Power Supply: AC 240V/50Hz
Memo:

Operation Mode	 Short Interruptions \%Ur	Duration (in period)	Phase Angle	Required	Observation	Result
Mode 1	0	0.5 P	$0^{\circ}, 180^{\circ}$	B	A	Pass
	70	25 P	$0^{\circ}, 180^{\circ}$	C	A	Pass
	0	250 P	$0^{\circ}, 180^{\circ}$	C	B	Pass
	0	0.5 P	$0^{\circ}, 180^{\circ}$	B	A	Pass
	70	25 P	$0^{\circ}, 180^{\circ}$	C	A	Pass
	0	250 P	$0^{\circ}, 180^{\circ}$	C	B	Pass

Observation Description:

[^0]16. Test Setup Photos
16.1 Conducted emission at the mains ports

[Front]

16.2 Radiated emission (Below 1 GHz)

16.3 Radiated emission (Above 1 GHz)

16.4 Harmonic current

16.5 Voltage fluctuation \& Flicker

16.6 Electrostatic discharge test

16.7 Continuous Radio Frequency Disturbances

16.8 Electrical fast transients(EFT)

16.9 Surge

16.10 Continuous conducted disturbances

16.11 Power-frequency magnetic fields test

16.12 Voltage dips and interruptions

END OF REPORT

[^0]: A: Operation as intend no loss of function during test and after test.
 B: Temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the equipment under test recovers its normal performance, without operator intervention

