

EMC TEST REPORT

Test Report No:	EMC250318026-01-001
Product(s) Name:	LCD MONITOR
Model(s)	27E4U, **27E4*********** (*=0-9, A-Z, a-z, +,-,/,\ or blank.)
Trade Mark	AOC
Applicant	TPV Display Technology(Wuhan)Co., Ltd
Address	Unique No.11 Zhuankou Development District of Economic Technological Development Zone Wuhan City, P.R.China
Receipt Date:	2025.02.20
Test Date	2025.02.20~2025.03.03
Issued Date	2025.03.25
Standards	EN 55032:2015; BS EN 55032:2015; EN 55032:2015+A11:2020; BS EN 55032:2015+A1:2020; EN 55032:2015+A1:2020; BS EN 55032:2015+A11:2020; CISPR 32:2015+AMD1:2019; AS/NZS CISPR 32:2015+AMD1:2020; EN 61000-3-2:2014; BS EN 61000-3-2:2014; EN IEC 61000-3-2:2019+A1:2021; BS EN IEC 61000-3-2:2019+A1:2021; EN 61000-3-3:2013; BS EN 61000-3-3:2013; EN 61000-3-3:2013+A1:2019; BS EN 61000-3-3:2013+A1:2019; EN 61000-3-3:2013+A2:2021; BS EN 61000-3-3:2013+A2:2021; EN 61000-3-3:2017(CISPR 35:2016); BS EN 55035:2017; EN 55035:2017+A11:2020; BS EN 55035:2017+A11:2020;
Testing Laboratory:	Shenzhen Haiyun Standard Technical Co., Ltd.

Prepared By:	Checked By:	Approved By:	Standard
Jason Huang	Black Ding	Tim Zhang	
Jason huang	Black Ding	7in.zhang	HAIYUN AR

Table of Contents

1.	General information	5
	1.1. Basic information of EUT	5
2.	Measured equipment list	6
	2.1. Test facility	6
	2.2. Test instruments list	7
	2.3. Measurement uncertainty	11
3.	Test system information	12
	3.1. Test result summary	12
	3.2. Description of test mode	13
	3.3. EUT Operating Conditions	14
	3.4. Block Diagram Showing the Configuration Of System Tested	14
	3.5. Description of support units	15
4.	Emission test	16
	4.1. Conduction emission test	16
	4.1.1. Limit	16
	4.1.2. Test procedures	16
	4.1.3. Test set-up	17
	4.1.4. Test results	18
	4.2. Telecommunication port conduction emission test	30
	4.2.1. Limit	
	4.2.2. Test procedure	31
	4.2.3. Test set-up	31
	4.2.4. Test results	31
	4.3. Radiated emission test	32
	4.3.1. Limit	32
	4.3.2. Test procedures	33
	4.3.3. Test set-up	34
	4.3.4. Test results	36
	4.4. Harmonics current measurement	52
	4.4.1. Limit	
	4.4.2. Test procedures	
	4.4.3. Test set-up	53
	4.4.4. Test results(worst case)	53
	4.5. Voltage fluctuation and flicker measurement	54
	4.5.1. Limit	54
	4.5.2. Test procedures	54
	4.5.3. Test set-up	54
	4.5.4. Test results(worst case)	55

5.	lmn	nunity	test	56
	5.1.	Gene	ral description	
	5.2.	Perfo	rmance of criteria	57
	5.3.	Electrostatic discharge immunity test(ESD)		
		5.3.1.	Test specification	
		5.3.2.	Test procedures	
		5.3.3.	Test set-up	
		5.3.4.	Test results	
	5.4.	Radio	o frequency electromagnetic immunity test(RS)	61
		5.4.1.	Test specification	
		5.4.2.	Test procedures	
		5.4.3.	Test set-up	
		5.4.4.	Test results	
	5.5.	Electr	rical fast transient(EFT)	65
		5.5.1.	Test specification	
		5.5.2.	Test procedures	
		5.5.3.	Test set-up	
		5.5.4.	Test results	
	5.6.	Surge	e immunity test	
		5.6.1.	Test specification	
		5.6.2.	Test procedures	
		5.6.3.	Test set-up	
		5.6.4.	Test Results	
	5.7.	Cond	ucted radio frequency disturbances (CS)	71
		5.7.1.	Test specification	71
		5.7.2.	Test procedures	71
		5.7.3.	Test set-up	
		5.7.4.	Test results	74
	5.8.	Voltag	ge dips and Voltage interruption	75
		5.8.1.	Test specification	
		5.8.2.	Test procedures	
		5.8.3.	Test set-up	
		5.8.4.	Test results	
6.	Tes	t phote	ographs	77
7.	Pho	otograp	ohs of EUT	82

History of the test report

Original Report Issue Date: 2025.03.25

- No additional attachment
- Additional attachments were issued following record

Attachment No.	Issue Date	Description

1. General information

1.1. Basic information of EUT

Test sample no.	POC250318026-S001
Product Name	LCD MONITOR
Product Model	27E4U, **27E4********** (*=0-9, A-Z, a-z, +,-,/,\ or blank.)
Test Model	27E40
Model difference	Only the model name is different.
Trade Mark	AOC
Power supply	AC 100-240V, 50/60Hz
Applicant	TPV Display Technology(Wuhan)Co., Ltd Unique No.11 Zhuankou Development District of Economic Technological Development Zone Wuhan City, P.R.China

2. Measured equipment list

2.1. Test facility

Shenzhen Haiyun Standard Technical CO., Ltd.

Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business Building, No. 302, Xixiang Avenue, Labor Community, Xixiang Street, Baoan District, Shenzhen, China CNAS Registration Number: CNAS L18252

Subcontract Laboratory:

Shenzhen Haiyun Testing CO., Ltd

Room 201, #3 factory, Gongjin Electronics, Shatian, Kengzi street, Pingshan District, Shenzhen,

Guangdong, China

CNAS Registration Number: CNAS L7006

Waltek Testing Group Co., Ltd. Address: No. 77, Houjje Section, Guantai Road, Houjie Town, Dongguan City, Guangdong, China CNAS Registration Number: CNAS L3110

2.2. Test instruments list

No.	Name of Equipment	Manufacturer	Model Number	Serial Number	Inventory No.	Last Calibration	Due Calibration
			Radiated E	mission			
1	Test receiver	Rohde&Schwarz	ESU	100184	JLE011	2024/4/24	2025/4/23
2	Log periodic antenna	Schwarzbeck	VULB 9168	1151	JLE012	2024/4/20	2025/4/19
3	Low frequency amplifier	/	LNA 0920N	2014	JLE023	2024/4/24	2025/4/23
4	High frequency amplifier	Schwarzbeck	BBV 9718	284	JLE024	2024/4/24	2025/4/23
5	Horn Antenna	SCHWARZBECK	BBHA 9120 D	02670	JLE028	2024/4/20	2025/4/19
6	Temp&Humidity Recorder	Meideshi	JR900	/	JLE021	2024/4/24	2025/4/23
7	Horn Antenna	SCHWARZBECK	BBHA 9170	9170#685	JLE029	2024/7/15	2025/7/14
8	Loop Antenna	SCHWARZBECK	FMZB1519B	00029	JLE030	2024/7/15	2025/7/14
9	Broadband preamplifier	Schwarzbeck	BBV9721	9721-019	JLE025	2024/4/24	2025/4/23
10	SAC	SAEMC	9*6*6	/	JLE014	2022/5/4	2025/5/3
11	Test software	Farad Technology Co., Ltd		EZ	-EMC Ver.T	W-03A2	
			Conducted I	Emission			
1	LISN	Rohde&Schwarz	ENV216	100075	JLE002	2024/4/24	2025/4/23
2	ISN	Schwarzbeck	CATE 5 8158	#171	JLE003	2024/4/24	2025/4/23
3	ISN	Schwarzbeck	CAT 3 8158	00187	JLE032	2024/3/31	2025/3/30
4	Test receiver	Rohde&Schwarz	ESCI	100718	JLE010	2024/4/24	2025/4/23
5	Pulse limiter	Rohde&Schwarz	ESH3-Z2	102299	JLE047	2024/4/24	2025/4/23
6	Temp&Humidity Recorder	Meideshi	JR900	/	JLE020	2024/4/24	2025/4/23
7	Test software	Farad Technology Co., Ltd	EZ-EMC Ver.TW-03A2				

	ESD						
1	Electrostatic discharge generator	Prima	ESD61002TA	/	JLE009	2024/4/19	2025/4/18
2	Temp&Humidity Recorder	Meideshi	JR900	/	JLE019	2024/4/24	2025/4/23
			RS				
1	Signal generator	DARE	CTR1009B/RG N6000B	16100025 SN020	JLE043	2024/10/11	2025/10/10
2	Power meter	DARE	RPR2006C	18100006 SNO03	JLE044	2024/10/11	2025/10/10
3	Power meter	DARE	RPR2006C	18100006 SNO04	JLE045	2024/10/11	2025/10/10
4	Power amplifier	Bonn	BLWA0820-200 /100	1811690	JLE046	2024/10/11	2025/10/10
5	Power amplifier	Rflight	Power amplifier	23043081	JLE155	2024/09/06	2025/09/05
6	Probe	DARE	RadiSense 6	10I00037 SNO101	JLE052	2024/10/09	2025/10/08
7	Horn antenna	Rohde&Schwarz	STLP 9149	00811	JLE166	2023/9/14	2026/9/13
8	Integral Antenna	Rohde&Schwarz	STLP 9128D	STLP 9128 DN#119	JLE061	2023/10/14	2026/10/13
9	Test software	DARE!! instruments		Rad	iMation Ver.2	2017.2.10	
			EFT				
1	Combined immunity tester	3ctest	CCS 600	/	JLE070	2024/10/20	2025/10/19
2	Combined immunity tester	3ctest	WT 2216S	/	JLE074	2024/10/20	2025/10/19
3	Coupling clamp	1	/	/	JLE013	2024/4/24	2025/4/23
4	Temp&Humidity Recorder	Meideshi	JR900	/	JLE018	2024/4/24	2025/4/23
5	5 Test software 3ctest EMS Lab Ver.1.8.2.0						

	Surge						
1	Combined immunity tester	3ctest	CCS 600	/	JLE070	2024/10/20	2025/10/19
2	Combined immunity tester	3ctest	WT 2216S	/	JLE074	2024/10/20	2025/10/19
3	Combined surge simulator	3ctest	CWS 600T	/	JLE071	2024/10/20	2025/10/19
4	Single phase transformer	Prima	JMB-3KVA	/	JLE008	2024/10/20	2025/10/19
5	Temp&Humidity Recorder	Meideshi	JR900	/	JLE017	2024/4/24	2025/4/23
6	Test software	3ctest		EN	IS Lab Ver.	1.8.2.0	
	CS						
1	Coupling decoupling network	3ctest	CDN M2/M3	ES06400 2622007	JLE073	2024/10/20	2025/10/19
2	6dB attenuator	Weinschel Associates	A622	59-6-33	JLE038	2024/4/24	2025/4/23
3	Conducted Immunity Tester System	Frankonia	CIT-10	E670107 8605	JLE001	2024/4/24	2025/4/23
4	absorbing clamp(CS)	Luthi	EM101	35978	JLE015	2024/4/22	2025/4/21
5	Temp&Humidity Recorder	Meideshi	JR900	/	JLE016	2024/4/24	2025/4/23
6	Test software	Frankonia		C	CIT-10 Ver.1	.1.2.0	
			DIPS				
1	Combined immunity tester	3ctest	WT 2216S	/	JLE074	2024/10/20	2025/10/19
2	Combined immunity tester	3ctest	CCS 600	/	JLE070	2024/10/20	2025/10/19
3	Temp&Humidity Recorder	Meideshi	JR900	/	JLE022	2024/4/24	2025/4/23
4	Test software	3ctest		EN	/IS Lab Ver.	1.8.2.0	
			Harmonics &	Flickers			
1	Harmonic & flicker analyzer	California	5001IX-CTS-4 00	2215A03 865	JLE034	2024/4/24	2025/4/23
2	2 Test software California CTS4 Ver.4.29.0.0						

Waltek Lab Instruments List:

Radia	Radiated emissions (30MHz-1GHz)							
No.	Description	Manufacturer	Model	Serial No.	Cal. Date	Due. Date		
1	Coaxial Cable (below 1GHz)	Lair Microwave	LE400-NMNM-8M	#02	2025-01-10	2026-01-09		
2	Broadband Preamplifier (9KHz-6GHz)	SCHWARZBEC K	BBV9744	00140	2025-01-10	2026-01-09		
3	Trilog Broadband Antenna	SCHWARZBEC K	VULB9163	01376	2025-01-11	2026-01-10		
4	Test Receiver (9KHz-7GHz)	R&S	ESR 7	102320	2025-01-10	2026-01-09		
5	Test Software	Frad Technology	EZ-EMC(Ver.EMEC -3A1)	/	1	1		
3m Fı	ally Anechoic Roo	m for Radiation	(Above 1GHz)					
1	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due. Date		
2	Spectrum Analyzer	R&S	FSP30	100091	2024-04-22	2025-04-21		
3	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2025-01-17	2026-01-16		
4	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2024-07-18	2025-07-17		
5	Coaxial Cable (above 1GHz)	ZT26-NJ-NJ-8M/F A	1GHz-18GHz	NA	2024-04-22	2025-04-21		

2.3. Measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty	
Parameter	Uncertainty
Conducted emission(9kHz~30MHz) AC main	±2.68dB
Conducted emission(9kHz~30MHz) wired network ports	±2.94dB
Radiated emission (1GHz~18GHz)	±5.06dB
Radiated emission (18GHz~40GHz)	±4.98dB

Measurement uncertainty levels of Waltek Testing Group Co., Ltd.					
Measurement	Measurement Frequency Range	Uncertainty			
Radiated Emission	30MHz ~ 1GHz	±5.03dB			
Radiated Emission	1GHz ~ 18GHz	±5.24dB			

3. Test system information

3.1. Test result summary

Test procedures according to the technical standard(s):

Emission										
Standard	ltem	Result	Remarks	Tested in Lab						
	Conducted (Main Port)	Pass	Class B	Haiyun						
EN 55032	Conducted (Telecom Port)	N/A	Class B	Haiyun						
	Radiated (below 1 GHz)	Pass	Class B	Waltek Testing Group Co., Ltd.						
	Radiated (above 1 GHz)	bove 1 GHz) Pass Class B	Class B	Haiyun						
EN IEC 61000-3-2	Harmonic current emissions	Note2	Class D	Haiyun						
EN 61000-3-3	Voltage fluctuations & flicker	Pass	/	Haiyun						

Immunity										
Standard	ltem	Result	Remarks	Tested in Lab						
EN 61000-4-2	ESD	Pass	Criterion B	Haiyun						
EN 61000-4-3	RS	Pass	Criterion A	Shenzhen Haiyun Testing CO., Ltd						
EN 61000-4-4	EFT	Pass	Criterion B	Haiyun						
EN 61000-4-5	Surge	Pass	Criterion B	Haiyun						
EN 61000-4-6	CS	Pass	Criterion A	Haiyun						
EN 61000-4-8	PFMF*	Note5	Criterion A	Haiyun						
EN 61000-4-11	Voltage dips & voltage variations	Pass	Criterion B/C/C	Haiyun						

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The power consumption of EUT is less than 75W and no limits apply.
- (3) Voltage dip: 0% residual voltage for 0.5 cycle Performance Criteria B
 - Voltage dip: 70% residual voltage for 25 cycle (at 50Hz) Performance Criteria C
 - Voltage Interruption: 0% residual voltage for 250 cycle (at 50Hz) Performance Criteria C
- (4) Haiyun: Shenzhen Haiyun Standard Technical CO., Ltd.
- (5) * denotes test only to equipment containing devices intrinsically susceptible to magnetic fields, such as

CRT monitors, Hall effect elements, electro-dynamic microphones, magnetic field sensors or audio frequency transformers. Refer to standard D.3.2 for determining the test level when the EUT contains a CRT display.

3.2. Description of test mode

	Operating mode											
No.	Input ports	Input source	Resolution	Audio	USB							
1*		PC	1920* 1080@120HZ	With Earphone	Connect USB port							
2		PC	1280* 1024@120HZ	With Earphone	Connect USB port							
3		PC	800* 600@60HZ	With Earphone	Connect USB port							
4		PC	1920* 1080@120HZ	Without Earphone	Connect USB port							
5		PC	1280* 1024@120HZ	Without Earphone	Connect USB port							
6		PC	800* 600@60HZ	Without Earphone	Connect USB port							
7		PC	1920* 1080@120HZ	With Earphone	No USB port							
8		PC	1280* 1024@120HZ	With Earphone	No USB port							
9		PC	800* 600@60HZ	With Earphone	No USB port							
10		PC	1920* 1080@120HZ	Without Earphone	No USB port							
11		PC	1280* 1024@120HZ	Without Earphone	No USB port							
12		PC	800* 600@60HZ	Without Earphone	No USB port							
13*		PC	1920* 1080@120HZ	With Earphone	Connect USB port							
14		PC	1280* 1024@120HZ	With Earphone	Connect USB port							
15		PC	800* 600@60HZ	With Earphone	Connect USB port							
16		PC	1920* 1080@120HZ	Without Earphone	Connect USB port							
17		PC	1280* 1024@120HZ	Without Earphone	Connect USB port							
18		PC	800* 600@60HZ	Without Earphone	Connect USB port							
19	DP Playing	PC	1920* 1080@120HZ	With Earphone	No USB port							
20		PC	1280* 1024@120HZ	With Earphone	No USB port							
21		PC	800* 600@60HZ	With Earphone	No USB port							
22		PC	1920* 1080@120HZ	Without Earphone	No USB port							
23		PC	1280* 1024@120HZ	Without Earphone	No USB port							
24		PC	800* 600@60HZ	Without Earphone	No USB port							
25*		PC	1920* 1080@60HZ	With Earphone	Connect USB port							
26		PC	1280* 1024@60HZ	With Earphone	Connect USB port							
27		PC	800* 600@60HZ	With Earphone	Connect USB port							
28		PC	1920* 1080@60HZ	Without Earphone	Connect USB port							
29		PC	1280* 1024@60HZ	Without Earphone	Connect USB port							
30		PC	800* 600@60HZ	Without Earphone	Connect USB port							
31	v GA Playing	PC	1920* 1080@60HZ	With Earphone	No USB port							
32		PC	1280* 1024@60HZ	With Earphone	No USB port							
33		PC	800* 600@60HZ	With Earphone	No USB port							
34		PC	1920* 1080@60HZ	Without Earphone	No USB port							
35		PC	1280* 1024@60HZ	Without Earphone	No USB port							
36		PC	800* 600@60HZ	Without Earphone	No USB port							

Note:

The lengths of AC power cord, HDMI cable, DP cable and USB Type-B cable are respectively: 1.2M / 1.5M / 1.8M, The 1.2M is the worst performance.

- 2. Resolution refresh rate from low to high: 800* 600@60HZ~1920* 1080@120HZ
- 3. "*"Means the worst test mode.

3.3. EUT Operating Conditions

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following.

- 1. EUT connected to Eamphone va Earphone cable
- 2. The Mouse and Keyboard connected to PC via USB cable.
- 3. The Printer connected to PC via USB cable.
- 4. EUT connected to Pc via HDMI cable.
- 5. EUT connected to Pc via DP cable.
- 6. EUT connected to Pc via VGA cable.
- 7. EUT connected to Pc via USB Type-B cable cable.
- 8. EUT connect U disk Or load
- 9. EUT connect U disk Or load
- 10. EUT connect U disk Or load
- 11. EUT connect U disk Or load

3.4. Block Diagram Showing the Configuration Of System Tested

3.5. Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model	Manufacturer	Series No
1	Microcomputer	Lenovo	ThinkCentre M750t-N000	/
2	Printer	Xiaomi	MJPMYTJHT01	/
3	Mouse	LENOVO	DOK-680U	/
4	Keyboard	LENOVO	SK-8827	/
5	Earphone	Huawei	P1	1.0 meter
6	USB Disk	/	Kingston	/

4. Emission test

4.1. Conduction emission test

4.1.1. Limit

FREQUENCY (MHz)	Class /	A (dBuV)	Class B (dBuV)			
	Quasi-peak Average		Quasi-peak	Average		
0.15 - 0.5	79	66	66 - 56	56 - 46		
0.50 - 5.0	73	60	56	46		
5.0 - 30.0	73	60	60	50		

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2. Test procedures

- 1. Test limits and test methods reference EN 55032 Appendix A and Appendix D.
- The EUT was placed 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (AMN). All other support equipment powered from additional AMN. The AMN provide 50 Ohm/ 50 uH of coupling impedance for the measuring instrument.
- 3. Interconnecting cables that hang closer than 0.4 m to the ground plane shall be folded back and forth in the center forming a bundle 0.3 m to 0.4 m long.
- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance.
- 5. The frequency range from 150 kHz to 30 MHz was searched.
- 6. Actual test configuration, please refer to the related Item EUT Test Photos.
- 7. AAN, CP or CVP at least 0.8 m from nearest part of EUT chassis.
- 8. The thickness of the insulation shall not be more than 150 mm.

4.1.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the test configuration

4.1.4. Test results(worst case)

Product M	odel	27E40			F	RBW		9 kHz	9 kHz		
Environme Conditions	ental S	22.5℃, 50% RH			-	Fest Mo	ode	Mode 1			
Tested by		Freedor	n Zhuo		-	Test Results PASS					
Test Date		2025-02	2-20								
Note: AC 2	230V/50)Hz									
					Lin	е					
			Co	nducted I	Emissi	on Meas	suremen	nt			
80.0	dBu∀										
-							EN 55032	Class B Conduction(Q	P)		
							5 N 550773				
k,							EN 35032	Class D Conduction(AVI			
V	WY HAR.				v			Ň			
	(TWW)	hi ž		w ^{ter}	A. Annu	×.					
30		TWP WAL	Mahardrenky	and the faith of the		Well Two	He Marked	When the state of the	Murran		
ľ l	VA Mar	MAR	- 440× 1	and a start of the	m	M	Marchil	STALL MANAGEMENT	реак		
	1.00	ան մ տրոնվել	M. Manune Coloring	Ardine ale		ugua Vando	HAL . HAPA	A standard of the balances	Wardson AVG		
20											
0.150)		0.5		(MHz)		5		30.000		
		Reading	Correct	Measure-							
No. Mk.	Freq.	Level	Factor	ment	Limit	Over					
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment			
1	0.1540	20.14	20.10	40.24	65.78	-25.54	QP				
2	0.1540	3.61	20.10	23.71	55.78	-32.07	AVG				
3	0.3780	5.07	20.23	25.30	58.32	-33.02	QP				
4	0.3780	0.20	20.23	20.43	48.32	-27.89	AVG				
5	1.6740	14.17	20.08	34.25	56.00	-21.75	QP				
6						00.04	11/0				
7	1.6740	5.11	20.08	25.19	46.00	-20.81	AVG				
8	1.6740 3.1500	5.11 7.97	20.08 20.22	25.19 28.19	46.00 56.00	-20.81 -27.81	QP				
	1.6740 3.1500 3.1500	5.11 7.97 -0.54	20.08 20.22 20.22	25.19 28.19 19.68	46.00 56.00 46.00	-20.81 -27.81 -26.32	QP AVG				
9	1.6740 3.1500 3.1500 7.6980	5.11 7.97 -0.54 5.24	20.08 20.22 20.22 20.04	25.19 28.19 19.68 25.28	46.00 56.00 46.00 60.00	-20.81 -27.81 -26.32 -34.72	AVG QP AVG QP				
9 10	1.6740 3.1500 3.1500 7.6980 7.6980	5.11 7.97 -0.54 5.24 -0.55	20.08 20.22 20.22 20.04 20.04	25.19 28.19 19.68 25.28 19.49	46.00 56.00 46.00 60.00 50.00	-20.81 -27.81 -26.32 -34.72 -30.51	AVG QP AVG QP AVG				
9 10 11	1.6740 3.1500 3.1500 7.6980 7.6980 16.7940	5.11 7.97 -0.54 5.24 -0.55 18.53	20.08 20.22 20.22 20.04 20.04 20.16	25.19 28.19 19.68 25.28 19.49 38.69	46.00 56.00 46.00 60.00 50.00 60.00	-20.81 -27.81 -26.32 -34.72 -30.51 -21.31	AVG QP AVG QP AVG QP				
9 10 11 12 *	1.6740 3.1500 3.1500 7.6980 7.6980 16.7940 16.7940	5.11 7.97 -0.54 5.24 -0.55 18.53 9.80	20.08 20.22 20.22 20.04 20.04 20.16 20.16	25.19 28.19 19.68 25.28 19.49 38.69 29.96	46.00 56.00 46.00 60.00 50.00 60.00 50.00	-20.81 -27.81 -26.32 -34.72 -30.51 -21.31 -20.04	AVG QP AVG QP AVG QP AVG				

Note: 1. The other emission levels were very low against the limit.

2. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit

Product Model	27E40		F	RBW		9 kHz	
Environmental Conditions	22.5℃, 50%	RH		Test Mode		Mode 1	
Tested by	Freedom Zhu	0		Test Results PASS			
Test Date	2025-02-20						
Note: AC 230V/	50Hz						
		1	Veut	tral			
	(Conducted E	missio	on Mea	surement		
80.0 dBuV							
					EN 55032 C	ass & Conduction(OP)	
						per a conduction (et al.	
×					EN 55032 Cla	ss B Conduction(AVG)	
mythy						A A	
· ΨΥΥ	Musi X		march		×		
30	M. W. Williamson and an and	Wale water well the area	A. don	W. Marine	working where	wannam the time	
MAN	a the second second	and the second	my		Long Martine Law	Peak peak	
~ • •	Mr.M. Charles and March	and share a share and a share a		N Mart	Andar Carrier	AVG	
-20							
0.150	0.5		(MHz)		5	30.000	
No. Mk. Freq.	Reading Corre Level Facto	ct Measure- r ment	Limit	Over			
MHz	dBuV dB	dBuV	dBuV	dB	Detector C	Comment	
1 0.154	0 20.54 20.33	3 40.87	65.78	-24.91	QP		
2 0.154	0 3.70 20.33	3 24.03	55.78	-31.75	AVG		
3 0.362	0 3.72 20.1	1 23.83	58.68	-34.85	QP		
4 0.362	0 -2.76 20.1	1 17.35	48.68	-31.33	AVG		
5 1.690	0 12.11 20.3	5 32.46	56.00	-23.54	QP		
6 1.690	0 4.08 20.3	5 24.43	46.00	-21.57	AVG		
7 4.990	0 7.18 20.20	6 27.44	56.00	-28.56	QP		
8 4.990	0 1.91 20.20	5 22.17	46.00	-23.83	AVG		
9 9.074	0 8.62 20.18	3 28.80	60.00	-31.20	QP		
10 9.074	0 3.05 20.18	3 23.23	50.00	-26.77	AVG		
11 17.082	0 19.37 20.2	39.64	60.00	-20.36	QP		
12 * 17.082	0 10.12 20.2	7 30.39	50.00	-19.61	AVG		

Note: 1. The other emission levels were very low against the limit.

2.Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit

Product Mo	odel	27E40			F	RBW		9 kHz					
Environme Conditions	ntal	22.5℃, 50% RH				Fest Mo	ode	Mode 1					
Tested by		Freedo	m Zhuo		1	Test Results PASS							
Test Date		2025-02	2-20										
Note: AC 110V/60Hz													
	Line												
			Co	nducted I	Emissio	on Meas	suremen	t					
80.0	dBu∀												
-							EN 55032	Class B Conduction(Q	P]				
							EN 55032 C	lass B Conduction(AV	6)				
×								×					
	Month	×			×								
mh		nmulin .			Awallach	×		x J					
J UK	0	1 hours	4 March Martin	11 AANAN AM		Mr. Com	w Marketer	Paraphappinstanta at f	Www.www.www.				
¥	whit	W		- Material And	and the second	L M	WWWW						
			- and the states	and a		and shap	anath, i debra	terration of the second se	have ave				
-20			0.5		(MH2)		5		30.000				
0.150			0.0		(Mile)				30:000				
No. Mk.	Freq.	Level	Factor	measure- ment	Limit	Over							
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment					
1	0.1580	22.53	20.11	42.64	65.57	-22.93	QP						
2	0.1580	7.65	20.11	27.76	55.57	-27.81	AVG						
3	0.3540	7.03	20.06	27.09	58.87	-31.78	QP						
4	0.3540	0.33	20.06	20.39	48.87	-28.48	AVG						
5	1.6780	12.56	20.09	32.65	56.00	-23.35	QP						
6	1.6780	4.24	20.09	24.33	46.00	-21.67	AVG						
7	3.2020	6.64	20.21	26.85	56.00	-29.15	QP						
8	3.2020	-1.50	20.21	18.71	46.00	-27.29	AVG						
9	7.7020	7.18	20.04	27.22	60.00	-32.78	QP						
10	7.7020	-0.13	20.04	19.91	50.00	-30.09	AVG						
11 *	40.7040												
	10.7940	21.85	20.16	42.01	60.00	-17.99	QP						
12	16.7940 16.7940	21.85	20.16	42.01 31.16	60.00 50.00	-17.99 -18.84	QP AVG						

Note: 1. The other emission levels were very low against the limit.

2. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit

Product Model	27E40			RBW		9 kHz
Environmental Conditions	22.5℃, 50% RH			Test Mode		Mode 1
Tested by	Freedom	Zhuo		Test Re	esults	PASS
Test Date	2025-02-	20				
Note: AC 110V/6	50Hz					
			Neu	utral		
		Conducte	d Emiss	ion Mea	surement	
80.0 dBu∀						
					EN 55032 Cla	ass B Conduction(QP)
X m					EN 35032 Clas	X
- Maria			ă. v			Α
30	Mr. Warner		Harry Whendard	W La	marine un	way and us fail
- W.		And a start and a start of the second start and	مليه المبرية الأبديني	mount	AME WANTER	the transmitter of the state of
ar wrw	hudreman	- marked and a start of the		mul	when the week	MAR Were AVG
-20	0.5		(MHz)		5	30.000
0.100	Reading (Correct Measur	(Ū	00.000
No. Mk. Freq.	Level	Factor ment	Limit	Over		
MHz	dBuV	dB dBuV	dBuV	dB	Detector Co	omment
1 0.1580	23.28	20.32 43.60	65.57	-21.97	QP	
2 0.1580	7.85	20.32 28.17	55.57	-27.40	AVG	
3 0.5020	1.00	20.01 21.01	56.00	-34.99	QP	
4 0.5020	-3.35	20.01 16.66	46.00	-29.34	AVG	
5 1.6820	12.29	20.35 32.64	56.00	-23.36	QP	
6 1.6820	3.65	20.35 24.00	46.00	-22.00	AVG	
7 2.2620	10.24	20.30 30.54	56.00	-25.46	QP	
8 2.2620	3.92	20.30 24.22	46.00	-21.78	AVG	
9 5.6660	6.67	20.29 26.96	60.00	-33.04	QP	
10 5.6660	1.90	20.29 22.19	50.00	-27.81	AVG	
11 - 16.9540	19.07	20.27 39.94	60.00	-20.06		
12 10.9940	9.97	20.21 29.84	00.00	-20.10	AVG	

Note: 1.The other emission levels were very low against the limit. 2.Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit

Product Mo	odel	27E40			F	RBW		9 kHz					
Environme Conditions	ntal	22.5℃, 50% RH			-	Fest Mo	ode	Mode 1	3				
Tested by		Freedo	m Zhuo		-	Test Results PASS							
Test Date		2025-02	2-20										
Note: AC 2	Note: AC 230V/50Hz												
					Lin	е							
			Co	nducted I	Emissi	on Mea	suremer	nt					
80.0	lBu¥												
							EN 55032	Class B Conduction	(QP)				
							EN 55032	Class B Conduction(/	W6)				
Ň	ш.								X				
	MALAN	L .			X.				<u>A</u>				
30	- V C	M MANY	×	I La antinat	(The share the	, M	X.	ala da la					
V \	Nora	WARAN	supersigning	Martin and	mon m	Stra May	mater When	a the second second	/ Www.peak				
	- Y TUG	WWWWWW	many de la dela	Mar Martin		Mar Maria	and the state	UNING AND	him ANG				
-20													
0.150			0.5		(MHz)		5		30.000				
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over							
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment					
1	0.1580	21.28	20.11	41.39	65.57	-24.18	QP						
2	0.1580	7.27	20.11	27.38	55.57	-28.19	AVG						
3	0.5860	-0.29	20.06	19.77	56.00	-36.23	QP						
4	0.5860	-3.87	20.06	16.19	46.00	-29.81	AVG						
5	1.6540	12.87	20.07	32.94	56.00	-23.06	QP						
6	1.6540	4.57	20.07	24.64	46.00	-21.36	AVG						
7	3.2940	7.47	20.19	27.66	56.00	-28.34	QP						
8	3.2940	-0.93	20.19	19.26	46.00	-26.74	AVG						
9	5.1100	5.00	20.02	25.02	60.00	-34.98	QP						
10	5.1100	0.08	20.02	20.10	50.00	-29.90	AVG						
11 *	16.8300	19.24	20.16	39.40	60.00	-20.60	QP						
12	16.8300	9.12	20.16	29.28	50.00	-20.72	AVG						

Note: 1. The other emission levels were very low against the limit.

2. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit

Draduat Mad	al 075	40					0 411-	
Product Mod		:40			RBM		9 KHZ	
Environment Conditions	al 22.	5℃, 50%	RH		Test Mo	ode	Mode 13	
Tested by	Fre	edom Zh	uo		Test Results PASS			
Test Date	202	25-02-20						
Note: AC 230)V/50Hz							
				Neu	itral			
			Conducted	l Emissi	ion Mea	suremer	nt	
80.0 dBu	v							
						EN 55032	Class B Conduction(OP)	
×.						EN 55032	Class B Conduction(AVG)	
. www	WA.			×			Å	
	mappe			عراه إغبر المتجمل	r en	X		
30 M a		WWWWWWW	wall my will have		Wywal Wywal	With	water and the start and the start and	k.
r V4	Marian	The all the second	ander white	we up the	window with	water	week while he was a second and a	•
		. norther a subsection	and the second				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-20								
0.150		0.5		(MHz)		5	30. 0 00	
No. Mk. F	req. Le	iding Corr vel Fac	ect Measure tor ment	e- Limit	Over			
-	MHz dB	uV de	dBuV	dBuV	dB	Detector	Comment	
1 0	.1580 21	.22 20.3	32 41.54	65.57	-24.03	QP		
2 0	.1580 6.	50 20.3	32 26.82	55.57	-28.75	AVG		
3 0	.7740 2.	79 20.0	07 22.86	56.00	-33.14	QP		
4 0	.7740 -1.	.88 20.0	07 18.19	46.00	-27.81	AVG		
5 1	.6580 13	.50 20.3	35 33.85	56.00	-22.15	QP		
6 1	6580 5	16 20.1	35 25.51	46.00	-20.49	AVG		
7 5		10 20.	20.01					
1 3	.6140 6.	49 20.3	28 26.77	60.00	-33.23	QP		
8 5	.6140 6. .6140 1.	49 20.3 39 20.3	28 26.77 28 21.67	60.00 50.00	-33.23 -28.33	QP AVG		
7 5 8 5 9 9	.6140 6. .6140 1. .1820 8.	10 20.3 49 20.3 39 20.3 22 20.3	28 26.77 28 21.67 17 28.39	60.00 50.00 60.00	-33.23 -28.33 -31.61	QP AVG QP		
8 5 9 9 10 9	.6140 6. .6140 1. .1820 8. .1820 2.	10 20.3 49 20.3 39 20.3 22 20.3 38 20.3	28 26.77 28 21.67 17 28.39 17 22.55	60.00 50.00 60.00 50.00	-33.23 -28.33 -31.61 -27.45	QP AVG QP AVG		
7 5 8 5 9 9 10 9 11 * 16	.6140 6. .6140 1. .1820 8. .1820 2. .9180 19	10 20.1 49 20.1 39 20.1 22 20.1 38 20.1 .93 20.1	28 26.77 28 21.67 17 28.39 17 22.55 27 40.20	60.00 50.00 60.00 50.00 60.00	-33.23 -28.33 -31.61 -27.45 -19.80	QP AVG QP AVG QP		

Note: 1.The other emission levels were very low against the limit. 2.Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit

Product Mode	el 27E40	D		F	RBW		9 kHz						
Environmenta Conditions	ll 22.5°	22.5℃, 50% RH		1	Test Mode		Mode 13	Mode 13					
Tested by	Freed	lom Zhuo		٦	Test Results PASS								
Test Date	2025-	-02-20											
Note: AC 110	Note: AC 110V/60Hz												
				Lin	е								
		Co	nducted E	missio	on Mea	surement							
80.0 dBu∀													
/						EN 55032 (Class B Conduction(QP)						
×						EN 55032 CI	ass B Conduction(AVG)						
N.	10.1						X						
	property and		1	X. X			\wedge						
30	- WAY	× ×	a shall be	AND	M	X	a materia						
N A		man with him had	AWARMAN	mar and	Wer Near	northe workships		peak					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mayne	day	War WWww.angeller		When .	work while		and the second					
		a configuração de const	1.1.2		1			The Actual Sector					
-20													
0.150		0.5		(MHz)		5		30.000					
No. Mk. Fr	Readir eq. Leve	ng Correct I Factor	Measure- ment	Limit	Over								
M	lHz dBuV	dB	dBuV	dBuV	dB	Detector (	Comment						
1 0.	1540 22.80	20.33	43.13	65.78	-22.65	QP							
2 0.	1540 9.82	20.33	30.15	55.78	-25.63	AVG							
3 0.	5420 0.11	20.11	20.22	56.00	-35.78	QP							
4 0.	5420 -3.71	20.11	16.40	46.00	-29.60	AVG							
5 1.	6660 11.88	3 20.35	32.23	56.00	-23.77	QP							
6 1.	6660 3.74	20.35	24.09	46.00	-21.91	AVG							
7 2.	3100 11.11	20.29	31.40	56.00	-24.60	QP							
8 * 2.	3100 4.46	20.29	24.75	46.00	-21.25	AVG							
9 5.	0380 4.94	20.26	25.20	60.00	-34.80	QP							
10 5.	0380 -0.04	20.26	20.22	50.00	-29.78	AVG							
11 16.	9340 16.33	3 20.27	36.60	60.00	-23.40	QP							
12 16	0240 0.22	00.07	00.50	50.00	24.50								
	9340 0.23	20.27	28.50	50.00	-21.50	AVG							

Note: 1. The other emission levels were very low against the limit.

2. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Product Model	27E40			F	RBW		9 kHz
Environmental Conditions	<b>22.5</b> ℃,	22.5℃, 50% RH			Fest Mo	ode	Mode 13
Tested by	Freedo	m Zhuo		-	Fest Re	esults	PASS
Test Date	2025-0	2-20					
Note: AC 230	/50Hz						
				Neut	tral		
		Cor	nducted	Emissio	on Mea	surement	
80.0 dBu∀							
						EN 55022.0	Thes P Conduction(0P)
						EN 33032 C	
×						EN 55032 CI	ass B Conduction(AVG)
No.							iii λ i
	WY			Marilante	U		
30	- WANNER	Marchen	w Levelone		No. Mail ale	- Warman Www	man and the second
$ \mathcal{M} _{n}$		and a fair and the second	he water	money		LANNUA LUI	
	M. M. Proven	ware warded and the	Ward William		home	All and a second s	AVG
-20		0.5					20.000
0.150		0.5		(MH2)		5	30.000
No. Mk. Fre	Reading 4. Level	Correct Factor	Measure- ment	Limit	Over		
MH	z dBuV	dB	dBuV	dBuV	dB	Detector (	Comment
1 0.1	40 23.65	20.33	43.98	65.78	-21.80	QP	
2 0.1	40 10.26	20.33	30.59	55.78	-25.19	AVG	
3 0.5	20 0.21	20.11	20.32	56.00	-35.68	QP	
4 0.5	20 -3.61	20.11	16.50	46.00	-29.50	AVG	
5 1.6	60 12.97	20.35	33.32	56.00	-22.68	QP	
6 1.6	60 4.07	20.35	24.42	46.00	-21.58	AVG	
7 3.4	60 1.06	20.22	21.28	56.00	-34.72	QP	
8 3.4	.60 -4.03	20.22	16.19	46.00	-29.81	AVG	
9 9.3	00 8.66	20.16	28.82	60.00	-31.18	QP	
10 9.3	00 3.24	20.16	23.40	50.00	-26.60	AVG	
11 16.6	20 18.51	20.29	38.80	60.00	-21.20	QP	
12 * 16.6	20 9.46	20.29	29.75	50.00	-20.25	AVG	

Note: 1.The other emission levels were very low against the limit. 2.Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Product Mod	del	27E40			F	RBW		9 kHz			
Environment Conditions	tal	22.5℃, 50% RH			-	Test Mo	ode	Mode 25			
Tested by		Freedon	n Zhuo		-	Test Results PASS					
Test Date		2025-02	-20								
Note: AC 23	0V/50	)Hz									
Line											
Conducted Emission Measurement											
80.0 dBu	uΨ										
_							EN 55032 Cla	ss B Conduction(QP)			
							EN 55032 Class	8 Conduction(AVG)			
ň								¥			
* W*	MPMA			,	×						
	1. 1994	where a		. and	Hickoryth	X					
201		P YWW ALL	. X	And Att		يد السا	a ser and a series of the series of the	White the art of the marine			
have the work of the stand of t											
- M	m.	T T TWINN	WAR-WARNAN	and the second	when	ntr urvep	Mariant	And the second			
- M	YN.	NAM WAY		and the state of t	www	And Marine		AVG			
Γ Aγ	Y Nor	UMU VULUW	Wykansi Andrew wana akakata	and the second	m	An Carp	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AVG			
- NV	ᡟᡅᡃᢑ	UMAN WAY	Wylensighter 	and the second		ar car		AVG			
- NV	V Nor	Dart Andrew		and the second		ar can	- Marilling	AVG			
- ⁻ ^ ^	V Nor	L'MANA L'MANA	William Wight Balley	and a second				AVG			
-20	1000	UNIT THE PART	Wykenwightight www.mashalasta	and the second		ar cap		AVG			
-20	V Nor	0 0	5		(MH2)		5	AVG 30.000			
-20 0.150	Y Nor	0 Reading	5 Correct	Measure	(MH2)	A. CAR	5	AVG 30.000			
-20 0.150	Freq.	Reading Level	5 Correct Factor	Measurement	(MHz)	Over	5	AVG 30.000			
-20 0.150 No. Mk. F	Freq.	Reading Level	5 Correct Factor	Measure- ment dBuV	(MH2) Limit dBuV	Over dB	5 Detector Co	30.000			
-20 -20 0.150 No. Mk. F	Freq. MHz 0.1580	Reading Level 21.28	5 Correct Factor dB 20.11	Measure- ment dBuV 41.39	(MH2) Limit 65.57	Over dB -24.18	5 Detector Co QP	30.000			
-20 0.150 No. Mk. F	Freq. MHz 0.1580 0.1580	Reading Level 21.28 7.27	5 Correct Factor dB 20.11 20.11	Measure- ment dBuV 41.39 27.38	(MH2) Limit dBuV 65.57 55.57	Over dB -24.18 -28.19	5 Detector Co QP AVG	30.000			
-20 0.150 No. Mk. F 1 0 2 0 3 0	Freq. MHz 0.1580 0.5860	0 Reading Level dBuV 21.28 7.27 -0.29	5 Correct Factor dB 20.11 20.06	Measure- ment dBuV 41.39 27.38 19.77	(MHz) Limit dBuV 65.57 55.57 56.00	Over dB -24.18 -36.23	Detector Co QP AVG QP	30.000			
-20 -20 0.150 No. Mk. F 1 0 2 0 3 0 4 0	Freq. MHz 0.1580 0.5860 0.5860	0 Reading Level dBuV 21.28 7.27 -0.29 -3.87	5 Correct Factor dB 20.11 20.06 20.06	Measure- ment dBuV 41.39 27.38 19.77 16.19	(MH2) Limit dBuV 65.57 55.57 56.00 46.00	Over dB -24.18 -28.19 -36.23 -29.81	Detector Co QP AVG QP AVG	30.000			
-20 0.150 No. Mk. F 1 0 2 0 3 0 4 0 5 1	Freq. MHz 0.1580 0.5860 0.5860 1.6540	0 Reading Level dBuV 21.28 7.27 -0.29 -3.87 12.87	5 Correct Factor dB 20.11 20.06 20.06 20.07	Measure- ment dBuV 41.39 27.38 19.77 16.19 32.94	(MH2) Limit dBuV 65.57 55.57 56.00 46.00 56.00	Over dB -24.18 -28.19 -36.23 -29.81 -23.06	Detector Co QP AVG QP AVG QP	mment			
-20 0.150 No. Mk. F 1 00 2 00 3 00 4 00 5 1 6 1	Freq. MHz 0.1580 0.5860 0.5860 1.6540 1.6540	0 Reading Level dBuV 21.28 7.27 -0.29 -3.87 12.87 4.57	5 Correct Factor dB 20.11 20.06 20.06 20.07 20.07	Measure- ment dBuV 41.39 27.38 19.77 16.19 32.94 24.64	(MH2) Limit dBuV 65.57 55.57 56.00 46.00 56.00 46.00	Over dB -24.18 -28.19 -36.23 -29.81 -23.06 -21.36	Detector Co QP AVG QP AVG QP AVG	mment			
-20 0.150 No. Mk. F 1 0 2 0 3 0 4 0 5 1 6 1 7 3	Freq. MHz 0.1580 0.5860 0.5860 1.6540 1.6540 3.2940	0 Reading Level dBuV 21.28 7.27 -0.29 -3.87 12.87 4.57 7.47	5 Correct Factor dB 20.11 20.06 20.06 20.07 20.07 20.07 20.19	Measure- ment dBuV 41.39 27.38 19.77 16.19 32.94 24.64 27.66	(MH2) Limit dBuV 65.57 55.57 55.57 55.00 46.00 56.00 46.00 56.00	Over dB -24.18 -28.19 -36.23 -29.81 -23.06 -21.36 -28.34	Detector Co QP AVG QP AVG QP AVG QP	30.000			
-20 -20 0.150 No. Mk. F 1 0 2 0 4 0 5 1 6 1 7 3 8 3	Freq. MHz 0.1580 0.5860 0.5860 1.6540 1.6540 3.2940	0 Reading Level dBuV 21.28 7.27 -0.29 -3.87 12.87 12.87 4.57 7.47 -0.93	5 Correct Factor dB 20.11 20.06 20.06 20.07 20.07 20.07 20.19 20.19	Measure- ment dBuV 41.39 27.38 19.77 16.19 32.94 24.64 27.66 19.26	(MH2) Limit dBuV 65.57 55.57 56.00 46.00 56.00 46.00 46.00	Over dB -24.18 -28.19 -36.23 -29.81 -23.06 -21.36 -21.36 -28.34 -26.74	Detector Co QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	mment			
-20 0.150 No. Mk. F 1 0 2 0 3 0 4 0 5 1 6 1 7 3 8 3 9 5	Freq. MHz 0.1580 0.5860 0.5860 1.6540 1.6540 3.2940 5.1100	0 Reading Level dBuV 21.28 7.27 -0.29 -3.87 12.87 4.57 7.47 -0.93 5.00	5 Correct Factor dB 20.11 20.06 20.06 20.06 20.07 20.07 20.07 20.19 20.19 20.02	Measure- ment dBuV 41.39 27.38 19.77 16.19 32.94 24.64 27.66 19.26 25.02	(MH2) Limit dBuV 65.57 55.57 56.00 46.00 56.00 46.00 56.00 46.00 60.00	Over dB -24.18 -28.19 -36.23 -29.81 -23.06 -21.36 -21.36 -28.34 -26.74 -34.98	Detector Co QP AVG QP AVG QP AVG QP AVG QP AVG QP	mment			
-20 -20 0.150 No. Mk. F 1 0 2 0 3 0 4 0 5 1 6 1 7 3 8 3 9 5 10 5	Freq. MHz 0.1580 0.5860 0.5860 1.6540 1.6540 3.2940 3.2940 5.1100 5.1100	0 Reading Level dBuV 21.28 7.27 -0.29 -3.87 12.87 4.57 7.47 -0.93 5.00 0.08	5 Correct Factor dB 20.11 20.06 20.06 20.07 20.07 20.07 20.07 20.19 20.19 20.02 20.02	Measure- ment dBuV 41.39 27.38 19.77 16.19 32.94 24.64 27.66 19.26 25.02 20.10	(MH2) Limit dBuV 65.57 55.57 56.00 46.00 56.00 46.00 56.00 46.00 56.00 46.00 50.00	Over dB -24.18 -28.19 -36.23 -29.81 -23.06 -21.36 -21.36 -28.34 -26.74 -34.98 -29.90	Detector Co QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG	mment			
-20 -20 0.150 No. Mk. F 1 0 2 0 3 0 4 0 5 1 6 1 7 3 8 3 9 5 10 5 11 * 16	Freq. MHz 0.1580 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5860 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5900 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800 0.58000 0.58000 0.580000000000	0 mm/mi 0 mm/mi 0 mm/mi 0 mm 1 mm/mi 0 mm/m	5 Correct Factor dB 20.11 20.06 20.06 20.07 20.07 20.07 20.07 20.07 20.19 20.19 20.02 20.02 20.02 20.02	Measure- ment dBuV 41.39 27.38 19.77 16.19 32.94 24.64 27.66 19.26 25.02 20.10 39.40	(MH2) Limit dBuV 65.57 55.57 56.00 46.00 56.00 46.00 56.00 46.00 50.00 60.00 60.00	Over dB -24.18 -28.19 -36.23 -29.81 -23.06 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -21.36 -	Detector Co QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP AVG QP	mment			

**Note:** 1. The other emission levels were very low against the limit.

2. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



	-											
Product Model	27E40			RBW		9 kHz						
Environmental Conditions	22.5℃, 50% RH		Test Mode		Mode 25							
Tested by	Freedom	n Zhuo		-	Test Results PASS							
Test Date	2025-02-	-20										
Note: AC 230V/	50Hz											
				Neu	tral							
Conducted Emission Measurement												
80.0 dBu∀												
						EN 55032 Cla	ss B Conduction(0P)					
×.						EN 55032 Clas	E Conduction(AV6)					
1 Maria							X					
(hed)	Millinks a			Menter.	Χ.							
30 /	MAN		A Way way	ALC: NOT ALL ALC	A March	a water by adaptive	MUMATING AND Sharman					
1 Ville	MA	atribude a casala	AN MANY	the man		K. M. Walk	peak					
	VVV-NAMA	Waren William	ly thype .		Marth Comm	where its and the finance	AND ALL MARKEN AND					
-20 0.150	0	5		(MHz)		5	30,000					
	Reading	Correct M	Appeuro-	()		-						
No. Mk. Freq.	Level	Factor	ment	Limit	Over							
MHz	dBuV	dB	dBuV	dBuV	dB	Detector Co	mment					
1 0.158	0 20.03	20.11	40.14	65.57	-25.43	QP						
2 0.158	0 5.22	20.11	25.33	55.57	-30.24	AVG						
3 0.514	0 1.03	20.16	21.19	56.00	-34.81	QP						
4 0.514	0 -3.03	20.16	17.13	46.00	-28.87	AVG						
5 1.674	0 11.07	20.08	31.15	56.00	-24.85	QP						
6 1.674	0 3.75	20.08	23.83	46.00	-22.17	AVG						
7 3.134	0 8.23	20.22	28.45	56.00	-27.55	QP						
8 3.134	0 -0.44	20.22	19.78	46.00	-26.22	AVG						
9 11.314	0 8.94	20.24	29.18	60.00	-30.82	QP						
10 11.314	0 6.98	20.24	27.22	50.00	-22.78	AVG						
11 * 16.794	0 21.21	20.16	41.37	60.00	-18.63	QP						
12 16.794	0 9.72	20.16	29.88	50.00	-20.12	AVG						

Note: 1.The other emission levels were very low against the limit. 2.Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Product Mod	del	27E40			F	RBW		9 kHz
Environmen Conditions	ital	22.5℃, 50% RH				Fest Mo	ode	Mode 25
Tested by		Freedon	n Zhuo		-	Fest Re	sults	PASS
Test Date		2025-02	-20					
Note: AC 11	0V/60	Hz						
					Lin	е		
			Co	nducted	Emissio	on Meas	surement	
80.0 dB	But¥							
_							EN 55032 C	ass & Conduction(OP)
								200 D Compaction ( Cr. 1
×	<b></b>						EN 55032 Cla	ss B Conduction(AVG)
m	m						_	Ă l
	"W	000			Mr. W.La			
30		o my hall	White we have a little	internet aller	a intributed a	W	Manualli	Hehell Marsham & Carthen was
5	han	M.	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	- And Marken	All and a street		ALALIAN	peak
	1.64	w wash	mastrand	had the advertised		A. Musi	erikter er alltikknink	WILL WITH THE WALL AVG
0.150		0	.5		(MHz)		5	30.000
		Reading	Correct	Measure-				
No. Mk.	Freq.	Level	Factor	ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector C	omment
1	0.1580	23.17	20.32	43.49	65.57	-22.08	QP	
2	0.1580	7.99	20.32	28.31	55.57	-27.26	AVG	
3	0.4620	2.42	20.10	22.52	56.66	-34.14	QP	
4	0.4620	-2.78	20.10	17.32	46.66	-29.34	AVG	
5	1.6660	11.47	20.35	31.82	56.00	-24.18	QP	
6	1.6660	3.12	20.35	23.47	46.00	-22.53	AVG	
7	2.1740	9.47	20.32	29.79	56.00	-26.21	QP	
8	2 17/0	2.02	20.32	23.25	46.00	-22.75	AVG	
9	2.1140	2.93	20.52	20.20	40.00			
	7.1900	4.05	20.32	24.36	60.00	-35.64	QP	
10	7.1900 7.1900	4.05 0.22	20.32 20.31 20.31	24.36 20.53	60.00 50.00	-35.64 -29.47	QP AVG	
10 11 1	7.1900 7.1900 6.7980	4.05 0.22 20.29	20.32 20.31 20.31 20.28	24.36 20.53 40.57	60.00 50.00 60.00	-35.64 -29.47 -19.43	QP AVG QP	

Note: 1. The other emission levels were very low against the limit.

2. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Product Model	27E40			RBW		9 kHz					
Environmental Conditions	22.5℃, 50% RH			Test Mo	ode	Mode 25					
Tested by	Freedom Zhuo			-	Test Results PASS						
Test Date	2025-02	2-20									
Note: AC 110V/6	 60Hz										
				Neu	tral						
	Conducted Emission Measurement										
80.0 dBu∀											
	_					EN 55032 Cla	ss B Conduction(QP)				
×						EN 55032 Clas	s B Conduction(AVG)				
m.							X				
M.	M. X			X.							
30	W. Mary	×	and the state	hoding the second		M. March	attraction of the second secon				
Ma a	, with	by the second	AT A AREA T	W. March	No all March Caller	Notes	with the second se				
- V Will	Maria		a marine	Mar	W.M. W	white the shares have	March Millingurger The march and				
		and the constraint	**n ·				Cost of Hard				
-20		15		ศษาว		5	30.000				
0.150				(MHZ)		3	30.000				
No. Mk. Freq.	Level	Factor	measure- ment	Limit	Over						
MHz	dBuV	dB	dBuV	dBuV	dB	Detector Co	mment				
1 0.158	0 23.42	20.32	43.74	65.57	-21.83	QP					
2 0.158	0 7.83	20.32	28.15	55.57	-27.42	AVG					
3 0.350	0 6.58	20.07	26.65	58.96	-32.31	QP					
4 0.350	0 -1.34	20.07	18.73	48.96	-30.23	AVG					
5 0.806	0 1.18	20.06	21.24	56.00	-34.76	QP					
6 0.806	0 -3.03	20.06	17.03	46.00	-28.97	AVG					
7 1.658	0 12.67	20.35	33.02	56.00	-22.98	QP					
8 1.658	0 3.67	20.35	24.02	46.00	-21.98	AVG					
9 5.666	0 5.90	20.29	26.19	60.00	-33.81	QP					
10 5.666	0 0.69	20.29	20.98	50.00	-29.02	AVG					
11 16.962	0 19.64	20.27	39.91	60.00	-20.09	QP					
12 * 16.962	0 10.63	20.27	30.90	50.00	-19.10	AVG					

Note: 1.The other emission levels were very low against the limit. 2.Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



## 4.2. Telecommunication port conduction emission test

#### 4.2.1. Limit

#### For Class A Equipment

FREQUENCY (MHz)	Voltage L	imit (dBuV)	Current Limit (dBuA)				
,	Quasi-peak	Average	Quasi-peak	Average			
0.15 ~ 0.5	97 ~ 87	84 ~ 74	53 ~ 43	40 ~ 30			
0.5 ~ 30.0	87	74	43	30			

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

#### For Class B Equipment

FREQUENCY (MHz)	Voltage L	imit (dBuV)	Current Limit (dBuA)			
	Quasi-peak	Average	Quasi-peak	Average		
0.15 - 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20		
0.5 - 30.0	74	64	30	20		

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.



#### 4.2.2. Test procedure

#### For ISN:

- 1. The EUT was placed 0.4 meters from the conducting wall of the shielded room and connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN.
- 2. Voltage at the measurement port of the ISN was detected, the reading was corrected by adding the voltage division factor of the ISN, and was compared to the voltage limits.
- 3. The disturbance levels and the frequencies of at least six highest disturbances were recorded from each telecommunication port, which comprises the EUT.

#### For Current Probe:

- 1. Current probe shall be placed at 0.1 m from the ISN.
- 2. Current at the measurement port of the ISN was detected, the reading was corrected by add the current division factor of the current probe, and was compared to the current limits.
- 3. The disturbance levels and the frequencies of at least six highest disturbances were recorded from each telecommunication port, which comprises the EUT.
- 4. Break the insulation and connect a 150  $\Omega$  resistor from the outside surface of the shield to ground and apply a clamp between 150  $\Omega$  connection and associated equipment (For STP LAN only).



## 4.2.3. Test set-up

For the actual test configuration, please refer to the related item – photographs of the test configuration.

### 4.2.4. Test results

N/A



## 4.3. Radiated emission test

## 4.3.1. Limit

Requirements for radiated emissions at frequencies up to 1 GHz for class B equipment

EN55032

Frequency		Measureme		
Range	Facility	Distance	Detector type /	Class B limits
MHz	T dointy	m	bandwidth	dBµV/m
30 to 230	OATS/SAC	10	Quasi Peak /	30
230 to 1 000			120 kHz	37

Requirements for radiated emissions at frequencies above 1 GHz for class B equipment

#### EN55032

Frequency Range		Measurement						
MHz	MHz Facility		Detector type /	Class B limits				
MHZ Facility		m	bandwidth	dBµV/m				
1 000 to 6000	FSOATS	3	Average/1 MHz	54				
1 000 to 6000			Peak/1 MHz	74				



#### 4.3.2. Test procedures

- 1. Test limits and test methods reference EN 55032 Appendix A and Appendix B.
- Below 1GHz, the measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 m above the ground at a 10 m semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- Above 1GHz, the measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 m above the ground at a 3 m semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. The initial step in collecting radiated emission data is a receiver peak detector mode.
- Pre scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 7. For above 1GHz, If the emission level of the EUT In "Peak Detection" mode is 20 dB lower than the "Average" limit (means that the emission level in "Peak Detection" mode also complies with the limit in "Average Mode"), testing will be stopped and "Peak" values of the EUT will be reported, otherwise, the emissions of the EUT will be measured in "Average Mode" again and then reported.
- All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz).
- 9. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.(above 1GHz)



## 4.3.3. Test set-up

Radiated measurement test set-up frequency below 1 GHz



Radiated measurement test set-up frequency above 1 GHz







For the actual test configuration, please refer to the related item – Photographs of the Test Configuration



## 4.3.4. Test results(worst case)

#### Below 1G

Product	Model	27E40				Location			10m chamber				
Environ Conditio	mental ons	22.5℃, 56.7% RH				Test Mode			Mode 1				
Antenna	a Pole	Vertical				RBW			120 k	Hz			
Tested	by	Waltek B	Billy		-	Test R	Results		PASS	5			
Test Da	ite	2025-02	-27										
Note: A	C 230V/5	0Hz											
71	n dBubl/m												
60	·  +										+	-	
51	,												
-41	'  †					╧		-	N55032 RE	-Class 8	1004	4	
31	,  +						-5					_	
21				3	e lanu			6		Inmary	-		
20	,			put and a	Mr. Wary	MAN	البيها المورا	hundre	Muhaway				
1	and the frances	All and the second s	al managements	w.kl		- <b>1</b>							
0												-	
-1	30.000	60.0	00 90	000	(MHz)		300.	000		500.000		1000.0	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/	Margin (dB)	Detector	Remark					
1	30.853	4 30.47	-15.48	14.99	30.00	-15.01	QP						
2	69.114	0 33.05	-16.60	16.45	30.00	-13.55	QP						
3	125.886	3 36.38	-12.87	23.51	30.00	-6.49	QP						
4	137.420	2 39.87	-13.97	25.90	30.00	-4.10	QP						
5	275.157	0 41.61	-12.88	28.73	37.00	-8.27	QP						
6	343.180	0 34.67	-10.60	24.07	37.00	-12.93	QP						

**Note:** 1.QP= Quasi-peak Reading.

- 2. The other emission levels were very low against the limit.
- 3. Measurement = Reading Level+Correct Factor, Over = Measurement- Limit


Produ	ict I	Model		27E	E40								Loc	ation			10m	l ch	nan	ıbe	r			
Envirc Condi [:]	onn itior	nental ns	2	22.	<b>5</b> ℃	, 5	6.7	% I	RH				Tes	st Mo	de		Vod	le 1						
Anten	na	Pole	ł	Hor	izo	nta	al						RB	W			120	kН	z					
Teste	d b	у	١	Na	ltek	ĸВ	illy						Tes	st Re	sults		PAS	S						
Test D	Date	e	2	202	25-0	)2-2	27																	-
Note:	AC	230V	/50	Hz																				
	70.0	dBu∀/n	n																					
																						1		
	60			+	-			_	+			_					+	+	+	-	+	-		
	50																							
	40			+					+							EN	i50 <u>32 I</u>	RE-C	lass (	3 10M	+			
	30																_	_	_	i	_			
											ž			\$	5	Ι.			X	hart	www	4		
	20			+					+		Å				, ii	a honto	when	- Mar			+	1		
	10	han an	1	10000						WWW.	and week	As in t	Alerton	NH WA	(hym)ydd		_		_	_	_	-		
		Caller and Mr. Salar	No.		Aleria	nwV.	i, mu	الملاطين	rΨ	dir.			, d.n.											
	0			╈					+								+	+	$\neg$		+	1		
	-10 30	000			60	1.000		90	1.000		IMHz			30	0.000			60	1.000		$\bot$		0	
No.		Freq. (MHz)		Rea (dBi	ading uV/n	g n)	Fac (dE	tor 3)	(d	Result BuV/m`	Limit (dBuV/	Ma (i	argin dB)	Detecto	r Re	mark								
1		43.35	534	24	1.75	-	-14	63		10.12	30.00	-1	19.88	QP										1
2		137.90	)28	37	7.70		-14	.02		23.68	30.00	-(	6.32	QP										
3		148.44	10	31	.83		-14	.00		17.83	30.00	-1	12.17	QP										
4	+	274.19	139	35	0.69	+	-12	.91		22.78	37.00	-1	14.22	QP										-
0	_	343.18 716.69	200	30	1.38	+	-10.	24		19.78	37.00	[-1	6 75		_									-
U		/10.00	20	31			-1.4	.4		00.20	51.00	-	0.15	Q(r										

Note: 1.QP= Quasi-peak Reading.
2.The other emission levels were very low against the limit.
3. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Product	Model	2	7E40						Locati	on		10m o	cham	nber		
Environ Conditic	mental ons	2	<b>2.5℃</b>	, 50	6.7%	6 R	Η		Test N	lode		Mode	1			
Antenna	a Pole	V	ertica	al					RBW			120 k	Hz			
Tested	by	V	/alte	k Bi	lly				Test R	Results		PASS	5			
Test Da	te	2	025-0	)2-2	27											
Note: A	C 110V/	∎ 60⊢	lz													
70	.0 dBu¥/m														$\square$	
60									_					_		
50									_							
40						_						EN55032 RE	Class	3 10M		
										5						
30							2			Ĩ	6			المسعد ال	miler	
20				ł		_	- J.	[₩] K Å	ll a		Î.	human	and the	MAR		
10	Alexandre .		a d	hul	N.		Jun -	144	WW	www. hard	w.a.a.					
	a start and	<b>N^{an}avi</b>			1	wheth	W ⁷⁷									
0						-									$\square$	
-10																
	30.000		6	0.000	I	90.0	000	[MHz]	l	300.	000	I	600.000	I	1000	.0
No.	Freq.	F	Readin	g	Fact	or	Result	Limit	Margin	Detector	Remar	k				
1	68.631	10	33.89	"	-16.	, 55	17.34	30.00	-12.66	QP						
2	125.44	57	35.27		-12.	83	22.44	30.00	-7.56	QP						
3	138.387	73	37.57		-14.	07	23.50	30.00	-6.50	QP						
4	180.010	54	37.52		-16.	09	21.43	30.00	-8.57	QP						
5	275.157	70	42.66		-12.	88	29.78	37.00	-7.22	QP						
6	343.180	00	33.87		-10.	60	23.27	37.00	-13.73	QP						

2. The other emission levels were very low against the limit.3. Measurement = Reading Level+Correct Factor, Over = Measurement-Limit



Product Model	27E40				Loc	cation		10m chamber
Environmental Conditions	<b>22.5</b> ℃, క	56.7% F	RH		Те	st Mod	е	Mode 1
Antenna Pole	Horizont	al			RB	W		120 kHz
Tested by	Waltek E	Billy			Tes	st Resi	ults	PASS
Test Date	2025-02	-27						
Note: AC 110V/6	0Hz							
70.0 dBuV/m								
60								
50								
40								
10					Г		•	N55032 HE Class B 10M
30				3				
20				z [×]		<b>\</b>		and and and a stranger
				and the second second	s nh r	where where	we when the	Mayor and
10 North Albert	Harry Charleston	Annal margin	well		wh A			
0								
-10								
30.000	60.00	0 <b>0 9</b> 0.	000	(MHz)		300.	000	600.000 1000.0
No. Freq.	Reading	Factor	Result	Limit	Margin	Detector	Remark	
1 34.638	5 30.86	-15.21	(dBuV/m) 15.65	30.00	-14.35	QP		
2 138.387	3 33.88	-14.07	19.81	30.00	-10.19	QP		
3 148.441	0 38.30	-14.00	24.30	30.00	-5.70	QP		
4 297.224	0 36.05	-13.22	22.83	37.00	-14.17	QP		
5 446.414	1 35.48	-7.56	27.92	37.00	-9.08	QP		
6 716.682	0 27.52	-1.34	26.18	37.00	-10.82	QP		

2.The other emission levels were very low against the limit.3. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Produc	t Mo	del	2	27E	E40	)						Locat	ion		1	Om o	har	nbe	r		
Enviror Conditi	nmer ions	ntal	2	22.	<b>5℃</b>	2, 5	6.7	%	Rŀ	4		Test	Mode		N	lode	13				
Antenn	ia Po	le	\	/er	tica	al						RBW			1	20 k	Hz				
Tested	by		V	Na	Itel	kВ	illy					Test	Result	s	P	ASS					
Test Da	ate		2	202	25-0	02-	27														
Note: A	AC 23	30V/	/501	Ηz																	
		n.4//-																			
	0.0 0	Buy/i																		1	
6	•																		_		
5																				1	
4	•			+											EN55	82 RE	Class	8 10M		-	
																				1	
3										2	2.2			6					-		
2	•			+				-		and the side	MAN NAME IN		a 1	Ť. d	1 March	and	and the second	de-ma	-	-	
		A			. 1	K.			k.	M	1. MA	W/m	and had been	بالمديطل	An and a second						
	° 🍾	100 ° 10	it must	1000	N-NA,	- m	Mar.	why.	N	1										1	
0	$\vdash$			+		-	-	-											+	-	
-1	10																				
	30.000	1			6	0.000	i	9	0.00	0	(MHz)		30	0.000			i00.00	0	1	000.0	
No.	F	req.		Rea	adin	g	Fac	ctor		Result	Limit	Margir	Detecto	Re	mark						
1	(10	60.70	43	30	).21	11)	-15	.65	- (0	14.56	30.00	-15.44	QP	-							
2	12	21.97	55	35	5.31	+	-12	.50	+	22.81	30.00	-7.19	QP								
3	13	37.42	02	36	6.77	'	-13	.97		22.80	30.00	-7.20	QP								
4	14	45.35	06	37	7.18		-14	.08	T	23.10	30.00	-6.90	QP								
5	22	28.49	03	37	7.55		-17	.01		20.54	30.00	-9.46	QP								
6	32	24.45	60	- 33	3.52		-11	.12		22.40	37.00	-14.60	QP								

2. The other emission levels were very low against the limit.3. Measurement = Reading Level+Correct Factor, Over = Measurement-Limit



Product	Model	27E40				Loc	cation		10m (	chan	nber		
Environ Conditio	mental ins	<b>22.5</b> ℃,	56.7% F	кН		Те	st Mod	е	Mode	13			
Antenna	Pole	Horizon	tal			RB	W		120 k	Hz			
Tested b	ру	Waltek I	Billy			Те	st Res	ults	PASS	6			
Test Da	te	2025-02	2-27										
Note: A	C 230V/5	0Hz											
70.	0 dBu∀/m												
												$\square$	
60												+	
50													
40								E	N55032 RE	-Class (	3 10M		
30												Ц	
					3				5		w Les	uname.	
20	1			2	Inm	LN	Mul	howlinght	When the set			$\square$	
10	A A	MAN MARTIN LAND	h 4 14 1 4 1	A A A	Willy	Hay Way	n valanta				_	$\square$	
			- and the second second	W									
												$\square$	
-10	30.000	60.0	00 90	000	IMH2		300	000		600.000			0.0
					(						-	100	
No.	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Remark					
1	37.416	5 29.31	-15.02	14.29	30.00	-15.71	QP						
2	122.403	9 27.34	-12.54	14.80	30.00	-15.20	QP						
3	137.420	2 33.99	-13.97	20.02	30.00	-9.98	QP						
4	253.836	7 33.28	-14.36	18.92	37.00	-18.08	QP						
5	572.614	4 25.28	-4.39	20.89	37.00	-16.11	QP						
6	810.265	3 26.45	0.15	26.60	37.00	-10.40	QP						

2.The other emission levels were very low against the limit.3. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Product N	Nodel	27E40				Locati	on		10m o	chaml	ber		
Environm Condition	nental ns	<b>22.5</b> ℃,	56.7% F	КН		Test N	lode		Mode	13			
Antenna	Pole	Vertical				RBW			120 k	Hz			
Tested by	y	Waltek	Billy			Test F	Results		PASS	;			
Test Date	Э	2025-02	2-27										
Note: AC	110V/6	0Hz											
70.0	dBu¥/m					_						_	
60						_					++		
50													
40						+ -		E	N55032 RE	-Class B	1014		
30													
				3	1		6			1000	man	New	
20	ł	-		m	MAN M	Ч. м	a H	L. A. Land	and the shelf	low. ^A	-		
10	Å.	h	m.			WW	WV Churry	NUMP NOT					
	and the second	and a state of the second	and and galant	μr									
0											++		
-10													
30	1.000	60.0	00 90.	000	(MHz)	)	300.	000		500.000		1000.0	
No	Freq.	Reading	Factor	Result	Limit	Margin	Detector	Permark					
1	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/	(dB)	OP	TVernark					
2	60 704	3 32.24	-15.65	16.59	30.00	-13.41	OP						
3	128.562	9 36.44	-13.13	23.31	30.00	-6.69	QP						
4	137.420	2 39.67	-13.97	25.70	30.00	-4.30	QP						
5	180.648	7 39.03	-16.13	22.90	30.00	-7.10	QP						
6	275.156	9 35.08	-12.88	22.20	37.00	-14.80	QP						

2.The other emission levels were very low against the limit.3. Measurement = Reading Level+Correct Factor, Over = Measurement-Limit



Produc	t Model	27E40				Loc	cation		10m o	chamb	ber		
Enviror Conditi	nmental ons	<b>22.5</b> ℃,	56.7% F	RH		Те	st Mod	e	Mode	13			
Antenn	a Pole	Horizon	tal			RB	W		120 k	Hz			
Tested	by	Waltek I	Billy			Те	st Res	ults	PASS	6			
Test Da	ate	2025-02	-27										
Note: A	C 110V/6	0Hz											
7	0.0 dBu¥/m												
6						_						-	
5	) <u> </u>										++	_	
4	,								N55032 RE	-Class 8-1			
						ΙΓ						-	
3	)					+-				5		10	
2					3	4		5 *	and some	and the second		_	
	, k	8		Martin	Vin Michael	, Å	WWW WWW	workdunger	~~~				
	Man All history	whenterministry	- how when a	Wert		all and a second se							
0											++	-	
-1	30.000	60.0	00 90.	000	(MHz)		300.	000		500.000		1000	0
						, 						1000	
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/	Margin (dB)	Detector	Remark					
1	36.381	4 29.59	-15.09	14.50	30.00	-15.50	QP						
2	48.501	5 25.16	-14.34	10.82	30.00	-19.18	QP						
3	137.420	2 34.59	-13.97	20.62	30.00	-9.38	QP						
4	219.844	7 33.05	-17.62	15.43	30.00	-14.57	QP						
5	360.447	5 29.58	-10.21	19.37	37.00	-17.63	QP						
6	682.348	4 24.84	-0.62	24.22	37.00	-12.78	QP						

2.The other emission levels were very low against the limit.3. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Produc	ct N	Model	2	27	E40	)						Lc	ocati	on		-	0m	cha	mb	er			
Enviro Condit	nm ior	nental ns	2	22	. <b>5</b> ℃	C, 5	6.7	%	Rŀ	4		Τe	est N	lode		ſ	Node	e 25					
Antenr	าล	Pole	۱	Ve	rtica	al						R	BW			-	20 k	Hz					
Tested	d b	y	١	Na	alte	kВ	illy					Te	est F	Result	s	F	PASS	3					
Test D	ate	9	2	20	25-0	02-	27																
Note: A	AC	230V	/50	Hz	2																		
7	70.0	dBu∀/r	n																				
																		Τ					
6	50			+								_				+		+	-				
5	50																	-	-				
	"												Г			ENS	5032 RI	:-Clas	r 8 10	M			
3	30			+							2							+	5		ş,		
2	20									. July	MAL	_	a X				يەر	m	w.Å	-	4 m		
		M							h	Martin	- MMA	N	very/W	Wellow	Indy	mention	1						
1	10	Mar N	A MAR	ihar M	hinn	<u>الم</u>	4m.	uhyJ	W	Pn		Y											
						_											_	_	-		_		
-	10																						
	30	.000			6	0.000	Ì	9	0.00	0	(MHz	)		300	0.000			600.0	00		10	0.0	
No.		Freq. (MHz)		Re (dP	adin avV/r	ng m)	Fac (dF	tor	6	Result	Limit (dBuV/	Ma	argin dB)	Detector	Re	mark							
1	$\uparrow$	121.54	185	3	4.05	,	-12	.46		21.59	30.00	-	8.41	QP									
2		137.42	200	3	8.05	i	-13	.97		24.08	30.00	-	5.92	QP									
3		228.49	901	3	6.55		-17	.01		19.54	30.00	-1	0.46	QP									
4	$\vdash$	378.58	342	2	9.79		-9.	67	+	20.12	37.00	-1	6.88	QP									
5		774.15	84	2	4.81		-0.9	98	$\perp$	23.83	37.00	-1	3.17	QP									
6		935.54	161	2	5.77		2.2	25		28.02	37.00	-	8.98	QP									

Note: 1.QP= Quasi-peak Reading.
2.The other emission levels were very low against the limit.
3. Measurement = Reading Level+Correct Factor, Over = Measurement-Limit



Product	Model	27E40				Loc	cation		10m chamber
Environr Conditio	nental ns	<b>22.5</b> ℃,	56.7% I	RH		Тез	st Mod	e	Mode 25
Antenna	Pole	Horizon	tal			RB	W		120 kHz
Tested b	ру	Waltek	Billy			Тея	st Resi	ults	PASS
Test Dat	te	2025-02	2-27			l			
Note: A	C 230V/5	0Hz							
70.	j dBu∀/m								
60									
50									
50									
40									EN55032 RE-Class 8-10M
30									a station
20				1 2	2 6	_	<u>د</u> الس		When the second se
10	A			DWN W	WARMUNK	Mor	Num Mary	CARCINER AND	MY
10	marsher the	Maniferral Laboration	the adviser of the second	A AM		May			
O									
-10									
:	30.000	60.0	00 90.	000	(MHz)	1	300.	000	600.000 1000.0
	Freq	Reading	Factor	Result	Limit	Margin			
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/	(dB)	Detector	Remark	k
1	124.569	0 28.54	-12.74	15.80	30.00	-14.20	QP		
2	137.420	0 31.99	-13.97	18.02	30.00	-11.98	QP		
4	522 717	8 27 16	-12.79	21 47	37.00	-17.12	OP		
5	701.760	7 25.99	-1.15	24.84	37.00	-12.16	QP		
6	866.087	8 27.09	1.04	28.13	37.00	-8.87	QP		
					•				

2.The other emission levels were very low against the limit.3. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



Product Mode	el	27E40				Locati	on		10m c	chamb	ber	
Environmenta Conditions	I	<b>22.5℃</b> ,	56.7%	RH		Test N	/lode		Mode	25		
Antenna Pole		Vertical				RBW			120 k	Hz		
Tested by		Waltek I	Billy			Test F	Results		PASS	;		
Test Date		2025-02	-27									
Note: AC 110	V/60	Hz										
L												1
70.0 dBu	//m					_						
60												
50												
40									N55032 RE	Class 8 1	10M	
												1
30				23	4	:	5	ę			award	- -
20					he Annah	hunn	Mun	Ludhan	working which w	aller of the second		-
10 10	Me.m	and the second s	n man when in the second	w ·			·					-
0	+					_						-
-10 30.000		60.0	00 90.	000	(MHz)		300.	000		\$00.000	<u> </u>	1000.0
No Free	l.	Reading	Factor	Result	Limit	Margin	Detector	Remark				
1 (MH	z) 7724	(dBuV/m) 30.11	(dB) -12.91	(dBuV/m) 17.20	(dBuV/ 30.00	(dB) -12.80	OP					
2 129	9225	34.84	-13.26	21.58	30.00	-8.42	QP					
3 137	4200	37.65	-13.97	23.68	30.00	-6.32	QP					
4 180.	6484	39.39	-16.13	23.26	30.00	-6.74	QP					
5 275.	1569	34.08	-12.88	21.20	37.00	-15.80	QP					
6 378.	5842	32.00	-9.67	22.33	37.00	-14.67	QP					

2.The other emission levels were very low against the limit.3. Measurement = Reading Level+Correct Factor, Over = Measurement-Limit



Product Model	27E40		Location	10m chamber
Environmental Conditions	<b>22.5℃, 56.7%</b>	RH	Test Mode	Mode 25
Antenna Pole	Horizontal		RBW	120 kHz
Tested by	Waltek Billy		Test Results	PASS
Test Date	2025-02-27			
Note: AC 110V/6	0Hz			
<b></b>				
70.0 dBu∀/m			<b>.</b>	
60				
50				
40				EN55032 RE-Class 8 10M
30				
		-		N. S. Walter
20		2 144	. S. rough to	Number
		Jakanne W Manna	MANA AND AND AND AND AND AND AND AND AND	
official Linearch	and a second second second	w Aliman		
0				
-10	000 03	000 04Ha)	300.000	500 000 1000 0
30.000	00.000 00	, and the second	000.000	00.000 1000.0
No. Freq.	Reading Factor	Result Limit M	Margin (dB) Detector Rema	k
1 48.501	5 25.16 -14.34	10.82 30.00	-19.18 QP	
2 116.1320	0 26.13 -13.35	12.78 30.00	-17.22 QP	
3 137.4200	0 32.59 -13.97	18.62 30.00	-11.38 QP	
4 265.675	7 28.88 -13.30	15.58 37.00	-21.42 QP	
5 485.609	1 23.57 -6.27	17.30 37.00	-19.70 QP	
6 857.024	4 24.87 0.90	25.11 31.00	-11.23 QP	

- Note: 1.QP= Quasi-peak Reading.
  2.The other emission levels were very low against the limit.
  3. Measurement = Reading Level+ Correct Factor, Over = Measurement- Limit



#### Above 1G(worst case)

Environmental Conditions23.1°C, 50% RHTest ModeMode 1Antenna PoleVerticalRBW1 MHzTested byFreedom ZhuoTest ResultsPASSTest Date2025-02-28	
Antenna PoleVerticalRBW1 MHzTested byFreedom ZhuoTest ResultsPASSTest Date2025-02-28	
Tested byFreedom ZhuoTest ResultsPASSTest Date2025-02-28	
Test Date 2025-02-28	
Note: AC 230V/50Hz	
Radiated Emission	
EN55032 Class B 1	6_66
EN55032 Class 0 16_66	AVG
	w.uhheenut
and have a second of the secon	····
ž × × × × ×	
0.0 1000.000 2000 (MHz) 3000 4000 50	00 6000.000
Reading Correct Measure- Antenna Table	
No. Mk. Freq. Level Factor ment Limit Over Height Degree	
MHz dBuV dB/m dBuV/m dBuV/m dB Detector cm degree	Comment
1 1244.327 63.19 -15.51 47.68 74.00 -26.32 peak	
2 1244.327 48.25 -15.51 33.74 54.00 -20.20 AVG	
4 * 2233.010 40.21 -12.53 30.00 74.00 -23.11 peak	
5 2693 504 61 42 -11 09 50 33 74 00 -23 67 neak	
6 2693 504 46 92 -11 09 35 83 54 00 -18 17 AVG	
7 3181.894 59.26 -9.60 49.66 74.00 -24.34 peak	
8 3181.894 44.77 -9.60 35.17 54.00 -18.83 AVG	
9 3581.325 57.77 -7.76 50.01 74.00 -23.99 peak	
10 3581.325 44.05 -7.76 36.29 54.00 -17.71 AVG	
11 4874.002 55.02 -4.46 50.56 74.00 -23.44 peak	
12 4874.002 39.65 -4.46 35.19 54.00 -18.81 AVG	

**Note:**1.While performing the testing, the notch filter is used for avoiding test instrument overload 2. Measurement = Reading Level+Correct Factor, Over = Measurement- Limit



Product Model	27E40		Location	3m chamber
Environmental	-			
Conditions	<b>23.1℃, 50</b> %	6 RH	Test Mode	Mode 1
Antenna Pole	Horizontal		RBW	1 MHz
Tested by	Freedom Z	านอ	Test Results	PASS
Test Date	2025-02-28			
Note: AC 230V				
		Radiated Fr	mission	
100.0 dBwA	/m	Naulated El	11331011	
				EN55032 Class 8 16_66
			ENER	22 Class B 10 CO ANG
50 1.		3 8 7	Chool S	
فسألهر	white water a	Le march March mar	Many regard the answer the	Constrant and a solution and and a second and the
Z	a war manue	i muture were state	10 X	* ²
0.0				
1000.000		2000 (MHz)	3000 4	000 5000 6000.000
	Reading Co	orrect Measure-	Ante	enna Table
No. Mk. Fr	eq. Level F	actor ment Limit	Over Hei	ight Degree
1 1066	820 83.97 -1	15.63 49.24 74.00	-25.76 peak	m degree Comment
2 1066	.629 49.76 -1	5.63 34.13 54.00	-19.87 AVG	
3 1596	.237 64.10 -1	5.23 48.87 74.00	-25.13 peak	
4 1596	.237 50.50 -1	5.23 35.27 54.00	-18.73 AVG	
5 2317	.144 63.99 -1	2.55 51.44 74.00	-22.56 peak	
6 2317	.144 49.84 -1	2.55 37.29 54.00	-16.71 AVG	
7 2640	.936 59.38 -1	0.92 48.46 74.00	-25.54 peak	
8 2640	.936 46.11 -1	0.92 35.19 54.00	-18.81 AVG	
9 3176		0.60 51.22 74.00	22.77 neek	
	.198 60.83 -	0.00 51.25 74.00	-22.11 peak	
10 * 3176	.198 60.83 - .198 47.03 -	9.60 37.43 54.00	-18.57 AVG	
10 * 3176 11 4787	198 60.83 - 198 47.03 - 449 54.38 -	9.60 37.43 54.00 4.03 50.35 74.00	-22.77 peak -16.57 AVG -23.65 peak	

**Note:**1.While performing the testing, the notch filter is used for avoiding test instrument overload 2. Measurement = Reading Level+Correct Factor, Over = Measurement- Limit



Product Model	27E40		Location	3m chamber				
Environmental Conditions	<b>23.1℃, 50</b> %	6 RH	Test Mode	Mode 1				
Antenna Pole	Vertical		RBW	1 MHz				
Tested by	Freedom Zh	านอ	Test Results	PASS				
Test Date	2025-02-28	2025-02-28						
Note: AC 110V/	 60Hz							
		Dadiata	- Emission					
100.0 dBsV/	m	Radiateo	Emission					
				EN55032 Class 8 16_66				
			ENSS	132 Class B 16_66 AVG				
50 ×	2			the cost of the sheet of the second				
	and a more of	Langer and the way way and	have have and the second of the	a challenanna a challenanna				
×	*	Ś. Ś	x° ×					
0.0		2000 (MHz	3000	000 5000 6000 000				
	Reading Co	prrect Measure-	Ant	enna Table				
No. Mk. Fre	q. Level F	actor ment Lin	nit Over He	ight Degree				
M	iz dBuV o	18/m dBuV/m dBuV	//m dB Detector c	m degree Comment				
1 1064.	720 65.86 -1	5.62 50.24 74.	00 -23.76 peak					
2 1064.	720 50.34 -1	5.62 34.72 54.	00 -19.28 AVG					
3 1244.	327 61.19 -1	5.51 45.68 74.	00 -28.32 peak					
4 1244.	327 46.85 -1	5.51 31.34 54.	00 -22.66 AVG					
5 1593.	380 62.06 -1	5.23 46.83 74.	00 -27.17 peak					
6 1593.	380 48.52 -1	5.23 33.29 54.	00 -20.71 AVG					
7 2333.	810 61.42 -1	2.53 48.89 74.	00 -25.11 peak					
8 2333.	810 48.26 -1	2.53 35.73 54.	00 -18.27 AVG					
9 3181.	894 59.76 -	9.60 50.16 74.	00 -23.84 peak					
10 3181.	894 45.69 -	9.60 36.09 54.	00 -17.91 AVG					
11 3819.	945 57.92 -	6.91 51.01 74.	00 -22.99 peak					
12 * 3819.	840 44.18 -	0.91 37.28 54.	UU -16.72 AVG					

Note:1.While performing the testing, the notch filter is used for avoiding test instrument overload

2. Measurement = Reading Level+Correct Factor, Over = Measurement- Limit



Product Mod	del 2	7E40				Loca	tion	3m	n chambe	r
Environment Conditions	tal 2	3.1℃, 5	0% RH			Test	Mode	Мс	ode 1	
Antenna Pol	e F	lorizonta	al			RBW	/	1 N	ЛНz	
Tested by	F	reedom	Zhuo			Test	Result	s PA	SS	
Test Date	2	025-02-	28							
Note: AC 11	0V/60F	łz								
				Rad	liated Er	nissior	1			
100.0	dBuV/m						-			
								CHICKOR		
								EN 5503	2 Class 6 16_66	<u> </u>
								EN55032 Clas	x B 16 66 AVG	
50	. 3		-		4	9		11 X		_
٨	ň. Ž	Sec. 1	3	M	m haven	Runk	Weathow	S Lander	Manaharan Manaharan Para	wheth ^a
/*	· Wayne	Mary March	لبالمهامي	Maria Maria	8	10	1	¥2		
	<u>x</u> x		6 X		<u>^</u>	<b>^</b>				
0.0										
1000.	.000			2000	(MHz)	300	10	4000	5000	6000.000
		Reading	Correct	Measure-				Antenna	Table	
No. Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree Com	nment
1 1	1064.720	62.10	-15.62	46.48	74.00	-27.52	peak			
2 1	1064.720	46.88	-15.62	31.26	54.00	-22.74	AVG			
3 1	1226.618	63.98	-15.56	48.42	74.00	-25.58	peak			
4 1	1226.618	49.08	-15.56	33.52	54.00	-20.48	AVG			
5 1	1596.237	61.10	-15.23	45.87	74.00	-28.13	peak			
6 1	1596.237	45.66	-15.23	30.43	54.00	-23.57	AVG			
7 2	2317.144	62.49	-12.55	49.94	74.00	-24.06	peak			
8 2	2317.144	48.36	-12.55	35.81	54.00	-18.19	AVG			
9 2	9870 085	80.20	11.05	40.24	74.00	-24.78	nook			
	2078.000	00.28	-11.05	48.24	74.00	-24.70	peak			
10 2	2679.065	47.26	-11.05	36.21	54.00	-17.79	AVG			
10 2	2679.065 3792.665	47.26 58.54	-11.05 -11.05 -6.92	36.21 51.62	54.00 74.00	-24.70	AVG peak			
10 2 11 3 12 * 3	2679.065 3792.665 3792.665	47.26 58.54 44.28	-11.05 -11.05 -6.92 -6.92	38.21 51.62 37.36	54.00 74.00 54.00	-17.79 -22.38 -16.64	AVG peak AVG			

**Note:**1.While performing the testing, the notch filter is used for avoiding test instrument overload 2. Measurement = Reading Level+Correct Factor, Over = Measurement- Limit



## 4.4. Harmonics current measurement

#### 4.4.1. Limit

Limits for	Class A equipment	Limits for Class D equipment			
Harmonics Ordern	Max. permissible harmonics current A	Harmonics Ordern	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A	
Oc	d harmonics		Odd Harmonics only	, ,	
3	2.30	3	3.4	2.30	
5	1.14	5	1.9	1.14	
7	0.77	7	1.0	0.77	
9	0.40	9	0.5	0.40	
11	0.33	11	0.35	0.33	
13	0.21	13	0.30	0.21	
15<=n<=39	0.15x15/n	15<=n<=39	3.85/n	0.15x15/n	
Eve	en harmonics				
2	1.08				
4	0.43				
6	0.30				
8<=n<=40	0.23x8/n				

#### Note:

- 1. Class A and Class D are classified according to item 7.4.3.
- According to section 7 of EN IEC 61000-3-2, the above limits for all equipment except for Lightning equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

#### 4.4.2. Test procedures

- **1.** The EUT was placed on the top of a wooden table 0.8 m above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- **2.** The classification of EUT is according to of EN 61000-3-2. The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class

D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment

not specified in one of the three other classes.

Class B: Portable tools; Arc welding equipment which is not professional equipment.

Class C: Lightning equipment.



Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.

 The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

#### 4.4.3. Test set-up



For the actual test configuration, please refer to the related item – Photographs of the test configuration.

#### 4.4.4. Test results(worst case)

The EUT has power less than 75W. Hence according to EN IEC 61000-3-2, the EUT belong to class D equipment with a rated power of 75W or less other than lighting equipment', therefore 'limits are not specified in this edition of the standards.



## 4.5. Voltage fluctuation and flicker measurement

#### 4.5.1. Limit

TEST ITEM	LIMIT	REMARK
P _{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	$T_{dt}$ means maximum time that dt exceeds 3.3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

#### 4.5.2. Test procedures

- 1. Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in EN 61000-3-3 depend on which standard adopted for compliance measurement.
- 2. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

#### 4.5.3. Test set-up



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.



#### 4.5.4. Test results(worst case)

Product Model	27E40	Test Results	PASS
Observation Period (Tp)	10mins	Test Mode	Mode 1
Environmental Conditions	23.8℃, 51% RH	Tested by	Lemon He
Test Date	2025-02-24		

Test Result: Pass

Status: Test Completed

European Limits





Plt and limit line



# Parameter values recorded during the test: Vrms at the end of test (Volt): 229.73 Highest dt (%): Test limit (%): T-max (mS): 0 Test limit (%): Highest dc (%): 0.00 Test limit (%): Highest dmax (%): 0.00 Test limit (%): Highest Pst (10 min. period): 0.153 Test limit: 1.000 Highest Plt (2 hr. period): 0.067 Test limit: 0.650

Pass

Pass Pass

Pass

Pass



# 5. Immunity test

# 5.1. General description

Product Standard	Test Type	Minimum Requirement
	Electrostatic Discharge	EN 55035 ±2,4,8kV Air discharge, ±2,4kV Contact discharge, Performance Criterion B
	Radio frequency Electromagnetic Field	EN 55035 80MHz~1000MHz: 3V/m, 80% AM 1800,2600,3500,5000: 3V/m, 80% AM Performance Criterion A
Basic Standard, Specification, and Performance Criterion required	Electrical Fast Transient/Burst	EN 55035 Power Port: ±1 kV I/O Port: ±0.5 kV 5/50ns Tr/Th, 5kHz Repetition Freq Performance Criterion B
	Surge immunity	EN 55035 Power port: Line to Line: ±1kV for 1.2/50(8/20) Line to Ground: ±2kV for 1.2/50(8/20) LAN/WAN Port: Line to Ground: ±1kV for 10/700(5/320)
	Continuous induced RF disturbance	EN 55035 0.15~10MHz, 3V (r.m.s), 80% AM 10 ~30MHz, 3V to 1 V (r.m.s), 80% AM 30~80MHz 1V 80% AM Performance Criterion A
	Voltage dips and Voltage interruptions	<ul> <li>EN 55035</li> <li>Voltage Dips: <ul> <li>i) &lt;5% residual voltage for 0.5 cycle</li> <li>Performance Criterion B</li> <li>ii) 70% residual voltage for 25 cycles</li> <li>Performance Criterion C</li> </ul> </li> <li>Voltage Interruptions: <ul> <li>&lt;5% reduction for 250 cycles</li> <li>Performance Criterion C</li> </ul> </li> </ul>



## 5.2. Performance of criteria

#### The performance of criteria about EN 55035

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
Criteria B:	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.



# 5.3. Electrostatic discharge immunity test(ESD)

Basic Standard:	EN 61000-4-2
Discharge Impedance:	330 ohm / 150 pF
Dia channa Maltana	Air Discharge: 2,4,8kV
Discharge voltage:	Contact Discharge: 2,4kV
Polarity:	Positive & Negative
Number of Discharge:	Minimum 10 times at each test point
Discharge Madei	Single Discharge
Discharge Mode:	1 second minimum

#### 5.3.1. Test specification

#### 5.3.2. Test procedures

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

1. Test Level Refer to EN 55035 test method reference EN 61000-4-2.

2. Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 80 discharges, 40 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 20 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 20 direct contact discharges. If no direct contact test points are available, then at least 80 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

- 3. Vertical Coupling Plane (VCP):
- 4. The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a
- 5. Distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.



6. The four faces of the EUT will be performed with electrostatic discharge.

7. Horizontal Coupling Plane (HCP):

8. The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

9. Air discharges at insulation surfaces of the EUT.

10. It was at least ten single discharges with positive and negative at the same selected point.

11. For the actual test configuration, please refer to the related Item –EUT Test Photos



#### 5.3.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration



## 5.3.4. Test results

Temperature	23.2°C	Humidity	54% RH
Pressure	101.1kPa	Tested By	Lemon He
Test Mode	Mode 1, 13, 25	Required Passing Performance	Criterion B
Test Date	2025-03-01		

Air Discharge					
Toot Dointo		Test L	evels		Results
Test Points	± 2 kV	± 4 kV	± 8 kV	± 15 kV	PASS/ FAIL
Gap	A	A	В	/	PASS
Screen	A	A	В	/	PASS
HDMI Port	A	A	В	/	PASS
LED	A	A	A	/	PASS
Switch	A	A	A	/	PASS
Earphone	A	A	A	/	PASS
USB Port	A	A	В	1	PASS

Contact Discharge						
Teet Deinte	Results					
Test Points	± 2 kV	PASS/ FAIL				
HDMI Port	A	В	/	/	PASS	
USB Port	A	В	/	/	PASS	
Screw	A	В	/	/	PASS	
Metal	A	В	/	/	PASS	

Discharge To Horizontal/Vertical Coupling Plane				
Side of		Results		
EUT	± 2 kV	± 4 kV	± 6 kV	PASS/ FAIL
Front	/	A	/	PASS
Back	/	А	/	PASS
Left	/	А	/	PASS
Right	/	A	/	PASS

Note:

Performance criterion B: Test degradation of performance, returned to normal after the test.



# 5.4. Radio frequency electromagnetic immunity test(RS)

#### 5.4.1. Test specification

Basic Standard:	EN 61000-4-3
Frequency Range:	80MHz~1000MHz 1800 MHz,2600 MHz,3500 MHz,5000 MHz
Field Strength:	3V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Polarization of antenna	Horizontal and Vertical
Frequency Step:	1 % of preceding frequency value
Dwell Time	at least 3 seconds

#### 5.4.2. Test procedures

- 1. Test Level Refer to EN 55035, test method reference EN 61000-4-3.
- The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive table 0.8 m in height. The system under test was connected to the power and signal wire according to relevant installation instructions.
- 3. The testing was performed in a modified semi-anechoic chamber.
- 4. The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine wave.
- 5. The frequency range is swept from 1800 MHz, 2600 MHz, 3500 MHz and 5000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave.
- 6. The field strength level was 3 V/m.
- The test was performed with the EUT exposed to the vertical and horizontal polarization fields on the Back side.



## 5.4.3. Test set-up



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.



## 5.4.4. Test results

Temperature	23.4°C	Humidity	55% RH
Pressure	101.4kPa	Tested By	Seve Yang
Test Mode	Mode 1, 13, 25	Required Passing Performance	Criterion A
Test Date	2025-02-26		

Frequency Band	Field Strength V(r.m.s)	Antenna Polarization	EUT Face	Observation Criterion	Result
80MHz~1000MHz	3	H&V	Front& Back &Left& Right	А	PASS
1800MHz	3	H&V	Front& Back &Left& Right	А	PASS
2600MHz	3	H&V	Front& Back &Left& Right	А	PASS
3500MHz	3	H&V	Front& Back &Left& Right	А	PASS
5000MHz	3	H&V	Front& Back &Left& Right	А	PASS



#### For worst case: HDMI Playing

#### This test monitored the Earphone port by Audio Analyzer. Worst Measure result as below:

Tabulated Results for RF Electromagnetic Field 80 - 1000 MHz							
Signal source	Injection port	Measuring port	Exposed side	L0 [dBV]	L1 max hold [dBV]	L1-L0 [dB]	Result
Audio out L	enclosure	Earphone L	Н	-30	-76.4	-46.4	Pass*
Audio out R	enclosure	Earphone R	Н	-30	-78.4	-48.4	Pass*
Audio out L	enclosure	Earphone L	V	-30	-76.8	-46.8	Pass*
Audio out R	enclosure	Earphone R	V	-30	-77.2	-47.2	Pass*

Tabulated Results for RF Electromagnetic Field spot test (1800MHz, 2600MHz, 3500MHz, 5000MHz)							
Signal source	Injection port	Measuring port	Exposed side	L0 [dBV]	L1 max hold [dBV]	L1-L0 [dB]	Result
Audio out L	enclosure	Earphone L	Н	-30	-79.0	-49.0	Pass*
Audio out R	enclosure	Earphone R	Н	-30	-79.0	-49.0	Pass*
Audio out L	enclosure	Earphone L	V	-30	-79.9	-49.9	Pass*
Audio out R	enclosure	Earphone R	V	-30	-80.4	-50.4	Pass*

Remark: "*": The measured acoustic interference ratio and/or the measured electrical interference ratio during the was –20 dB or better.



# 5.5. Electrical fast transient(EFT)

#### 5.5.1. Test specification

Basic Standard:	EN 61000-4-4
Test Voltage:	AC Power Port: ±1 kV I/O Port:0.5 kV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave-shape:	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	Not less than 1 min.

#### 5.5.2. Test procedures

- 1. Test method reference EN 61000-4-4.
- 2. In order to minimize the effect of environmental parameters on test results, the climatic conditions when test is carrying out shall comply with the following requirements:
  - Ambient temperature: 15  $\,^\circ\!\mathrm{C}\,$  to 35  $\,^\circ\!\mathrm{C}.$
  - Relative humidity: 20 % to 75 %.
  - Atmospheric pressure: 86 kPa (860 mbar) to 106 kPa (1060 mbar).
- 3. In order to minimize the effect of environmental parameters on test results, the electromagnetic environment of the laboratory shall not influence the test results.
- 4. The variety and diversity of equipment and systems to be tested make it difficult to establish general criteria for the evaluation of the effects of fast transients/bursts on equipment and systems.
- 5. The test results may be classified on the basic of the operating conditions and the functional specification of the equipment under test, according to the following performance criteria:
  - Normal performance within the specification limits.



-Temporary degradation or loss of function or performance which is self-recoverable.

-Temporary degradation or loss of function or performance which requires operator intervention

or system reset.

-Degradation or loss of function which is not recoverable due to damage of equipment

(components).

#### 5.5.3. Test set-up



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.



## 5.5.4. Test results

Temperature	23.4°C	Humidity	51% RH
Pressure	101.2kPa	Tested By	Lemon He
Test Mode	Mode 1, 13, 25	Required Passing Performance	Criterion B
Test Date	2025-03-03		

Test Point	Test Level (kV)	Observation Criterion	Result
L	±1	A	PASS
Ν	±1	A	PASS
L-N	±1	A	PASS
PE	±1	В	PASS
L-PE	±1	В	PASS
N-PE	±1	В	PASS
L-N-PE	±1	В	PASS



# 5.6. Surge immunity test

#### 5.6.1. Test specification

Basic Standard:	EN 61000-4-5
Wave-Shape:	Combination Wave 1.2/50 µs Open Circuit Voltage 8/20 µs Short Circuit Current 10/700 µs Open Circuit Voltage
Test Voltage:	Power port: Line to Line: ±1kV for 1.2/50(8/20) Line to Ground: ±2kV for 1.2/50(8/20) LAN/Phone Port: Line to Ground: ±1kV for 10/700(5/320) Performance Criterion B
Generator Source Impedance:	Power Line: 2 ohm between networks 12 ohm between network and ground Signal port: 40 ohm between network and ground
Polarity:	Positive/Negative
Phase Angle:	0° / 90° / 180° / 270°
Pulse Repetition Rate:	1 time / min. (maximum)
Number of Tests:	5 positive and 5 negative at selected points

#### 5.6.2. Test procedures

- 1. Test method reference EN 61000-4-5
- 2. Climatic conditions

The climatic conditions shall comply with the following requirements:

- Ambient temperature : 15  $\,^\circ\!\mathrm{C}\,$  to 35  $\,^\circ\!\mathrm{C}\,$
- Relative humidity: 20 % to 75 %
- Atmospheric pressure: 86 kPa to 106 kPa ( 860 mbar to 1060 mbar )
- 3. Electromagnetic conditions
  - The electromagnetic environment of the laboratory shall not influence the test results.
- 4. The test shall be performed according the test plan that shall specify the test set-up with.



If not otherwise specified the surges have to be applied synchronized to the voltage phase at the zero-crossing and the peak value of the a.c. voltage wave (positive and negative).

- 5. The surges have to be applied line to line and line(s) and earth. When testing line to earth, the test voltage has to be applied successively between each of the lines and earth, if there is no other specification.
- 6. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore the test voltage has to be increased by steps up to the test level specified in the product standard or test plan.
- 7. If the actual operating signal sources are not available, the may be simulated. Under no circumstances may the test level exceed the product specification. The test shall be carried out according the a test plan.
- 8. To find all critical points of the duty cycle of the equipment, a sufficient number of positive and negative test pulses shall be applied. For acceptance test a previously unstressed equipment shall be used to the protection devices shall be replaced.



#### 5.6.3. Test set-up

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.



## 5.6.4. Test Results

Temperature	23.4°C	Humidity	51% RH
Pressure	101.2kPa	Tested By	Lemon He
Test Mode	Mode 1, 13, 25	Required Passing Performance	Criterion B
Test Date	2025-03-03		

AC 230V, 50Hz Port(1.2/50 us+8/20 us)					
Test	Coupling Network	Phase Angle	Test Le	Beault	
Point	(Ohm)		±1	±2	Result
L-N	2	0° / 90° / 180° / 270°	А	/	PASS
L-PE	12	0° / 90° / 180° / 270°	/	В	PASS
N-PE	12	0° / 90° / 180° / 270°	/	В	PASS



# 5.7. Conducted radio frequency disturbances (CS)

#### 5.7.1. Test specification

Basic Standard:	EN 61000-4-6
Frequency Range:	0.15 MHz ~ 80 MHz
Field Strength:	0.15~10MHz, 3V (r.m.s), 80% AM 10 ~30MHz, 3V to 1 V (r.m.s), 80% AM 30~80MHz 1V 80% AM
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of preceding frequency value
Dwell Time	at least 3 seconds

#### 5.7.2. Test procedures

- 1 Test Level refer to EN 55035 test method reference EN 61000-4-6.
- 2 The EUT shall be operated within its intended climatic conditions. The temperature and relative humidity should be recorded.
- 3 The test shall be performed with the test generator connected to each of the coupling and decoupling.
- 4 Devices in turn while the other non-excited RF-input ports of the coupling devices are terminated by a 50 ohm load resistor.
- 5 The frequency range is swept from 150 kHz to 80 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1 kHz sine wave, pausing to adjust the RF-signal level or to switch coupling devices as necessary. The rate of sweep shall no exceed 1.5 x 10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall no exceed 1% of the start and thereafter 1% of the preceding frequency value.



- 6 The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency (ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- 7 In cases of dispute, the test procedure using a step size not exceeding 1% of the start and thereafter 1% of preceding frequency value shall take precedence.
- 8 Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.
- 9 The use of special exercising programs is recommended.
- 10 Testing shall be performed according to a Test Plan, which shall be included in the test report.
- 11 It may be necessary to carry out some investigatory testing in order to establish some aspects of the test plan.

#### 5.7.3. Test set-up



Schematic setup for immunity test to RF conducted disturbances




For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.



### 5.7.4. Test results

Temperature	23.4°C	Humidity	52% RH
Pressure	101.1 kPa	Tested By	Lemon He
Test Mode	Mode 1, 13, 25	Required Passing Performance	Criterion A
Test Date	2025-03-01		

Frequency Band (MHz)	Field Strength V(r.m.s)	Cable	Observation Criterion	Result
0.15~10	3			
10~30	3~1	AC Port	A	PASS
30~80	1			

#### For worst case: HDMI Playing

This test monitored the Earphone port by Audio Analyzer. Worst Measure result as below:

Tabulated Results for Conducted Radio Frequency Interference						
Signal source	Injection port	Measuring port	L0 [dBV]	L1 max hold [dBV]	L1-L0 [dB]	Result
Audio out L	AC	Earphone L	-30	-80.5	-50.5	Pass*
Audio out R	AC	Earphone R	-30	-81.7	-51.7	Pass*

Remark: "*": The measured acoustic interference ratio and/or the measured electrical interference ratio during the was –20 dB or better.



### 5.8. Voltage dips and Voltage interruption

#### 5.8.1. Test specification

Basic Standard:	EN 61000-4-11	
Test duration time:	Minimum three test events in sequence	
Interval between event:	vent: Minimum 10 seconds	
Phase Angle:	0° / 180°	
Test cycle:	3 times	

#### 5.8.2. Test procedures

- 1. Test level refer to EN 55035, test method reference EN 61000-4-11.
- 2. Source voltage and frequency: AC 230V/50 Hz, Single phase.
- 3. Test of interval: 10 secs.
- 4. Level and duration: Sequency of 3 dips/interrupts.
- 5. Voltage rise (and fall) time:  $1 \sim 5 \mu s$ .

### 5.8.3. Test set-up



For the actual test configuration, please refer to the related item – Photographs of the Test Configuration



### 5.8.4. Test results

Temperature	23.4°C	Humidity	51% RH
Pressure	101.2kPa	Tested By	Lemon He
Test Mode	Mode 1, 13, 25	Required Passing Performance	Criterion B/C/C
Test Date	2025-03-03		

Test Voltage; AC 230V/50Hz					
ltem	Voltage (%Residual)	Duration (Period)	Observation Criterion	Result	
Voltage Dips	<5	0.5 Cycle	В	PASS	
Voltage Dips	70	25 Cycles	В	PASS	
Voltage interruption	<5	250 Cycles	С	PASS	

Note:

1. Performance criterion B: Test degradation of performance, returned to normal after the test.

2. Performance criterion C: Restart during the test, and manually resume normal work after the test.



# 6. Test photographs



RE





CE



ESD





RS





DIPS, EFT, Surge



CS





Harmonics& Flicker



## 7. Photographs of EUT

Please refer to Appendix-A



# Statement

- 1. The report is invalid without the official seal or special seal of Shenzhen Haiyun Standard Technology Co., Ltd. (hereinafter referred to as the unit).
- 2. The report is invalid without the signature of the approver.
- 3. The report is invalid if altered arbitrarily.
- 4. The report shall not be partially copied without the written approval of the unit.
- 5. The reported test results are only valid for the tested samples.
- 6. If there is any objection to the test report, it shall be submitted to the test unit within 15 days from the date of receiving the report, and the overdue shall not be accepted.

### Shenzhen Haiyun Standard Technology Co., Ltd.

Address: Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business Building, No. 302, Xixiang Avenue, Labor Community, Xixiang Street, Baoan District, Shenzhen, China

Tel: 0755-26024411

Email: service@hy-lab.cn

(END OF REPORT)