

CE&UKCA EMC Test Report

Project No. : 2409C041A Equipment : LCD Monitor

Brand Name : N/A Model Name : CU34G4

Series Model **34G4******(*=0-9,A-Z,a-z,+,-,/,\ or blank)

Applicant: TPV Electronics (Fujian) Co., Ltd.

Address : Rongqiao Economic and Technological Development Zone, Fuqing City,

Fujian Province, P.R. China

Date of Receipt : Oct. 10, 2024

Date of Test : Oct. 14, 2024 ~ Oct. 30, 2024

Issued Date : Nov. 13. 2024

Report Version : R00

Test Sample : Engineering Sample No.: DG20241010163

Standard(s) : Please refer to Page 2.

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by :

Derek Tong

Approved by :

Room 108-116, 309-310, Building 2, No.1, Yile Road, Songshan Lake Zone, Dongguan City,

Guangdong, People's Republic of China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl qa@newbtl.com

Standard(s) : EN 55032:2015

EN 55032:2015+A11:2020 EN 55032:2015+A1:2020 CISPR 32:2015+AMD1:2019

AS/NZS CISPR 32:2015+AMD1:2020

EN 61000-3-2:2014

EN IEC 61000-3-2:2019+A1:2021

EN 61000-3-3:2013

EN 61000-3-3:2013+A1:2019 EN 61000-3-3:2013+A2:2021 EN 55035:2017/CISPR 35:2016 EN 55035:2017+A11:2020

BS EN 55032:2015

BS EN 55032:2015+A11:2020 BS EN 55032:2015+A1:2020 BS EN 61000-3-2:2014

BS EN IEC 61000-3-2:2019+A1:2021

BS EN 61000-3-3:2013

BS EN 61000-3-3:2013+A1:2019 BS EN 61000-3-3:2013+A2:2021

BS EN 55035:2017

BS EN 55035:2017+A11:2020

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by BTL.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	7
1 . SUMMARY OF TEST RESULTS	8
1.1 TEST FACILITY	10
1.2 MEASUREMENT UNCERTAINTY	10
1.3 TEST ENVIRONMENT CONDITIONS	12
2 . GENERAL INFORMATION	13
2.1 GENERAL DESCRIPTION OF EUT	13
2.2 DESCRIPTION OF TEST MODES	14
2.3 EUT OPERATING CONDITIONS	16
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	16
2.5 DESCRIPTION OF SUPPORT UNITS	16
3 . EMC EMISSION TEST	17
3.1 RADIATED EMISSIONS UP TO 1 GHZ	17
3.1.1 LIMITS	17
3.1.2 MEASUREMENT INSTRUMENTS LIST	17
3.1.3 TEST PROCEDURE 3.1.4 DEVIATION FROM TEST STANDARD	18 18
3.1.5 TEST SETUP	18
3.1.6 MEASUREMENT DISTANCE	19
3.1.7 TEST RESULTS	20
3.2 RADIATED EMISSIONS ABOVE 1 GHZ	24
3.2.1 LIMITS	24
3.2.2 MEASUREMENT INSTRUMENTS LIST	24
3.2.3 TEST PROCEDURE 3.2.4 DEVIATION FROM TEST STANDARD	25 25
3.2.5 TEST SETUP	25
3.2.6 MEASUREMENT DISTANCE	26
3.2.7 TEST RESULTS	27
3.3 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS	31
3.3.1 LIMITS	31
3.3.2 MEASUREMENT INSTRUMENTS LIST	31
3.3.3 TEST PROCEDURE 3.3.4 DEVIATION FROM TEST STANDARD	31 31
3.3.5 TEST SETUP	32
3.3.6 TEST RESULTS	33
3.4 HARMONIC CURRENT EMISSIONS TEST	37
3.4.1 LIMITS	37
3.4.2 MEASUREMENT INSTRUMENTS LIST	37 27
3.4.3 TEST PROCEDURE	37

Table of Contents	Page
3.4.4 DEVIATION FROM TEST STANDARD 3.4.5 TEST SETUP 3.4.6 TEST RESULTS	37 37 38
3.5 VOLTAGE FLUCTUATIONS (FLICKER) TEST 3.5.1 LIMITS 3.5.2 MEASUREMENT INSTRUMENTS LIST	41 41 41
3.5.3 TEST PROCEDURE 3.5.4 DEVIATION FROM TEST STANDARD 3.5.5 TEST SETUP	41 41 42
3.5.6 TEST RESULTS 4 . EMC IMMUNITY TEST	43 44
4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA	44
4.2 GENERAL PERFORMANCE CRITERIA	47
4.3 ANNEX D (NORMATIVE) - DISPLAY AND DISPLAY OUTPUT FUNCTION 4.3.1 PERFORMANCE CRITERIA	48 48
4.4 ANNEX G (NORMATIVE) - AUDIO OUTPUT FUNCTION 4.4.1 PERFORMANCE CRITERIA	49 49
4.5 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD) 4.5.1 TEST SPECIFICATION 4.5.2 MEASUREMENT INSTRUMENTS	50 50 50
4.5.3 TEST PROCEDURE	50
4.5.4 DEVIATION FROM TEST STANDARD 4.5.5 TEST SETUP 4.5.6 TEST RESULTS	51 51 52
4.6 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST	• •
4.6.1 TEST SPECIFICATION 4.6.2 MEASUREMENT INSTRUMENTS	55 55
4.6.3 TEST PROCEDURE	55
4.6.4 DEVIATION FROM TEST STANDARD 4.6.5 TEST SETUP	56 56
4.6.6 TEST RESULTS	58
4.7 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)	61
4.7.1 TEST SPECIFICATION	61
4.7.2 MEASUREMENT INSTRUMENTS 4.7.3 TEST PROCEDURE	61 61
4.7.4 DEVIATION FROM TEST STANDARD	61
4.7.5 TEST SETUP	62
4.7.6 TEST RESULTS 4.8 SURGE IMMUNITY TEST (SURGE)	63 64
4.8.1 TEST SPECIFICATION	64 64
4.8.2 MEASUREMENT INSTRUMENTS	64
4.8.3 TEST PROCEDURE	64

Table of Contents	Page
4.8.4 DEVIATION FROM TEST STANDARD	64
4.8.5 TEST SETUP	65
4.8.6 TEST RESULTS	66
4.9 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY RADIO-FREQUENCY	
FIELDS TEST (CS)	67
4.9.1 TEST SPECIFICATION	67
4.9.2 MEASUREMENT INSTRUMENTS	67
4.9.3 TEST PROCEDURE	67
4.9.4 DEVIATION FROM TEST STANDARD	68
4.9.5 TEST SETUP	68
4.9.6 TEST RESULTS	69
4.10 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF)	71
4.10.1 TEST SPECIFICATION	71
4.10.2 MEASUREMENT INSTRUMENTS	71
4.10.3 TEST PROCEDURE	71
4.10.4 DEVIATION FROM TEST STANDARD 4.10.5 TEST SETUP	71 72
4.10.5 TEST SETUP 4.10.6 TEST RESULTS	72 73
4.11 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS IMMUNITY	_
TEST (DIPS)	74
4.11.1 TEST SPECIFICATION	74
4.11.2 MEASUREMENT INSTRUMENTS	74
4.11.3 TEST PROCEDURE	74
4.11.4 DEVIATION FROM TEST STANDARD	74
4.11.5 TEST SETUP	74
4.11.6 TEST RESULTS	75
5 . EUT TEST PHOTO	76

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-EMC-1-2409C041A	R00	This is a supplementary report to the original test report (BTL-EMC-1-2409C041). 1. Added a main board (Model: 715GF063), so the EMI&Harmonic current&Flicker used the original worst case to test, the EMS has been re-evaluated and recorded. In this report only recorded the new test results. The original test results please refer to original report.	Nov. 13. 2024	Valid

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

	Emission		
Standard(s)	Test Item		Result
	Radiated emis	ssions up to 1 GHz	PASS
EN 55032:2015	Radiated emis	sions above 1 GHz	PASS
EN 55032:2015+A11:2020 EN 55032:2015+A1:2020	Radiated emission	ons from FM receivers	N/A
CISPR 32:2015+AMD1:2019	Conducted emission	ns AC mains power port	PASS
AS/NZS CISPR 32:2015+AMD1:2020 BS EN 55032:2015	Asymmetric mode	AAN	N/A
BS EN 55032:2015+A11:2020	conducted	Current Probe	N/A
BS EN 55032:2015+A1:2020	emissions	CP+CVP	N/A
	Conducted differen	ntial voltage emissions	N/A

Standard(s)	Test Item	Result
EN 61000-3-2:2014 EN IEC 61000-3-2:2019+A1:2021 BS EN 61000-3-2:2014 BS EN IEC 61000-3-2:2019+A1:2021	Harmonic current	PASS
EN 61000-3-3:2013 EN 61000-3-3:2013+A1:2019 EN 61000-3-3:2013+A2:2021 BS EN 61000-3-3:2013 BS EN 61000-3-3:2013+A1:2019 BS EN 61000-3-3:2013+A2:2021	Voltage fluctuations (Flicker)	PASS

Immunity			
Standard(s)	Ref Standard(s)	Test Item	Result
	IEC 61000-4-2:2008 EN 61000-4-2:2009	ESD	PASS
	IEC 61000-4-3:2020 EN IEC 61000-4-3:2020	RS	PASS
EN 55035:2017/CISPR 35:2016	IEC 61000-4-4:2012 EN 61000-4-4:2012	EFT	PASS
EN 55035:2017+A11:2020 BS EN 55035:2017	IEC 61000-4-5:2014+AMD1:2017 EN 61000-4-5:2014+A1:2017	Surge	PASS
BS EN 55035:2017+A11:2020	IEC 61000-4-6:2013 EN 61000-4-6:2014+AC:2015	CS	PASS
	IEC 61000-4-8:2009 EN 61000-4-8:2010	PFMF	PASS
	IEC 61000-4-11:2020 EN IEC 61000-4-11:2020	Dips	PASS

Standard(s)	Section	Test Item	Result
EN 55035:2017/CISPR 35:2016 EN 55035:2017+A11:2020	4.2.7	BIN-R	N/A
BS EN 55035:2017 BS EN 55035:2017	4.2.7	BIN-I	N/A

NOTE:

(1) "N/A" denotes test is not applicable to this device.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of 1-2/F, 4/F, Building A, 1-2/F, Building B, 3/F, Building C, No.3, Jinshagang 1st Road, Dalang Town, Dongguan City, Guangdong People's Republic of China.

1.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2, The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95%.

A. Radiated emissions up to 1 GHz measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
		30MHz ~ 200MHz	V	4.48
DG-CB08 (10m)	CISPR	30MHz ~ 200MHz	Н	4.50
		200MHz ~ 1,000MHz	V	4.60
		200MHz ~ 1,000MHz	Н	4.84

B. Radiated emissions above 1 GHz measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB08 (3m)	CISPR	1GHz ~ 6GHz	4.24

C. Conducted emissions AC mains power port measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-C01	CISPR	150kHz ~ 30MHz	2.98

D. Harmonic current / Voltage fluctuations (Flicker) measurement:

Test Site	Method	Item	U (%)
DC C01	EN 61000-3-2	Current	0.757
DG-C01	EN 61000-3-3	Voltage	0.592

E. Immunity Measurement:

Test Site	Method	Item	U
	Rise time tr		7.00%
DG-SR02	IEC 61000-4-2	Peak current lp	6.50%
DG-3R02	1EC 61000-4-2	Current at 30 ns	6.60%
		Current at 60 ns	6.80%
DG-CB05	IEC 61000-4-3	Electromagnetic field immunity test	2.2dB
DG-CB03	(80MHz~6GHz)	On-ear acoustic & Acoustic measurements on loudspeakers	2.24dB
		Peak voltage (VP)	3.8%
	IEC 61000-4-4	Rise time (tr)	4.4%
DG-SR05		Pulse width(tw)	
DG-SK05		Pulse Freq.(kHz)	0.7%
		Burst Duration(ms)	1.5%
		Burst Period(ms)	1.4%
		Open-Circuit Output Voltage (1.2/50us)	4.0%
DG-SR05	IEC 61000-4-5	Open circuit front time (1.2/50us)	6.2%
		Open circuit time of half value (1.2/50us)	4.7%
	IEC 61000-4-6	CDN	1.28dB
DG-CB06	(150kHz-80MHz)	On-ear acoustic & Acoustic measurements on loudspeakers	1.36dB
DG-SR05	IEC 61000-4-8	Magnetic Field Strength	1.91%
DG-SR01	IEC 61000-4-11	DIP Amplitude	3.6%
וואפ-פת	1EC 01000-4-11	DIP Time Event	4.0%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Tested By	Test Date
Radiated emissions up to 1 GHz	21°C	48%	Zinco Chen	Oct. 29, 2024
Radiated emissions above 1 GHz	21°C	48%	Zinco Chen	Oct. 29, 2024
Conducted emissions AC mains power port	24°C	52%	Bernie Wu	Oct. 19, 2024
Harmonic current	24°C	52%	Bernie Wu	Oct. 19, 2024
Voltage fluctuations (Flicker)	24°C	52%	Bernie Wu	Oct. 19, 2024

Test Item	Temperature	Humidity	Pressure	Tested By	Test Date
ESD	27°C	46%	1016hPa	Jerry Lu	Oct. 23, 2024
RS	25°C	50%	/	Hunter Xu	Oct. 18, 2024
EFT	26°C	58%	1	Zinco Chen	Oct. 29, 2024
Surge	26°C	58%	1	Zinco Chen	Oct. 29, 2024
CS	24°C	46%	1	Penn Li	Oct. 15, 2024
PFMF	26°C	58%	/	Zinco Chen	Oct. 29, 2024
Dips	28°C	52%	1	Ellery Liang	Oct. 19, 2024

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	LCD Monitor		
Brand Name	N/A		
Model Name	CU34G4		
Series Model	**34G4******(*=0-9,A-Z,a-z,+,-,/,\ or blank)		
Model Difference(s)	Only differ in model name due to marketing purpose.		
Identification No. of EUT(S/N)	N/A		
Dimensions and mass	808.1*269.6*534.7 mm		
Component unit of EUT	⊠Single unit □Multiple unit		
Sample Status	⊠Engineering sample □Final shipment prototype		
Power Source	AC Mains.		
Power Rating	100-240V ~ 50/60Hz		
Connecting I/O Port(s)	1* AC port 2* HDMI port 1* DP port 1* Earphone port		
Classification of EUT	Class B		
Highest Internal Frequency(Fx)	597MHz		

Cable Type	Shielded Type	Ferrite Core	Length(m)	Note
AC Power Cord	Non-shielded	NO	1.8/1.5/1.2	-
HDMI	Shielded	NO	1.8/1.5/1.2	-
DP	Shielded	NO	1.8/1.5/1.2	-

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description		
Mode 1	HDMI 1 3440x1440 /240Hz 1.8m PC		
Mode 2	HDMI 2 3440x1440 /240Hz 1.8m PC		
Mode 3	DP 3440x1440 /240Hz 1.8m PC		
Mode 4	HDMI1 1080P DVD1.8m		
Mode 5	HDMI 1 3440x1440 /240Hz 1.5m PC		
Mode 6	HDMI 2 3440x1440 /240Hz 1.5m PC		
Mode 7	DP 3440x1440 /240Hz 1.5m PC		
Mode 8	HDMI 1 3440x1440 /240Hz 1.2m PC		
Mode 9	HDMI 2 3440x1440 /240Hz 1.2m PC		
Mode 10	DP 3440x1440 /240Hz 1.2m PC		

Radiated emissions up to 1 GHz Test				
Final Test Mode Description				
Mode 1	HDMI 1 3440x1440 /240Hz 1.8m PC			

Radiated emissions Above 1 GHz Test				
Final Test Mode Description				
Mode 1 HDMI 1 3440x1440 /240Hz 1.8m PC				

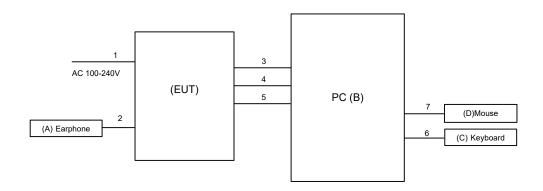
Conducted emissions AC mains power port Test			
Final Test Mode Description			
Mode 1	HDMI 1 3440x1440 /240Hz 1.8m PC		

Harmonic current & Voltage fluctuations (Flicker) Test			
Final Test Mode Description			
Mode 1 HDMI 1 3440x1440 /240Hz 1.8m PC			

Immunity Test				
Final Test Mode	Description			
Mode 1	HDMI 1 3440x1440 /240Hz 1.8m PC			
Mode 2	HDMI 2 3440x1440 /240Hz 1.8m PC			
Mode 3	DP 3440x1440 /240Hz 1.8m PC			
Mode 4	HDMI1 1080P DVD1.8m			
Mode 5	HDMI 1 3440x1440 /240Hz 1.5m PC			
Mode 6	HDMI 2 3440x1440 /240Hz 1.5m PC			
Mode 7	DP 3440x1440 /240Hz 1.5m PC			
Mode 8	HDMI 1 3440x1440 /240Hz 1.2m PC			
Mode 9	HDMI 2 3440x1440 /240Hz 1.2m PC			
Mode 10	DP 3440x1440 /240Hz 1.2m PC			

Note:

- 1. RS: The Front, Rear, Left and Right were evaluated. The worst placement direction is Front and recorded in this report.
- 2. The audio output function of CS/RS is recorded the worst mode.



2.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. EUT connected to Earphone via Earphone Cable.
- 2. EUT connected to PC via HDMI & DP Cable.
- 3. PC connected to Mouse & Keyboard via USB Cable.

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
Α	Earphone	Apple	N/A	N/A
В	PC	DELL	8920-D16N8S	GZS91L2
С	Keyboard	DELL	KB212-B	CN0HTXH97158125004DXA01
D	Mouse	DELL	MS111-P	CN011D3V71581279OLOT

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	AC Cable	NO	NO	1.8/1.5/1.2m
2	Earphone Cable	NO	NO	1.2m
3	HDMI Cable	YES	NO	1.8/1.5/1.2m
4	HDMI Cable	YES	NO	1.8/1.5/1.2m
5	DP Cable	YES	NO	1.8/1.5/1.2m
6	USB Cable	YES	NO	1.8m
7	USB Cable	YES	NO	1.8m

3. EMC EMISSION TEST

3.1 RADIATED EMISSIONS UP TO 1 GHZ

3.1.1 LIMITS

Class B equipment up to 1 GHz

Frequency Range		Measureme	ent	Class B limits
MHz	Facility	Distance m	Detector type/ bandwidth	dB(μV/m)
30 - 230	SAC	10	Quasi peak /	30
230 - 1000	0/10	10	120 kHz	37

Notes:

- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

 Measurement Value = Reading Level + Correct Factor

 Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

 Margin Level = Measurement Value Limit Value

3.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EMI Test Receiver	Keysight	N9038A	MY56400060	Dec. 22, 2024
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Jun. 01, 2025
3	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980284	May 31, 2025
4	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980283	May 31, 2025
5	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	947	Nov. 10, 2024
6	Attenuator	EMCI	EMCI-N-6-06	AT-N0670	Nov. 10, 2024
7	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	1461	Nov. 28, 2024
8	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06010	Nov. 28, 2024
9	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
10	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
11	Controller	MF	MF-7802	MF780208159	N/A
12	Cable	RW	LMR400-NMNM-10M	N/A	Dec. 03, 2024
13	Cable	RW	LMR400-NMNM-7M	N/A	Dec. 03, 2024
14	Cable	RW	LMR400-NMNM-3.5M	N/A	Dec. 03, 2024
15	Cable	RW	LMR400-NMNM-7M	N/A	Sep. 04, 2025
16	Cable	RW	LMR400-NMNM-8M	N/A	Sep. 04, 2025
17	Cable	RW	LMR400-NMNM-3.5M	N/A	Sep. 04, 2025

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

3.1.3 TEST PROCEDURE

- a. The measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- e. For the actual test configuration, please refer to the related Item EUT Test Photos.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation

3.1.5 TEST SETUP

Absorbers

Totary

Totary

Ground Plane

Receiver

Amp.

3.1.6 MEASUREMENT DISTANCE

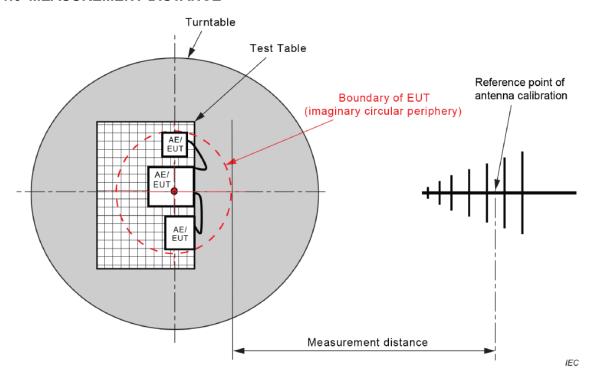


Figure C.1 - Measurement distance

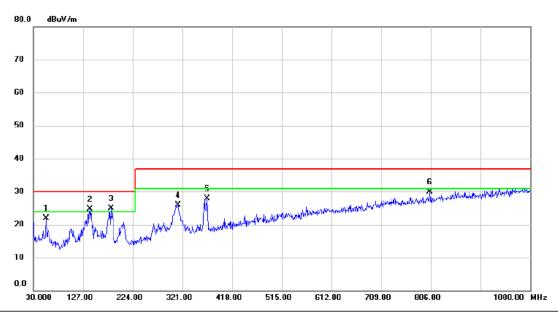
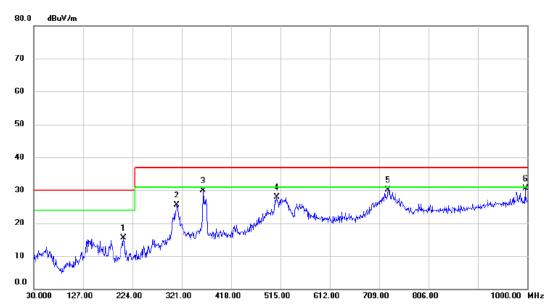
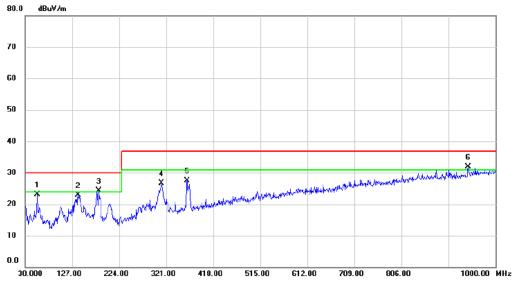



Figure C.2 - Boundary of EUT, Local AE and associated cabling

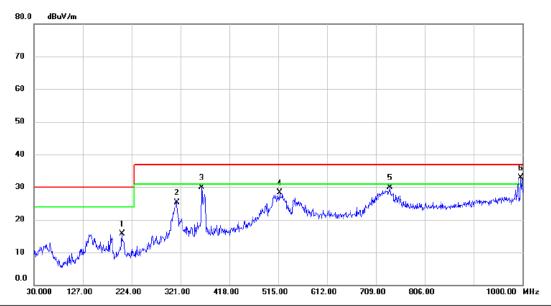
3.1.7 TEST RESULTS


Test Voltage	AC 230V/50Hz	Polarization	Vertical
Test Mode	Mode 1		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		55.2200	38.90	-16.90	22.00	30.00	-8.00	QP	
2	İ	140.0950	40.82	-16.02	24.80	30.00	-5.20	QP	
3	*	181.3200	41.65	-16.77	24.88	30.00	-5.12	QP	
4		312.2700	39.78	-13.82	25.96	37.00	-11.04	QP	
5		369.5000	40.28	-12.36	27.92	37.00	-9.08	QP	
6		804.0600	34.69	-4.87	29.82	37.00	-7.18	QP	


Test Voltage	AC 230V/50Hz	Polarization	Horizontal
Test Mode	Mode 1		

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		206.5400	35.12	-19.65	15.47	30.00	-14.53	QP	
2		311.3000	40.90	-15.40	25.50	37.00	-11.50	QP	
3		362.7100	44.06	-14.18	29.88	37.00	-7.12	QP	
4		508.2100	38.70	-10.87	27.83	37.00	-9.17	QP	
5		726.4600	38.29	-8.25	30.04	37.00	-6.96	QP	
6	*	996.1200	36.22	-5.80	30.42	37.00	-6.58	QP	


Test Voltage	AC 110V/60Hz	Polarization	Vertical
Test Mode	Mode 1		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		55.2200	40.00	-16.90	23.10	30.00	-6.90	QP	
2		139.6100	39.01	-16.06	22.95	30.00	-7.05	QP	
3	İ	181.3200	41.07	-16.77	24.30	30.00	-5.70	QP	
4		311.3000	40.62	-13.86	26.76	37.00	-10.24	QP	
5		363.6800	40.09	-12.59	27.50	37.00	-9.50	QP	
6	*	943.7400	34.92	-3.09	31.83	37.00	-5.17	QP	

Test Voltage	AC 110V/60Hz	Polarization	Horizontal
Test Mode	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		204.6000	35.45	-19.66	15.79	30.00	-14.21	QP	
2		313.2400	40.73	-15.33	25.40	37.00	-11.60	QP	
3		362.7100	44.15	-14.18	29.97	37.00	-7.03	QP	
4		517.9100	39.08	-10.78	28.30	37.00	-8.70	QP	
5		737.1300	37.93	-8.00	29.93	37.00	-7.07	QP	
6	*	996.1200	38.74	-5.80	32.94	37.00	-4.06	QP	

3.2 RADIATED EMISSIONS ABOVE 1 GHZ

3.2.1 LIMITS

Class B equipment above 1 GHz

Frequency Range		Measureme	nt	Class B limits
MHz	Facility	Distance m	Detector type/bandwidth	dB(μV/m)
1000 - 3000			Average /	50
3000 - 6000	TCO ATC	2	1 MHz	54
1000 - 3000	FSOATS	3	Peak /	70
3000 - 6000			1 MHz	74

Notes:

- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

 Measurement Value = Reading Level + Correct Factor

 Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

 Margin Level = Measurement Value Limit Value

Required highest frequency for radiated measurement

Highest internal frequency (F _x)	Highest measured frequency
F _x ≤ 108 MHz	1 GHz
$108 < F_x \le 500 \text{ MHz}$	2 GHz
500 < F _x ≤ 1000 MHz	5 GHz
F _x > 1 GHz	5 x F _x up to a maximum of 6 GHz

3.2.2 MEASUREMENT INSTRUMENTS LIST

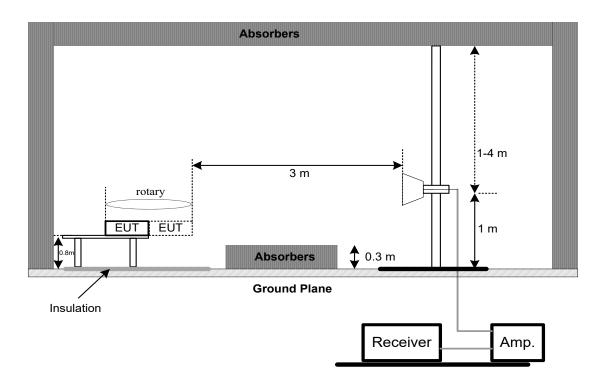
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Horn Antenna	ETS	3115	9605-4803	Jul. 07, 2025
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Jun. 01, 2025
3	Preamplifier	EMC INSTRUMENT	EMC118A45SE	981003	Nov. 17, 2024
4	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
5	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
6	Controller	MF	MF-7802	MF780208159	N/A
7	Cable	RegalWay	RWLP50-4.0A-S MSM-9M	N/A	Sep. 02, 2025
8	Cable	RW	RWLP50-4.0A-N MRASM-1M	N/A	Sep. 02, 2025
9	Cable	RW	RWLP50-4.0A-N MRASM-4M	N/A	Sep. 02, 2025

Page 24 of 83

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

3.2.3 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then AVG detector mode re-measured.
- d. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
- e. For the actual test configuration, please refer to the related Item EUT Test Photos.

3.2.4 DEVIATION FROM TEST STANDARD

The limit of the EN 55032:2015+A1:2020&AS/NZS CISPR 32:2015+AMD1:2020&CISPR 32:2015 +AMD1:2019 standard deviates from the requirements, but the limit of the EN 55032:2015+A11:2020 standard is more stringent and can be covered, so the test data meets the EN 55032:2015+A1:2020 &AS/NZS CISPR 32:2015+AMD1:2020&CISPR 32:2015+AMD1:2019 standard.

3.2.5 TEST SETUP

ABOVE 1 GHZ

3.2.6 MEASUREMENT DISTANCE

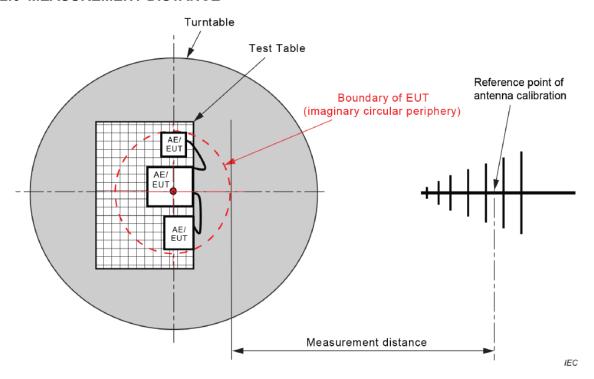


Figure C.1 - Measurement distance

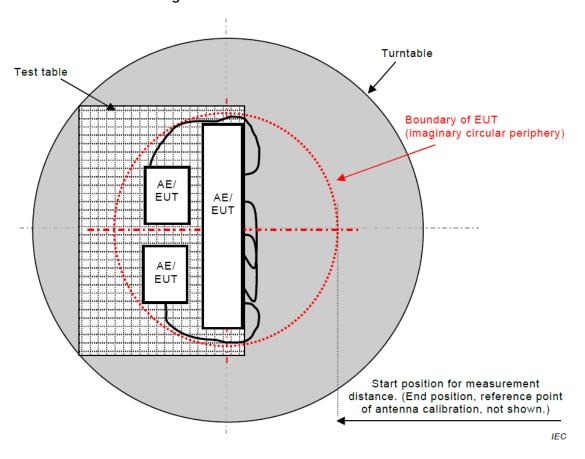
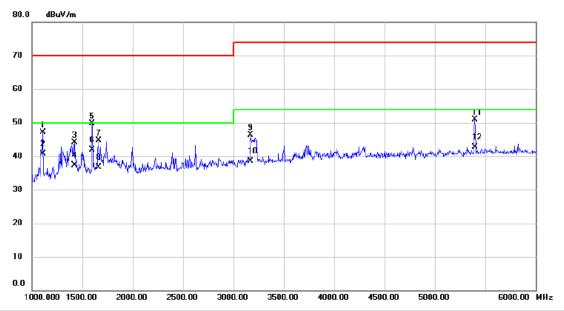
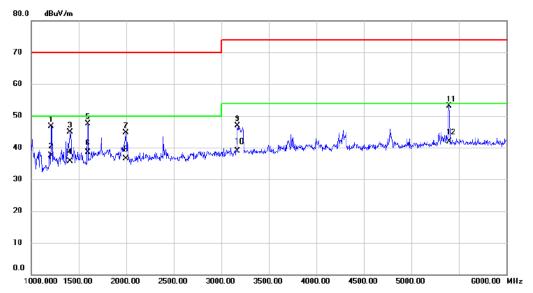
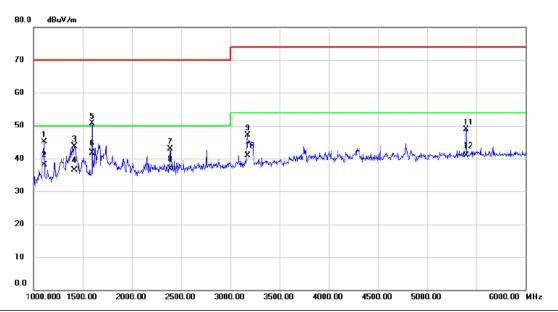



Figure C.2 - Boundary of EUT, Local AE and associated cabling

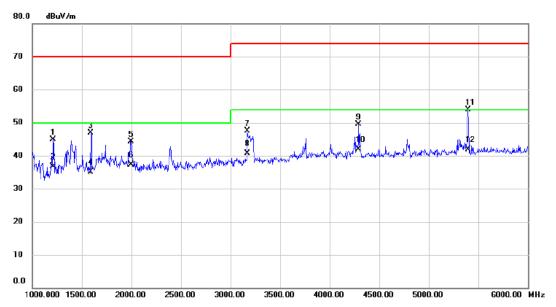
3.2.7 TEST RESULTS


Test Voltage	AC 230V/50Hz	Polarization	Vertical
Test Mode	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1107.500	52.93	-5.89	47.04	70.00	-22.96	peak	
2		1107.500	46.58	-5.89	40.69	50.00	-9.31	AVG	
3		1420.000	49.15	-5.04	44.11	70.00	-25.89	peak	
4		1420.000	42.31	-5.04	37.27	50.00	-12.73	AVG	
5		1595.000	54.25	-4.45	49.80	70.00	-20.20	peak	
6	*	1595.000	46.34	-4.45	41.89	50.00	-8.11	AVG	
7		1665.000	48.84	-4.16	44.68	70.00	-25.32	peak	
8		1665.000	40.85	-4.16	36.69	50.00	-13.31	AVG	
9		3172.500	45.73	0.54	46.27	74.00	-27.73	peak	
10		3172.500	37.96	0.54	38.50	54.00	-15.50	AVG	
11		5395.000	47.17	3.74	50.91	74.00	-23.09	peak	
12	,	5395.000	38.95	3.74	42.69	54.00	-11.31	AVG	


Test Voltage	AC 230V/50Hz	Polarization	Horizontal
Test Mode	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	,	1212.500	52.39	-5.61	46.78	70.00	-23.22	peak	
2	,	1212.500	43.19	-5.61	37.58	50.00	-12.42	AVG	
3		1412.500	49.94	-5.07	44.87	70.00	-25.13	peak	
4	,	1412.500	40.76	-5.07	35.69	50.00	-14.31	AVG	
5		1597.500	51.94	-4.43	47.51	70.00	-22.49	peak	
6	* '	1597.500	42.92	-4.43	38.49	50.00	-11.51	AVG	
7	•	1997.500	47.51	-2.82	44.69	70.00	-25.31	peak	
8	•	1997.500	39.42	-2.82	36.60	50.00	-13.40	AVG	
9	;	3170.000	46.31	0.53	46.84	74.00	-27.16	peak	
10	;	3170.000	38.31	0.53	38.84	54.00	-15.16	AVG	
11	į	5395.000	49.27	3.74	53.01	74.00	-20.99	peak	
12	į	5395.000	38.15	3.74	41.89	54.00	-12.11	AVG	


Test Voltage	AC 110V/60Hz	Polarization	Vertical
Test Mode	Mode 1		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		1107.500	50.98	-5.89	45.09	70.00	-24.91	peak	
2		1107.500	44.06	-5.89	38.17	50.00	-11.83	AVG	
3		1417.500	48.83	-5.05	43.78	70.00	-26.22	peak	
4		1417.500	41.52	-5.05	36.47	50.00	-13.53	AVG	
5		1597.500	55.20	-4.43	50.77	70.00	-19.23	peak	
6	*	1597.500	46.12	-4.43	41.69	50.00	-8.31	AVG	
7		2392.500	44.71	-1.87	42.84	70.00	-27.16	peak	
8		2392.500	38.75	-1.87	36.88	50.00	-13.12	AVG	
9		3177.500	46.62	0.55	47.17	74.00	-26.83	peak	
10		3177.500	40.32	0.55	40.87	54.00	-13.13	AVG	
11		5397.500	45.12	3.74	48.86	74.00	-25.14	peak	
12		5397.500	37.25	3.74	40.99	54.00	-13.01	AVG	

Test Voltage	AC 110V/60Hz	Polarization	Horizontal
Test Mode	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	1	210.000	50.54	-5.61	44.93	70.00	-25.07	peak	
2	1	210.000	42.30	-5.61	36.69	50.00	-13.31	AVG	
3	1	592.500	51.39	-4.46	46.93	70.00	-23.07	peak	
4	1	592.500	39.56	-4.46	35.10	50.00	-14.90	AVG	
5	1	997.500	47.10	-2.82	44.28	70.00	-25.72	peak	
6	1	997.500	40.12	-2.82	37.30	50.00	-12.70	AVG	
7	3	3170.000	46.99	0.53	47.52	74.00	-26.48	peak	
8	3	3170.000	40.16	0.53	40.69	54.00	-13.31	AVG	
9	4	292.500	46.99	2.46	49.45	74.00	-24.55	peak	
10	4	292.500	39.43	2.46	41.89	54.00	-12.11	AVG	
11	5	397.500	50.21	3.74	53.95	74.00	-20.05	peak	
12	* 5	397.500	38.24	3.74	41.98	54.00	-12.02	AVG	

3.3 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS

3.3.1 LIMITS

Requirements for conducted emissions from AC mains power ports of Class B equipment

Frequency Range	Coupling	Detector Type /	Class B Limits
MHz	Device	bandwidth	(dB(µV))
0.15 - 0.5		0 10 17	66-56
0.5 - 5	AMN	Quasi Peak / 9 kHz	56
5 - 30	O M IZ		60
0.15 - 0.5		. ,	56-46
0.5 - 5	AMN	Average / 9 kHz	46
5 - 30		O MIZ	50

NOTE:

(1) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use)

Margin Level = Measurement Value - Limit Value

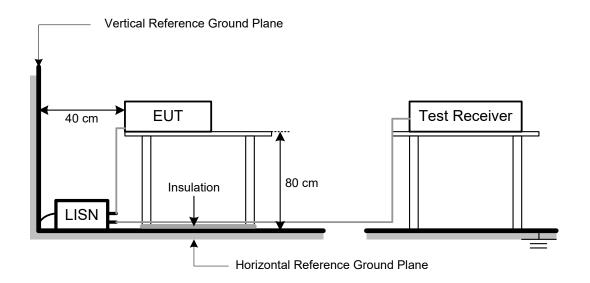
3.3.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	TWO-LINE V-NETWORK	R&S	ENV216	100526	May 31, 2025
2	EMI Test Receiver	ceiver R&S ESR3 10302		103027	Jun. 01, 2025
3	Cable	N/A	SFT205-NMNM-12 M-001	12M	Nov. 27, 2024
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
5	Artificial-Mains Network	SCHWARZBECK	NSLK 8127	8127685	Dec. 22, 2024

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

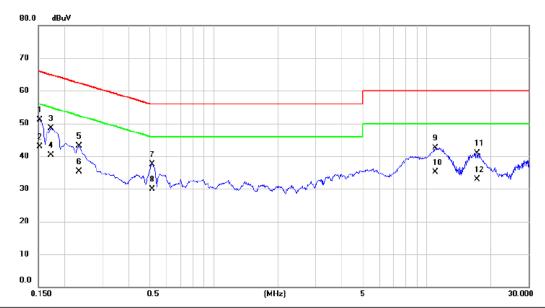
All calibration period of equipment list is one year.

3.3.3 TEST PROCEDURE

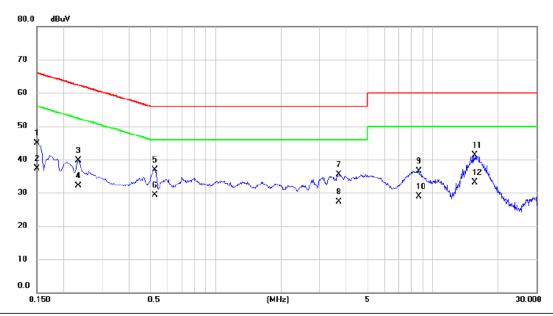

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3.4 DEVIATION FROM TEST STANDARD

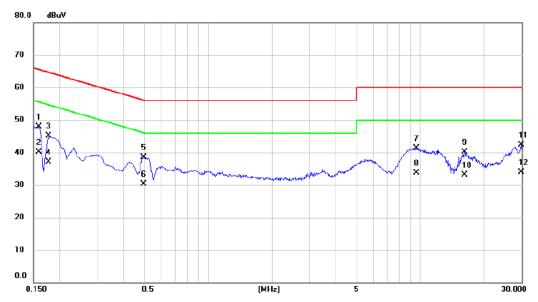
No deviation


3.3.5 TEST SETUP

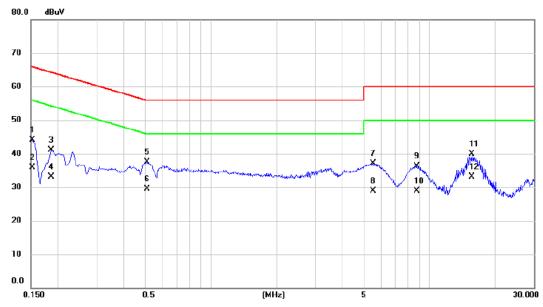
3.3.6 TEST RESULTS


Test Voltage	AC 230V/50Hz	Phase	Line
Test Mode	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector	Comment
1		0.1522	41.46	9.63	51.09	65.88	-14.79	QP	
2	*	0.1522	33.30	9.63	42.93	55.88	-12.95	AVG	
3		0.1725	38.86	9.63	48.49	64.84	-16.35	QP	
4		0.1725	30.60	9.63	40.23	54.84	-14.61	AVG	
5		0.2333	33.43	9.66	43.09	62.33	-19.24	QP	
6		0.2333	25.70	9.66	35.36	52.33	-16.97	AVG	
7		0.5144	27.87	9.71	37.58	56.00	-18.42	QP	
8		0.5144	20.10	9.71	29.81	46.00	-16.19	AVG	
9		10.9703	32.32	10.23	42.55	60.00	-17.45	QP	
10		10.9703	24.80	10.23	35.03	50.00	-14.97	AVG	
11		17.2073	30.30	10.59	40.89	60.00	-19.11	QP	
12		17.2073	22.40	10.59	32.99	50.00	-17.01	AVG	


Test Voltage	AC 230V/50Hz	Phase	Neutral
Test Mode	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	35.38	9.61	44.99	66.00	-21.01	QP	
2		0.1500	27.60	9.61	37.21	56.00	-18.79	AVG	
3		0.2333	30.10	9.65	39.75	62.33	-22.58	QP	
4		0.2333	22.50	9.65	32.15	52.33	-20.18	AVG	
5		0.5257	27.13	9.70	36.83	56.00	-19.17	QP	
6	*	0.5257	19.60	9.70	29.30	46.00	-16.70	AVG	
7		3.7050	25.65	9.87	35.52	56.00	-20.48	QP	
8		3.7050	17.50	9.87	27.37	46.00	-18.63	AVG	
9		8.6213	26.39	10.14	36.53	60.00	-23.47	QP	
10		8.6213	18.80	10.14	28.94	50.00	-21.06	AVG	
11		15.6368	30.84	10.52	41.36	60.00	-18.64	QP	
12		15.6368	22.60	10.52	33.12	50.00	-16.88	AVG	


Test Voltage	AC 110V/60Hz	Phase	Line
Test Mode	Mode 1		

No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	C).1590	38.26	9.63	47.89	65.52	-17.63	QP	
2 *	٠ ().1590	30.50	9.63	40.13	55.52	-15.39	AVG	
3	C).1770	35.37	9.64	45.01	64.63	-19.62	QP	
4	C).1770	27.40	9.64	37.04	54.63	-17.59	AVG	
5	C).4965	28.78	9.71	38.49	56.06	-17.57	QP	
6	C).4965	20.60	9.71	30.31	46.06	-15.75	AVG	
7	5	9.5753	31.21	10.17	41.38	60.00	-18.62	QP	
8	6	9.5753	23.50	10.17	33.67	50.00	-16.33	AVG	
9	16	3.1723	29.64	10.50	40.14	60.00	-19.86	QP	
10	16	3.1723	22.70	10.50	33.20	50.00	-16.80	AVG	
11	29	9.8680	31.50	10.84	42.34	60.00	-17.66	QP	
12	29	9.8680	23.10	10.84	33.94	50.00	-16.06	AVG	

Test Voltage	AC 110V/60Hz	Phase	Neutral
Test Mode	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1522	34.41	9.61	44.02	65.88	-21.86	QP	
2		0.1522	26.30	9.61	35.91	55.88	-19.97	AVG	
3		0.1860	31.49	9.64	41.13	64.21	-23.08	QP	
4		0.1860	23.40	9.64	33.04	54.21	-21.17	AVG	
5		0.5122	27.71	9.70	37.41	56.00	-18.59	QP	
6	*	0.5122	19.80	9.70	29.50	46.00	-16.50	AVG	
7		5.5140	27.22	9.97	37.19	60.00	-22.81	QP	
8		5.5140	19.00	9.97	28.97	50.00	-21.03	AVG	
9		8.7293	26.10	10.15	36.25	60.00	-23.75	QP	
10		8.7293	18.70	10.15	28.85	50.00	-21.15	AVG	
11		15.6368	29.34	10.52	39.86	60.00	-20.14	QP	
12		15.6368	22.50	10.52	33.02	50.00	-16.98	AVG	

3.4 HARMONIC CURRENT EMISSIONS TEST

3.4.1 LIMITS

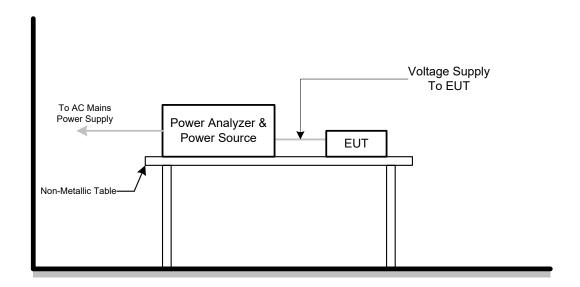
The power consumption is less than 75W, there is no limit applied.

3.4.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Harmonics and Flicker Analyzer	California Instruments	PACS-1	72344	Jun. 01, 2025
2	3KVA AC Power source	California Instruments	3001ix	56309	Jun. 01, 2025
3	Measurement Software	California	CTS4.0 Version 4.29	N/A	N/A

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.

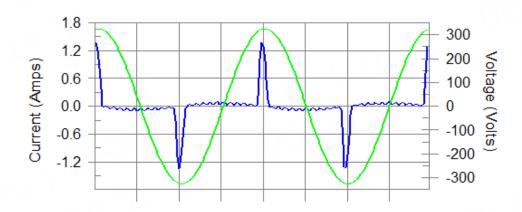

3.4.3 TEST PROCEDURE

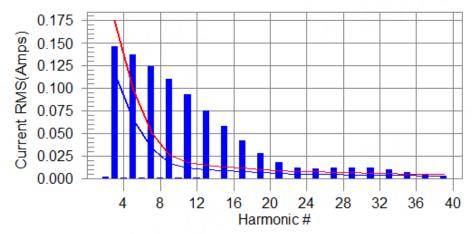
- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- b. The classification of EUT is according to of EN 61000-3-2. The EUT is classified as Class D.
- c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

3.4.4 DEVIATION FROM TEST STANDARD

No deviation

3.4.5 TEST SETUP




3.4.6 TEST RESULTS

	Harmonics – Class-D
Test Voltage	AC 230V/50Hz
Test Mode	Mode 1

Current & voltage waveforms

Harmonics and Class D limit line European Limits

Test result: N/L Worst harmonics H0-0.0% of 150% limit, H0-0% of 100% limit

	Current Test Result Summary (Run time)
Test Voltage	AC 230V/50Hz
Test Mode	Mode 1

Highest parameter values during test:

V_RMS (Volts): 230.02

I_Peak (Amps): 1.393

I_Fund (Amps): 0.161

Power (Watts): 34.4 Frequency(Hz): 50.00 I_RM\$ (Amps): 0.341 Crest Factor: 4.101 Power Factor: 0.442

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.002	0.000	N/A	0.003	0.000	N/A	N/L
2 3 4	0.146	0.117	N/A	0.147	0.176	N/A	N/L
4	0.002	0.000	N/A	0.002	0.000	N/A	N/L
5	0.137	0.065	N/A	0.137	0.098	N/A	N/L
6	0.001	0.000	N/A	0.002	0.000	N/A	N/L
7	0.125	0.034	N/A	0.125	0.052	N/A	N/L
8	0.001	0.000	N/A	0.002	0.000	N/A	N/L
9	0.110	0.017	N/A	0.110	0.026	N/A	N/L
10	0.001	0.000	N/A	0.001	0.000	N/A	N/L
11	0.093	0.012	N/A	0.094	0.018	N/A	N/L
12	0.001	0.000	N/A	0.001	0.000	N/A	N/L
13	0.076	0.010	N/A	0.076	0.015	N/A	N/L
14	0.001	0.000	N/A	0.001	0.000	N/A	N/L
15	0.059	0.009	N/A	0.059	0.013	N/A	N/L
16	0.001	0.000	N/A	0.001	0.000	N/A	N/L
17	0.043	0.008	N/A	0.043	0.012	N/A	N/L
18	0.001	0.000	N/A	0.001	0.000	N/A	N/L
19	0.029	0.007	N/A	0.029	0.010	N/A	N/L
20	0.001	0.000	N/A	0.001	0.000	N/A	N/L
21	0.018	0.006	N/A	0.018	0.009	N/A	N/L
22	0.001	0.000	N/A	0.001	0.000	N/A	N/L
23	0.012	0.006	N/A	0.012	0.009	N/A	N/L
24	0.001	0.000	N/A	0.001	0.000	N/A	N/L
25	0.011	0.005	N/A	0.011	0.008	N/A	N/L
26	0.001	0.000	N/A	0.001	0.000	N/A	N/L
27	0.012	0.005	N/A	0.012	0.007	N/A	N/L
28	0.001	0.000	N/A	0.001	0.000	N/A	N/L
29	0.013	0.005	N/A	0.013	0.007	N/A	N/L
30	0.000	0.000	N/A	0.001	0.000	N/A	N/L
31	0.012	0.004	N/A	0.012	0.006	N/A	N/L
32	0.000	0.000	N/A	0.001	0.000	N/A	N/L
33	0.010	0.004	N/A	0.010	0.006	N/A	N/L
34	0.000	0.000	N/A	0.001	0.000	N/A	N/L
35	0.008	0.004	N/A	0.008	0.006	N/A	N/L
36	0.000	0.000	N/A	0.000	0.000	N/A	N/L
37	0.005	0.004	N/A	0.005	0.005	N/A	N/L
38	0.000	0.000	N/A	0.000	0.000	N/A	N/L
39	0.003	0.003	N/A	0.004	0.005	N/A	N/L
40	0.000	0.000	N/A	0.000	0.000	N/A	N/L

	Voltage Source Verification Data (Run time)
Test Voltage	AC 230V/50Hz
Test Mode	Mode 1

Highest parameter values during test:
Voltage (Vrms): 230.02
I_Peak (Amps): 1.393
I_Fund (Amps): 0.161
Power (Watts): 34.4 Frequency(Hz): 50.00 I_RMS (Amps): 0.341 Crest Factor: 4.101 Power Factor: 0.442

Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status
2	0.131	0.460	28.57	OK
3	0.561	2.069	27.11	OK
4	0.068	0.460	14.71	OK
5	0.037	0.920	4.06	OK
4 5 6	0.038	0.460	8.18	OK
7	0.080	0.690	11.60	OK
8	0.022	0.460	4.82	OK
9	0.047	0.460	10.23	OK
10	0.024	0.460	5.13	OK
11	0.063	0.230	27.57	OK
12	0.020	0.230	8.65	OK
13	0.051	0.230	22.01	OK
14	0.019	0.230	8.28	OK
15	0.051	0.230	22.07	OK
16	0.016	0.230	6.91	ok
17	0.032	0.230	13.79	OK
18	0.013	0.230	5.51	OK
19	0.032	0.230	14.06	ok
20	0.019	0.230	8.47	ok
21	0.018	0.230	7.85	OK
22	0.011	0.230	4.85	ok
23	0.018	0.230	7.64	ok
24	0.005	0.230	2.36	OK
25	0.017	0.230	7.34	OK
26	0.009	0.230	3.91	ok
27	0.017	0.230	7.44	OK
28	0.009	0.230	4.06	OK
29	0.023	0.230	10.10	OK
30	0.006	0.230	2.70	ok
31	0.018	0.230	7.75	oĸ
32	0.006	0.230	2.43	OK
33	0.020	0.230	8.48	OK
34	0.004	0.230	1.77	OK
35	0.013	0.230	5.48	OK
36	0.003	0.230	1.12	OK
37	0.013	0.230	5.67	OK
38	0.004	0.230	1.54	OK
39	0.006	0.230	2.77	OK
40	0.007	0.230	3.00	OK

3.5 VOLTAGE FLUCTUATIONS (FLICKER) TEST

3.5.1 LIMITS

Tests	Limits	Descriptions
	EN 61000-3-3	'
Pst	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator
Plt	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator
dc	≤ 3.3%	Relative Steady-State V-Change
dmax	≤ 4%	Maximum Relative V-change
d (t)	≤ 500 ms	Relative V-change characteristic

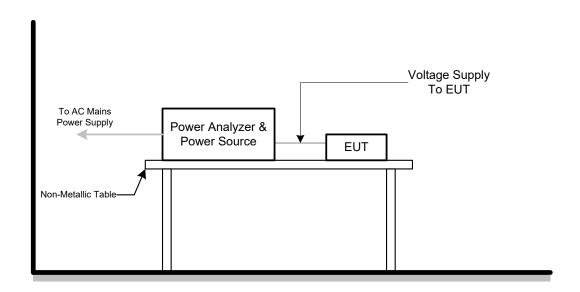
3.5.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Harmonics and Flicker Analyzer	California Instruments	PACS-1	72344	Jun. 01, 2025
2	3KVA AC Power source	California Instruments	3001ix	56309	Jun. 01, 2025
3	Measurement Software	California	CTS4.0 Version 4.29	N/A	N/A

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.

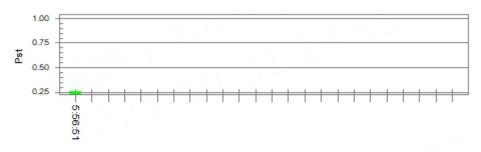
3.5.3 TEST PROCEDURE


- a. Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in EN 61000-3-3 depend on which standard adopted for compliance measurement.
- b. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

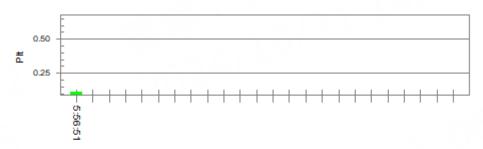
3.5.4 DEVIATION FROM TEST STANDARD

No deviation

3.5.5 TEST SETUP



3.5.6 TEST RESULTS


Test Voltage	AC 230V/50Hz
Test Mode	Mode 1

Pst, and limit line

European Limits

Plt and limit line

Parameter values recorded during the test: Vrms at the end of test (Volt): 229.90

Highest dt (%):		Test limit (%):		
T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.261	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.114	Test limit:	0.650	Pass

4. EMC IMMUNITY TEST

4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA

Tests Standard No.	Test Specification Level / Test Mode	Test Ports	Criteria
Electrostatic discharge	±8kV air discharge ±4kV contact discharge (Direct Mode)	Enclosure	В
Electrostatic discharge IEC 61000-4-2 (ESD) Continuous RF electromagnetic field disturbances, swept test IEC 61000-4-3 (RS) Continuous RF electromagnetic field disturbances, spot test IEC 61000-4-3 (RS) Electrical fast transient/burst immunity IEC 61000-4-4	±4kV HCP discharge ±4kV VCP discharge (Indirect Mode)	Enclosure	В
Continuous RF electromagnetic field disturbances,swept test IEC 61000-4-3 (RS)	80 MHz to 1000 MHz 3V/m(unmodulated, r.m.s), 1 kHz, 80%, AM modulated	Enclosure	А
Continuous RF electromagnetic field disturbances,spot test IEC 61000-4-3 (RS)	1800 MHz, 2600MHz, 3500 MHz, 5000MHz(±1 %) 3V/m(unmodulated, r.m.s), 1 kHz, 80%, AM modulated	Enclosure	А
Electrical fast transient/burst	±0.5kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency (100kHz Repetition Frequency for xDSL port)	Analogue/digital data ports (NOTE 2)	В
immunity IEC 61000-4-4 (EFT)	±0.5kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency	DC network power ports (NOTE 2)	В
	±1 kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency	AC mains power ports	В

	Port Type: unshielded symmetrical		
Apply: lines to ground Primary protection is Intended to the sum of the sum			
	±1 kV and ±4 kV		С
	10/700(5/320)Tr/Th μs	Analogue/digital data ports	
	Primary protection is not Intended	(NOTE 1) & (NOTE 2)	С
			Ū
	·	11.	
	3.		
Surge immunity		Analogue/digital data nagta	
		Analogue/digital data ports	В
(Surge)	· · · · · · · · · · · · · · · · · · ·	(NOTE 1) & (NOTE 2)	
Continuous induced RF listurbances EC 61000-4-6 CS)		DC network power ports	В
		(NOTE 2)	
	,		
	· · · ·		
	,	AC mains power ports	В
	±2 kV(peak)	7.6 mains power ports	
	1.2/50(8/20) Tr/Th µs		
	(line to earth or ground)		
	0.15 MHz to 10 MHz		
	3V(unmodulated, r.m.s),		
	10 MHz to 30 MHz		
	3V to 1V(unmodulated, r.m.s),	Analogue/digital data ports	
	30 MHz to 80 MHz	(NOTE 2)	Α
	1V(unmodulated, r.m.s).	, ,	
	, , , , , , , , , , , , , , , , , , , ,		
	·		
Continuous induced RF	·		
		DC network power ports	
	· · · · · · · · · · · · · · · · · · ·	(NOTE 2)	Α
		(NOTE 2)	
(33)	· · · · · · · · · · · · · · · · · · ·		
	· ·		
	·		
	,		
	· · · · · · · · · · · · · · · · · · ·	AC mains power ports	Α
		To make portor porto	, .
	·		
	150 Ω source impedance		

Power frequency magnetic field immunity IEC 61000-4-8 (PFMF)	50 Hz or 60Hz, 1A/m(r.m.s)	Enclosure	Α
Voltage dips, short interruptions and voltage variations immunity IEC 61000-4-11 (Dips)	Voltage dips: Residual voltage<5% 0.5 cycle Residual voltage<70% 25 cycle(50Hz), 30 cycle (60Hz) Voltage interruptions: Residual voltage<5% 250 cycle (50Hz), 300 cycle (60Hz)	AC Power Ports	B C C
Broadband impulse noise disturbances,repetitive (BIN-R)	0.15 MHz to 0.5 MHz 107 dBuV 0.5 MHz to 10 MHz 107 dBuV to 36 dBuV 10 MHz to 30 MHz 36 dBuV to 30 dBuV	Analogue/digital data ports (Applicable only to CPE xDSL ports)	A
	0.70 ms 8.3 ms(for 60Hz) 10 ms(for 50Hz)	Analogue/digital data ports (Apply period based on the AC mains frequency)	А
Broadband impulse noise disturbances,isolated (BIN-I)	0.15 MHz to 30 MHz 110 dBuV	Analogue/digital data ports (Applicable only to CPE xDSL ports)	В
	0.24 ms 10 ms 300 ms	Analogue/digital data ports (Apply all burst durations)	В

Note

- 1) Applicable only to ports which, according to the manufacturer's specification, may connect directly to outdoor cables.
- 2) Applicable only to ports which, according to the manufacturer's specification, support cable lengths greater than 3 m.

4.2 GENERAL PERFORMANCE CRITERIA

According to **EN 55035** standards, the general performance criteria as following:

Criterion A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criterion B	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

4.3 ANNEX D (NORMATIVE) - DISPLAY AND DISPLAY OUTPUT FUNCTION

4.3.1 PERFORMANCE CRITERIA

Performance criterion A

for continuous radiated and conducted disturbances tests:

Apply criterion A as defined in GENERAL PERFORMANCE CRITERIA. Additionally, an increase in any degradation greater than

just perceptible by observation of the image shall not occur as a consequence of the application of the test. Examples of such degradations are:

- superimposed patterning;
- positional disturbances due to synchronisation errors;
- · geometric distortion;
- · change of contrast or brightness;
- picture artefacts;
- freezing or disturbance of motion;
- · image loss;
- · video data or decoding errors.

Performance criterion A

for the power frequency magnetic field tests:

Alternative 1: A continuous magnetic field of 1 A/m:

The jitter (in mm) shall not exceed the value

 $\frac{\left(\text{character height in mm} + 0,3\right) \times 2,5}{33,3}$

Performance criterion B:

Apply criterion B as defined in GENERAL PERFORMANCE CRITERIA.

Performance criterion C:

Apply criterion C as defined in GENERAL PERFORMANCE CRITERIA.

4.4 ANNEX G (NORMATIVE) - AUDIO OUTPUT FUNCTION

4.4.1 PERFORMANCE CRITERIA

Performance criterion A:

For devices that support telephony functions the limits of Table G.3 shall apply. With respect to Table G.3:

- the interference ratio (electrical or acoustic) shall meet the limits in column 3; or,
- the acoustic level of the demodulated audio shall be less than the limits in column 4; or,
- the digitally coded level of demodulated audio shall be less than limits in column 5; or,
- the analogue level of the demodulated audio shall be less than the limits in column 6.

Table G.3 - Performance criterion A - Limits for devices supporting telephony

Type of immunity test	Frequency range	Acoustic or electrical	Equivalent direct measurement				
	MHz	interference ratio	dB (SPL)	Digital dBm0	Analogue dBm		
Conducted	0,15 to 30	-20 dB	55	-50	-50		
	30 to 80	-10 dB	65	-40	-40		
Radiated	80 to 1000	0 dB	75	-30	-30		

For terminals connected to digital wired network ports (such as Ethernet, ISDN), measurements of the demodulated 1 kHz may be performed on a remote AE, ideally of the same design.

For all other devices:

The measured acoustic interference ratio and/or the measured electrical interference ratio during the test shall be –20 dB or better.

Performance criterion B:

Use the general performance criterion B. See GENERAL PERFORMANCE CRITERIA.

Performance criterion C:

Use the general performance criterion C. See GENERAL PERFORMANCE CRITERIA.

4.5 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

4.5.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-2
Discharge Impedance	330 ohm / 150 pF
Required Performance	В
Discharge Voltage	Air Discharge: ±2kV, ±4kV, ±8kV
	Contact Discharge: ±2kV, ±4kV
Polarity	Positive & Negative
Number of Discharge	20 times at each test point
Discharge Mode	Single Discharge
Discharge Period	1 second

4.5.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	ESD Generator	TESEQ AG	NSG 437	450	Nov. 12, 2024

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.

4.5.3 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. The test shall be performed with single discharges. On each pre-selected point at least 10single discharges (in the most sensitive polarity) shall be applied.

NOTE 1 The minimum number of discharges applied is depending on the EUT; for products with synchronized circuits the number of discharges should be larger.

For the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.

NOTE 2 The points to which the discharges should be applied may be selected by means of an explor ation carried out at a repetition rate of 20 discharges per second, or more.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

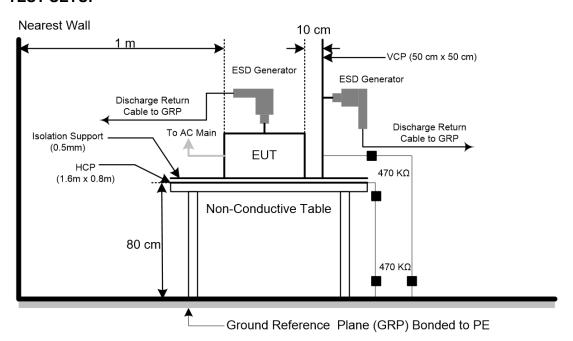
The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge.

b. For TABLE-TOP equipment:


The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test was installed in a representative system as described in IEC 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

4.5.4 DEVIATION FROM TEST STANDARD

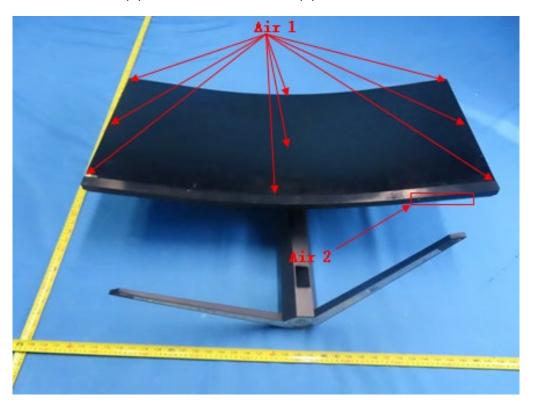
No deviation

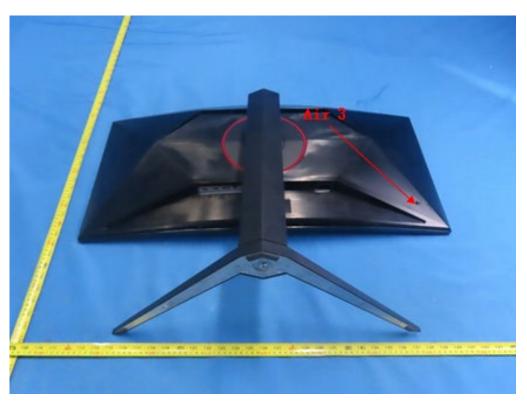
4.5.5 TEST SETUP

4.5.6 TEST RESULTS

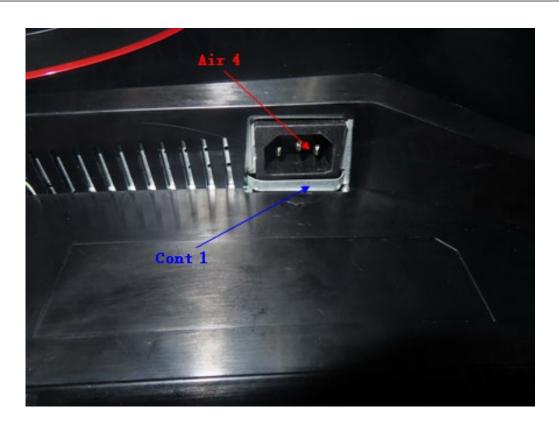
Test Voltage	AC 230V/50Hz
Test Mode	Mode 1-10

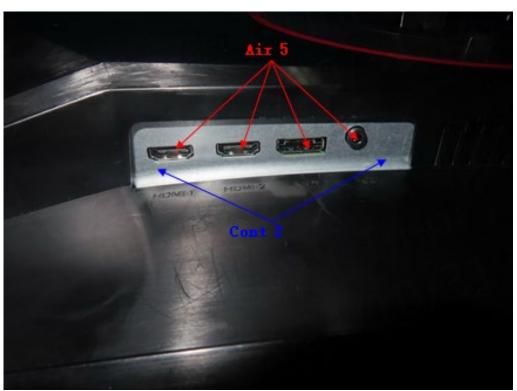
Mode	Air Discharge								Contact Discharge					
Test Level	2k	۲V	41	۲V	8	kV	- 1	kV	2k	:V	4k	۲V	- k	۲V
Location	Р	Z	Р	Ν	Р	Ν	Р	Ν	Ρ	Ν	Р	N	Р	Ν
1	Α	Α	Α	Α	Α	Α	-	-	Α	Α	Α	Α	-	-
2	Α	Α	Α	Α	Α	Α	-	-	Α	Α	Α	Α	-	-
3	Α	Α	Α	Α	Α	Α	-	-	-	-	-	-	-	-
4	Α	Α	Α	Α	Α	Α	-	-	-	-	-	-	-	-
5	Α	Α	Α	Α	В	В	-	-	-	-	ı	-	-	-
Criteria	В						- B			-				
Result	В					-	A		-					


Mode	HCP Contact Discharge						VCP Contact Discharge					
Test Level	21	۲V	4	kV	- kV		2kV		4kV		- kV	
Location	Р	N	Р	N	Р	N	Р	N	Р	N	Р	N
Left side	Α	Α	Α	Α	-	-	Α	Α	Α	Α	-	-
Right side	Α	Α	Α	Α	-	-	Α	Α	Α	Α	-	-
Front side	Α	Α	Α	Α	-	-	Α	Α	Α	Α	-	-
Rear side	Α	Α	Α	Α	-	-	Α	Α	Α	Α	-	-
Criteria	В			-		В				,	-	
Result	A				- A			-				


Note:

- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) N/A denotes test is not applicable in this test report




PHOTO(S) SHOWN THE LOCATION(S) OF ESD EVALUATED

4.6 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

4.6.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-3
Required Performance	A
Frequency Range	80 MHz - 1000 MHz,
	1800 MHz, 2600 MHz, 3500 MHz, 5000MHz (±1 %)
Field Strength	3 V/m(unmodulated, r.m.s)
Modulation	1 kHz Sine Wave, 80%, AM Modulation
Frequency Step	1% of the preceding frequency.
Polarity of Antenna	Horizontal and Vertical
Test Distance	3 m
Antenna Height	1.55 m
Dwell Time	3 seconds

4.6.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	ETS	3142B	26419	N/A
2	Amplifier	AR	50S1G4A	326720	Dec. 22, 2024
3	MXG Analog Signal Generator	Agilent	N5181A	MY49060710	May 31, 2025
4	Power amplifier	MILMEGA	AS1860-50	1064834	Dec. 22, 2024
5	Microwave LogPer. Antenna	Schwarzbeck	STLP 9149	9149-277	N/A
6	Power amplifier	MILMEGA	80RF1000-250	1064833	Dec. 22, 2024
7	Measurement Software	Farad	(EZ-RS)V2.0.1.3	N/A	N/A
8	UPV Audio Analyzer	R&S	UPV	104259	Dec. 22, 2024

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.

4.6.3 TEST PROCEDURE

The EUT and support equipment are in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.

For TABLE-TOP equipment:

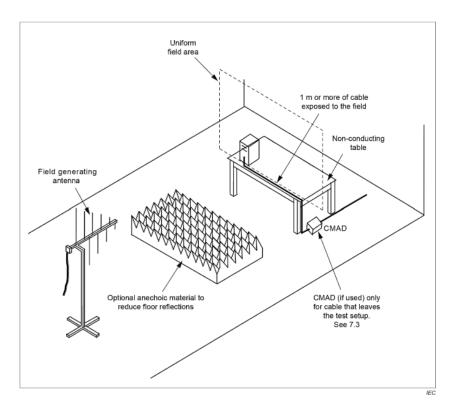
The EUT installed in a representative system as described in IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

- a. The field strength level was 3 V/m(unmodulated, r.m.s).
- b. The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. Where the frequency range is swept incrementally, the step size was 1% of the preceding frequency.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

For Display and display output functions:

- a. The display quality evaluated by direct observation.
- b. For display output function evaluation, a suitable display device shall be connected. This device shall meet the immunity requirements for displays specified in this document. The screen size shall be typical for the display output the diagonal screen size shall be at least 0,50 m.
- c. The display shall be observed under normal viewing conditions including viewing distance using a reduced ambient light level preferably in the range 15 lx to 20 lx. The viewing distance or settings of the video camera monitoring system shall be sufficient to provide visibility of the whole display. In the case of direct observation the selected viewing distance shall be recorded in the test report.

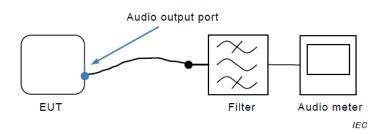
For Acoustic measurements:


- a. Apply an appropriate input signal to the EUT so that a sine wave (tone) at the frequency that will be used to modulate the applied disturbance (typically 1 kHz) is generated from the port under test at a level equal to the acoustic reference level.
- b. Record the resulting dB (SPL) level (or other appropriate dB unit) as the value of L₀. (BTL lab uses the software to take Lo as the reference value and make it return to zero.)
- c. Change the input to the EUT so that the port under test is silent, or represents silence. This change shall not alter the terminating impedance at the EUT's input.
- d. Apply the RF disturbance to the applicable port of the EUT and record the resulting demodulated audio level in dB (SPL) (or other dB unit used in step d)) as the value of L_1 .
- e. Ensure that non-linear processing does not impact the measurements.
- f. Calculate the acoustic interference ratio using the following formula: Acoustic interference ratio = $L_1 L_0$. (For step e-f, BTL lab proceeds the test with software and calculate Acoustic interference ratio = $L_1 L_0$).

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP


a) For Continuous induced RF disturbances

For Audio output function

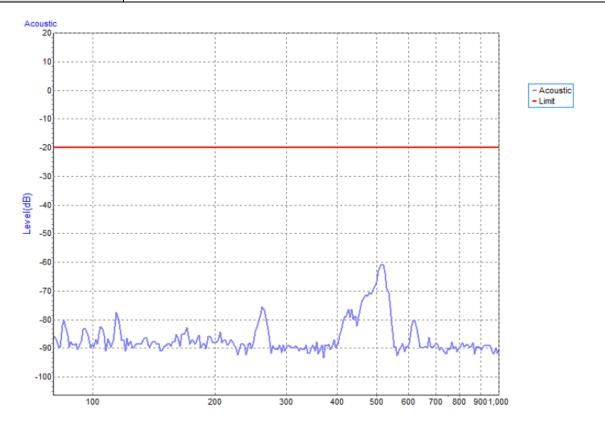
(1) Audio output port

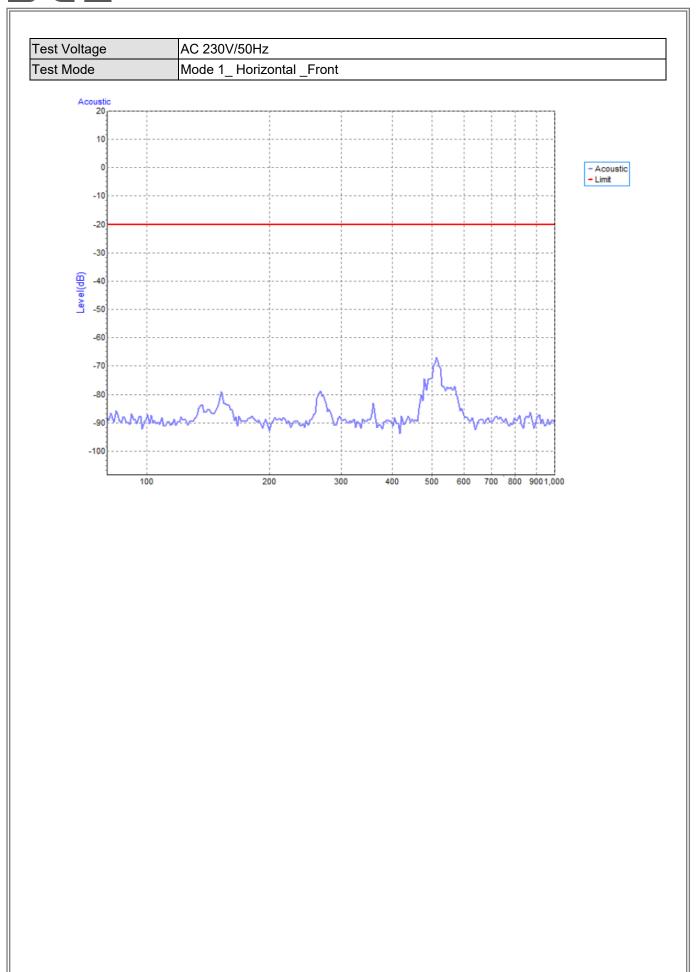
The filter is the audio filter specified in G.6.1 and is typically incorporated into the audio meter. Additional filtering might be necessary to ensure that the RF disturbance signal does not interfere with the measurement.

Page 57 of 83

4.6.6 TEST RESULTS

Test Voltage	AC 230V/50Hz
Test Mode	Mode 1-10


Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Modulation	Azimuth	Criterion	Result
80 - 1000	H/V	3V/m	AM Modulated	0 90	A	А
	п/۷	3V/m	1000Hz, 80%	180 270		
1900, 2600		3V/m		0	- A	А
1800, 2600, 3500, 5000 H (±1%)	H/V		AM Modulated	90		
	11/ V	O V/III	1000Hz, 80%	180		
(=170)				270		


For Audio output function

(1) For Audio output port:

Test Voltage	AC 230V/50Hz
Test Mode	Mode 1_Vertical_Front

4.7 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)

4.7.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-4
Required Performance	В
Test Voltage	AC mains power ports: ±1 kV
Polarity	Positive & Negative
Impulse Frequency	5 kHz
Impulse Wave shape	5/50 ns
Burst Duration	15 ms
Burst Period	300 ms
Test Duration	1 min.

4.7.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Fast Transient Burst Simulator	Prima	EFT61004TA	PR190741004	May 31, 2025
2	Measurement Software	Prima	EFT_Series V1 .0.0.0.20180710	N/A	N/A

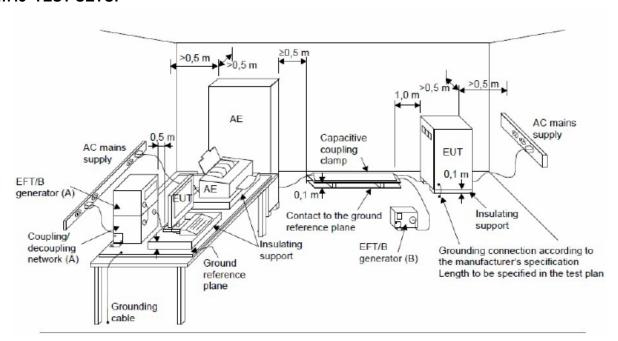
Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.

4.7.3 TEST PROCEDURE

For TABLE-TOP equipment:

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane and should be located 0.1 m+/- 0.01m above the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.


- a. Both positive and negative polarity discharges were applied.
- b. The duration time of each test sequential was 1 minute.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

4.7.6 TEST RESULTS

Test Voltage	AC 230V/50Hz
Test Mode	Mode 1-10

EUT Ports	EUT Ports Tested			Test Level 1kV	Criterion	Result
	Line (L)	+	5 kHz	В	В	В
	Line (L)	-	5 kHz	В	Ь	Б
	Noutral (N)	+	5 kHz	В	В	В
	Neutral (N)	-	5 kHz	В	Ь	Б
	Ground (PE)	+	5 kHz	В	В	В
	Ground (PE)	-	5 kHz	В	В	
AC Power Port	L+N	+	5 kHz	В	В	В
AC Power Port	LTIN	-	5 kHz	В	В	
	L+PE	+	5 kHz	В	В	В
		-	5 kHz	В	В	Б
	N+PE	+	5 kHz	В	В	В
	INTE	-	5 kHz	В	D	D
	LANADE	+	5 kHz	В	В	В
	L+N+PE	-	5 kHz	В	D	Б

4.8 SURGE IMMUNITY TEST (SURGE)

4.8.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-5
Required Performance	B(AC mains power ports)
Wave-Shape	1.2/50(8/20) Tr/Th µs combination wave
Test Voltage	AC mains power ports: ±0.5 kV, ±1 kV, ±2 kV
Generator Source	2Ω of the low-voltage power supply network.
Impedance	12 Ω (10 Ω +2 Ω) of the low-voltage power supply network and ground.
Phase Angle, Polarity and Number of Tests	Five positive pulses line-to-neutral at 90°phase Five negative pulses line-to-neutral at 270°phase Five positive pulses line-to-earth at 90°phase Five negative pulses line-to-earth at 270°phase Five negative pulses neutral-to-earth at 90°phase Five positive pulses neutral-to-earth at 270°phase
Pulse Repetition Rate	1 time / min
r dise Nepetition Nate	i unic / min

4.8.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Lightning Surge Generator	Prima	SUG61005TB	PR190854067	May 31, 2025
2	Measurement Software	Prima	SUG_Series V1.0. 0.7.20190827	N/A	N/A

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.

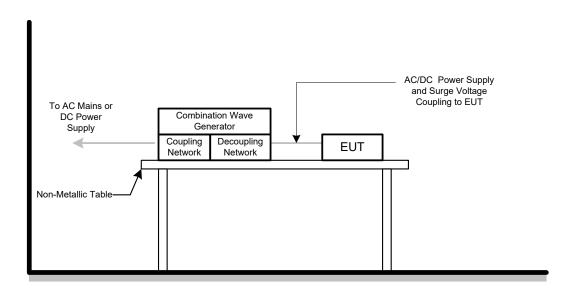
4.8.3 TEST PROCEDURE

a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

- b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT:
 - The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT:

 The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the


coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

4.8.4 DEVIATION FROM TEST STANDARD

No deviation

4.8.5 TEST SETUP

4.8.6 TEST RESULTS

Test Voltage	AC 230V/50Hz
Test Mode	Mode 1-10

١٨/،	1.2/50(8/20)Tr/Thµs								
	ave Form Ports Tested	Polarity	Phase		Voltage			Criterion	Result
EUII	Ports rested	Polarity	0.5kV 1kV		kV	kV			
۸С	L – N	+	90°	Α	В	-	-	D	D
AC L-N	-	270°	Α	В	-	-	Б	Ь	

10//	ave Form		1.2	2/50(8/20)	Tr/Thµs				
	Ports Tested	Delevity Dhee		Polarity Dhage Voltage					Result
EUII	Ports rested	Polarity	Phase	0.5kV	1kV	2kV	kV		
	L – PE	+	90°	Α	Α	В	-	В	В
AC	L-PE	-	270°	Α	Α	В	-		
AC	N – PE	-	90°	Α	Α	В	-	В	D
	IN – PE	+	270°	Α	Α	В	-	D	В

4.9 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY RADIO-FREQUENCY FIELDS TEST (CS)

4.9.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-6
Required Performance	Α
Frequency Range&Field	0.15 MHz - 10 MHz: 3V (unmodulated, r.m.s.)
Strength	10 MHz - 30 MHz: 3V to 1V (unmodulated, r.m.s.)
-	30 MHz - 80 MHz: 1V (unmodulated, r.m.s.)
Modulation	1 kHz Sine Wave, 80%, AM Modulation
Frequency Step	1 % of the preceding frequency value
Dwell Time	3 seconds

4.9.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	TEST SYSTEM FOR CONDUCTED AND RADIATED IMMUNITY	TESEQ	NSG 4070B	37513	Jun. 01, 2025
2	Attenuator	Teseq	100-SA-FFN-06	163357	May 31, 2025
3	Measurement Software	Farad	EZ-CS (V2.0.1.4)	N/A	N/A
4	Power CDN	FCC	FCC-801-M2/M3 -16A	100270	Dec. 22, 2024
5	Coupling Decoupling Network	Teseq GmbH	CDN M016	35834	May 31, 2025
6	UPV Audio Analyzer	R&S	UPV	104259	Dec. 22, 2024

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.

4.9.3 TEST PROCEDURE

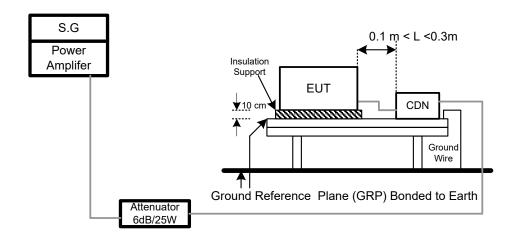
The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.

The other condition as following manner:

- a. The field strength level was 3 V (unmodulated, r.m.s.)
- b. The frequency range is swept from 150 kHz to 80 MHz, with the signal 80%amplitude modulated with a 1 kHz sinewave. Where the frequency range is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.

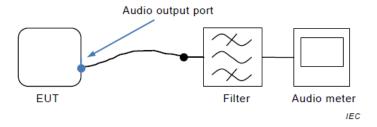
For Display and display output functions:

- a. The display quality evaluated by direct observation.
- b. For display output function evaluation, a suitable display device shall be connected. This device shall meet the immunity requirements for displays specified in this document. The screen size shall be typical for the display output.the diagonal screen size shall be at least 0,50 m.
- c. The display shall be observed under normal viewing conditions including viewing distance using a reduced ambient light level preferably in the range 15 lx to 20 lx. The viewing distance or settings of the video camera monitoring system shall be sufficient to provide visibility of the whole display. In the case of direct observation the selected viewing distance shall be recorded in the test report.


For Acoustic measurements:

- a. Apply an appropriate input signal to the EUT so that a sine wave (tone) at the frequency that will be used to modulate the applied disturbance (typically 1 kHz) is generated from the port under test at a level equal to the acoustic reference level.
- b. Record the resulting dB (SPL) level (or other appropriate dB unit) as the value of L_0 . (BTL lab uses the software to take Lo as the reference value and make it return to zero.)
- c. Change the input to the EUT so that the port under test is silent, or represents silence. This change shall not alter the terminating impedance at the EUT's input.
- d. Apply the RF disturbance to the applicable port of the EUT and record the resulting demodulated audio level in dB (SPL) (or other dB unit used in step d)) as the value of L_1 .
- e. Ensure that non-linear processing does not impact the measurements.
- f. Calculate the acoustic interference ratio using the following formula: Acoustic interference ratio = $L_1 L_0$. (For step e-f, BTL lab proceeds the test with software and calculate Acoustic interference ratio = $L_1 L_0$.)

4.9.4 DEVIATION FROM TEST STANDARD


No deviation

4.9.5 TEST SETUP

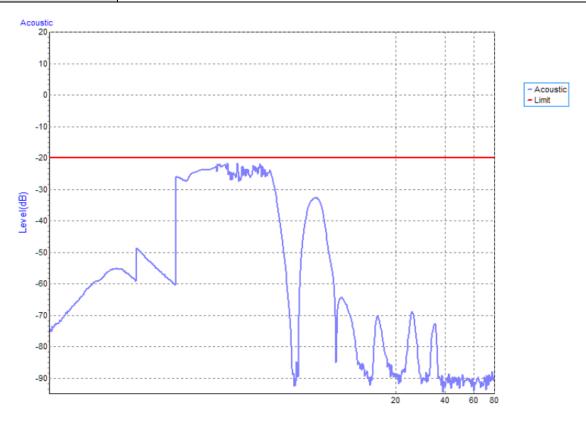
For Audio output function

(1) Audio output port

The filter is the audio filter specified in G.6.1 and is typically incorporated into the audio meter. Additional filtering might be necessary to ensure that the RF disturbance signal does not interfere with the measurement.

4.9.6 TEST RESULTS

Test Voltage	AC 230V/50Hz
Test Mode	Mode 1-10


Test Ports (Mode)	Freq.Range (MHz)	Field Strength	Modulation	Criteria	Results
	0.15 - 10	3V	A B A B A		
AC mains power ports	10 - 30	3V to 1V	AM Modulated 1000Hz, 80%	Α	Α
	30 - 80	1V	1000112, 00 70		

For Audio output function

(1) For Audio output port:

Test Voltage	AC 230V/50Hz
Test Mode	Mode 1_CDN M3

4.10 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF)

4.10.1TEST SPECIFICATION

Basic Standard	IEC 61000-4-8
Required Performance	A
Frequency Range	50/60Hz
Field Strength	1 A/m
Observation Time	1 minute
Inductance Coil	Rectangular type, 1mx1m

4.10.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Magnetic Field test Generator	FCC	F-1000-4-8- G-125A	04032	Dec. 22, 2024
2	Magnetic Field immunity loop	Thermo KeyTek	F-1000-4-8/9 /10-L-1M	04024	Dec. 22, 2024

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

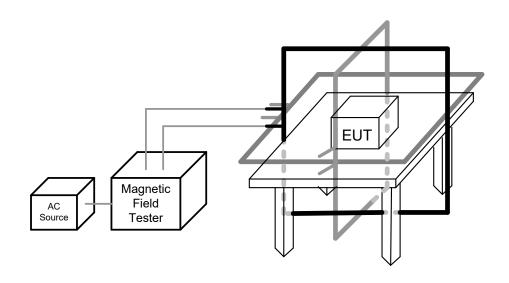
All calibration period of equipment list is one year.

4.10.3 TEST PROCEDURE

For TABLE-TOP equipment:

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m \times 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

The other condition as following manner:


- a. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- b. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

4.10.4 DEVIATION FROM TEST STANDARD

No deviation

4.10.5 TEST SETUP

4.10.6 TEST RESULTS

Test Voltage	AC 230V/50Hz
Test Mode	Mode 1-10

50Hz

Test Mode	Test Level	Antenna aspect	Duration	Criteria	Results
Enclosure	1 A/m	X	60s	Α	Α
Enclosure	1 A/m	Y	60s	Α	Α
Enclosure	1 A/m	Z	60s	А	А

60Hz

Test Mode	Test Level	Antenna aspect	Duration	Criteria	Results
Enclosure	1 A/m	X	60s	Α	А
Enclosure	1 A/m	Y	60s	Α	А
Enclosure	1 A/m	Z	60s	Α	А

4.11 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS IMMUNITY TEST (DIPS)

4.11.1 TEST SPECIFICATION

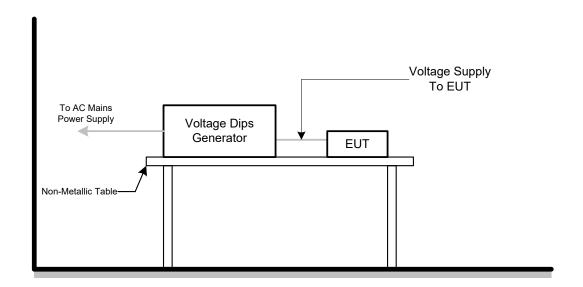
Basic Standard	IEC 61000-4-11
Required Performance	Voltage dips:
	B (For <5% residual voltage, dips)
	C (For 70% residual voltage, dips)
	C (For <5% residual voltage, Interruptions)
Interval between Event	Ten seconds
Phase Angle	0°/180°
Test Cycle	3 times

4.11.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Cycle Sag Simulator	Prima	DRP61011TA	PR19076452	May 31, 2025

Remark: "N/A" denotes no model name, no serial No. or no calibration specified.

All calibration period of equipment list is one year.


4.11.3 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

4.11.4 DEVIATION FROM TEST STANDARD

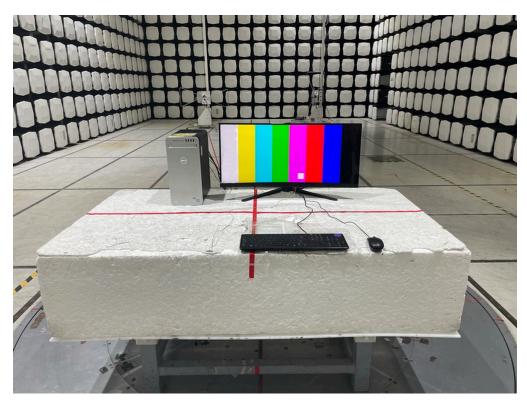
No deviation

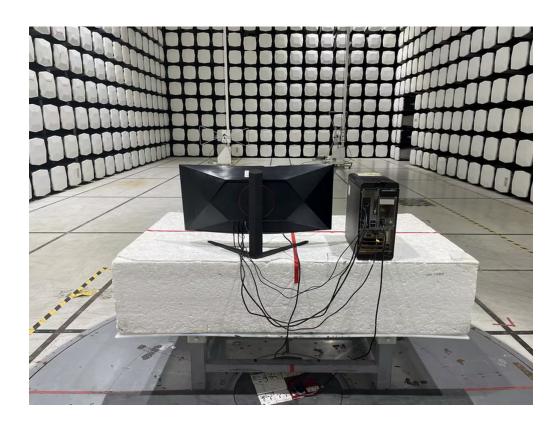
4.11.5 TEST SETUP

4.11.6 TEST RESULTS

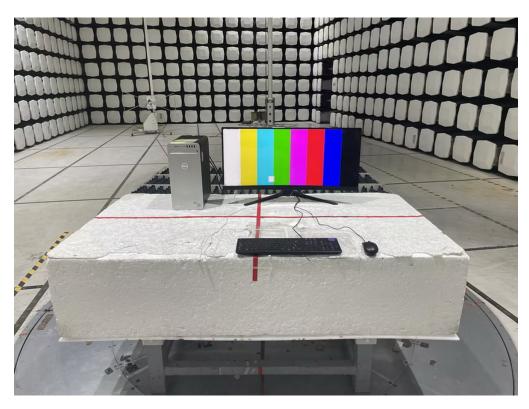
Test Voltage	AC 100V/50Hz, AC 230V/50Hz, AC 240V/50Hz	
Test Mode	Mode 1-10	

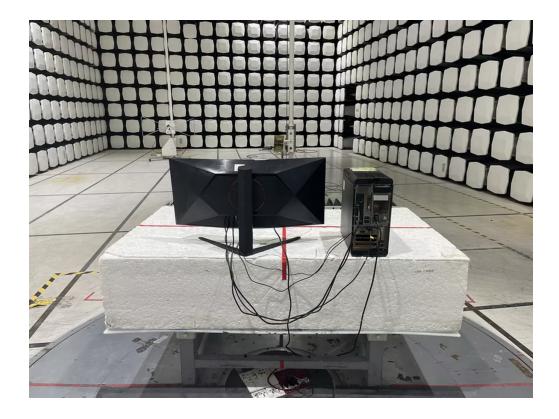
AC 100V/50Hz						
Item	Residual Voltage	Cycle	Criteria	Results		
Voltage dips	<5%	0.5	В	А		
Voltage dips	70%	25	С	А		
Voltage Interruption	<5%	250	С	С		


AC 230V/50Hz						
Item	Residual Voltage	Cycle	Criteria	Results		
Voltage dips	<5%	0.5	В	Α		
Voltage dips	70%	25	С	А		
Voltage Interruption	<5%	250	С	С		

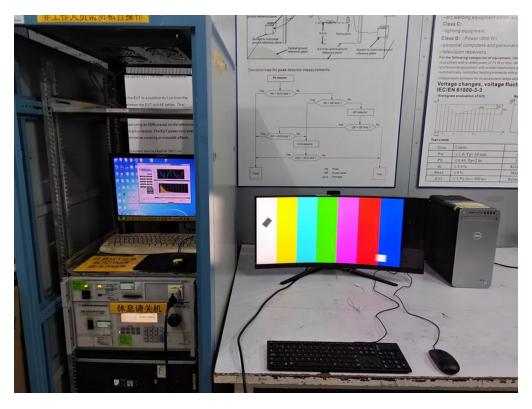

AC 240V/50Hz						
Item	Residual Voltage	Cycle	Criteria	Results		
Voltage dips	<5%	0.5	В	А		
Voltage dips	70%	25	С	А		
Voltage Interruption	<5%	250	С	С		

5. EUT TEST PHOTO







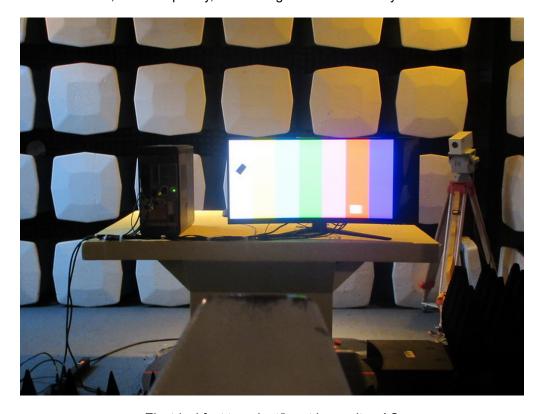


Harmonic current

Voltage fluctuations (Flicker)



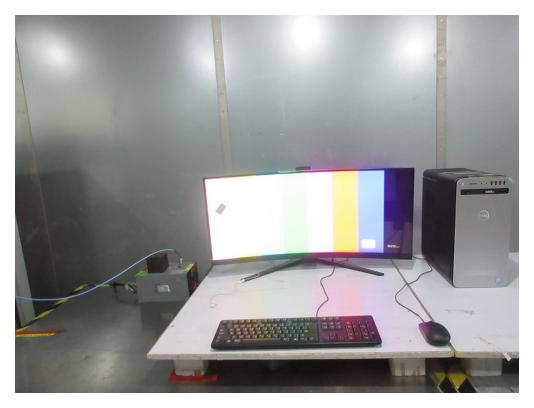
Electrostatic discharge immunity



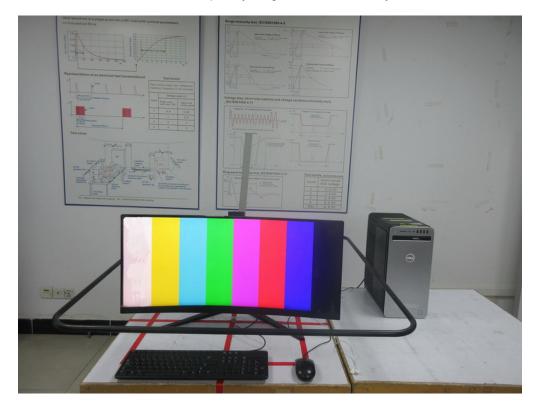
Radiated, radio-frequency, electromagnetic field immunity – Up to 1GHz

Radiated, radio-frequency, electromagnetic field immunity – Above 1GHz

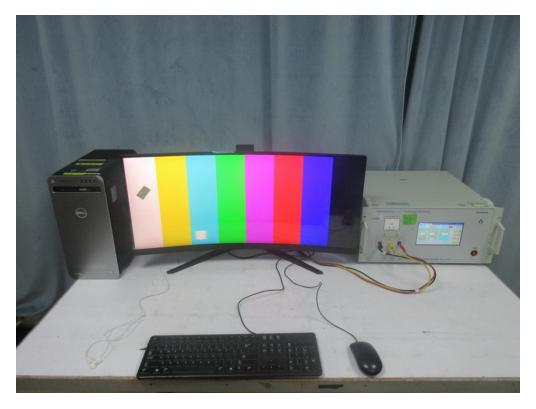
Electrical fast transient/burst immunity - AC



Surge immunity - AC



Immunity to conducted disturbances, induced by radio-frequency fields - AC



Power frequency magnetic field immunity

Voltage dips, short interruptions and voltage variations immunity

End of Test Report