TÜV Rheinland（China）Ltd．
Member of TÜV Rheinland Group

Mr．Xinliang Wu
RD－SE
Rongqiao Economic and
Technological Development Zone Fuqing City，Fujian Province
P．R．China

## Ref ：CB Certificate Japan

Type of Equipment ：LCD MONITOR
Model Designation ：See Certificate
Certificate No．$:$ JPTUV－101092
Report No．

Dear Mr．Xinliang Wu，
Thank you very much for your interest in our services．
Please find enclosed your certification documents．
We appreciate your support and would like to offer our assistance in the approval of your future products through our extensive range of technical services．

Please feel free to contact us whatever your requirements may be．
With kind regards，
Certification Body

Aegean Li

Enclosure


## CB TEST CERTIFICATE

Product
Produit

Name and address of the applicant
Nom et adresse du demandeur

Name and address of the manufacturer
Nom et adresse du fabricant

Name and address of the factory
Nom et adresse de l'usine

Ratings and principal characteristics
Valeurs nominales et charactéristiques principales

Trademark (if any)
Marque de fabrique (si elle existe)

Type of Manufacturer's Testing Laboratories used Type de programme du laboratoire d'essais constructeur

Model / Type Ref.
Ref. de type

Additional information (if necessary may also be reported on page 2)
Les informations complémentaires (si nécessaire,
peuvent être indiqués sur ta $2^{\text {ème }}$ page)

A sample of the product was tested and found to be in conformity with
Un échantillon de ce produit a été essayé et a été
considéré conforme à la

As shown in the Test Report Ref. No. which forms part of this Certificate
Comme indiqué dans le Rapport d'essais numéro de référence qui constitue partie de ce Certificat

```
LCD MONITOR
TPV Electronics (Fujian) Co., Ltd.
Rongqiao Economic and
Technological Development Zone, Fuqing City, Fujian Province, P. R. China
TPV Electronics (Fujian) Co., Ltd.
Rongqiao Economic and
Technological Development Zone, Fuqing City, Fujian Province, P. R. China
See additional page(s)
```

AC 100-240V; $50 / 60 \mathrm{~Hz} ; 1.5 \mathrm{~A}$; Class I

AOC

N/A

34G2, 34G2X, **34G2********
(* can be 0-9, A-Z, a-z, -, $1,1,+$ or blank)

For model differences, refer to the test report.

IEC 60950-1:2005 + A1 + A2
See Test Report for National Differences

50298194001

This CB Test Certificate is issued by the National Certification Body
Ce Certificat d'essai OC est établi par I'Organisme National de Certification

## TÜVRheinland ${ }^{\circledR}$

TÜV Rheinland Japan Ltd.
Global Technology Assessment Center
4-25-2 Kita-Yamata, Tsuzuki-ku
Yokohama 224-0021 Japan
Phone + 8145 914-3888
Fax + 8145 914-3354
Mail: info@jpn.tuv.com Web: www.tuv.com

Signature:


1. TPV Display Technology (Wuhan)

Co., Ltd.
Unique No. 11, Zhuankou Development
District of Economic Technological
Development Zone, Wuhan City 430056, P. R. China
2. TPV Electronics (Fujian) Co., Ltd.

Shangzheng, Yuan Hong Road
Fuqing City, Fujian Province
P. R. China
3. L\&T Display Technology (Fujian) Ltd.

Optoelectronic Park, Rongqiao
Economic and Technological
Development Zone
Fuqing, Fujian 350301, P. R. China
4. TPV Electronics (Fujian) Co., Ltd.

Rongqiao Economic and
Technological Development Zone
Fuqing City, Fujian Province
P. R. China
5. Trend Smart CE Mexico S de RL de CV

Avenida Sor Juana Ines de la Cruz
de 19602 Nueva Tijuana,
22435 Tijuana Baja California MEXICO
6. TPV Display Technology (Beihai)

Co., Ltd.
China Electronic Beihai Industry
Park, Northeast of the Crossing
Between Taiwan Road and Jilin Road, Beihai City, Guangxi, P. R. China
7. TPV Technology (Qingdao)

Co., Ltd.
No. 99 Huoju Road, High-tech
Industrial Development Zone
Qingdao City, Shandong Province, P. R. China
8. TPV Display Technology (China)

Co., Ltd.
No. 106 Jinghai 3 Rd., BDA
Beijing City 100176
P. R. China
9. TPV Electronics (Fujian) Co., Ltd.

Optoelectronic Park,
Rongqiao Economic and
Technological Development Zone,
Fuqing City, Fujian Province 350301, P. R. China

## Additional information (if necessary)


10. Envision Indústria de Produtos

Eletrônicos Ltda.
Av. Torquato Tapajós, 2236,
Flores - CEP 69058-830 - Manaus/AM
Brazil
11. Pro Concept Manufacturer Co., Ltd

88/1 Moo 12, Soi
Phetkasem 120, Phetkasem
Road, Omnoi, Krathumbaen,
Samutsakhon 74130, Thailand
12. Treeview Co., Ltd.

106/29 Moo 8, Sukhumvit Road, T.Banglamung,
A.Banglamung, Chonburi 20150

Thailand
13. TPV Technology (Thailand) Co., Ltd.

Tambon Tha Turn,
Amphoe Si Maha Phot,
Chang Wat Prachin Buri 25140
Thailand

Additional information (if necessary)



| Test item description ...................: LCD MONITOR |  |  |  |
| :---: | :---: | :---: | :---: |
| Trade Mark ..................................: AOC |  |  |  |
| Manufacturer..............................: Same as applicant. |  |  |  |
| 34G2, 34G2X, **34G2******** ( ${ }^{*}$ can be 0-9, A-Z, a-z, -, I, /, + or blank, represent different enclosure colour for marketing purpose) |  |  |  |
| Ratings ......................................: I/P: 100-240V~, 50/60Hz, 1.5A. |  |  |  |
| Responsible Testing Laboratory (as applicable), testing procedure and testing location(s): |  |  |  |
| 区 | CB Testing Laboratory: | TÜV Rheinland (Shenz | ., Ltd. |
| Testing location/ address ......................... : |  | East of F/1, F/2~F/4, Bu No. 6 Langshan No. 2 R 518057 Shenzhen Nans | Cybio Technology Building th Hi-tech Industry Park trict CHINA |
| Tested by (name, function, signature) ....... : |  | Anderson Wang Senior Project Manager |  |
| Approved by (name, function, signature) .. : |  | Steven Lin <br> Technical Reviewer | $y \ln ,<$ |
| $\square \quad$ Testing procedure: CTF Stage 1: |  |  |  |
| Testing location/ address ......................... : |  |  |  |
| Tested by (name, function, signature) ....... : |  |  |  |
| Approved by (name, function, signature) .. : |  |  |  |
| $\square \quad$ Testing procedure: CTF Stage 2: |  |  |  |
| Testing location/ address ......................... : |  |  |  |
| Tested by (name + signature).................... : |  |  |  |
| Witnessed by (name, function, signature) . : |  |  |  |
| Approved by (name, function, signature) .. : |  |  |  |
| $\square$ | Testing procedure: CTF Stage 3: |  |  |
|  | Testing procedure: CTF Stage 4: |  |  |
| Testing location/ address .......................... : |  |  |  |
| Tested by (name, function, signature) ....... : |  |  |  |
| Witnessed by (name, function, signature) . : |  |  |  |
| Approved by (name, function, signature) .. : |  |  |  |
| Supervised by (name, function, signature) : |  |  |  |

## List of Attachments (including a total number of pages in each attachment):

- Photo documentation (8 Pages)
- National Differences (68 Pages)
- Measurement Section (2 Pages)


## Summary of testing:

## Tests performed (name of test and test clause):

| name of test | test clause number |
| :---: | :---: |
| Input Current Test | 1.6.2 |
| Durability of Marking Test | 1.7.11 |
| Access to energized parts | 2.1.1.1 |
| Energy hazard in Operator Access Area | 2.1.1.5 |
| Discharge of Capacitors | 2.1.1.7 |
| SELV limits for Normal Conditions | 2.2.2 |
| SELV limits for Abnormal Conditions | 2.2.3 |
| Limited current circuit | 2.4 |
| Limited power source | 2.5 |
| Resistance of Earthing Circuit | 2.6.3.4 |
| Humidity Conditioning | 2.9.2 |
| Working Voltage over Insulation | 2.10.2 |
| Clearance and creepage distance measurements | 2.10 .3 \& 2.10 .4 |
| Steady force test, 10 N | 4.2.2 |
| Steady Force Test, 30N | 4.2.3 |
| Steady Force Test, 250N | 4.2.4 |
| Impact Test | 4.2.5 |
| Stress Relief Test | 4.2.7 |
| Wall mounting test | 4.2.10 |
| Maximum Temperature Test | 4.5.2 |
| Ball pressure test | 4.5.5 |
| Openings in enclosures | 4.6 |
| Touch current and protective conductor current | 5.1 .6 |
| Electric Strength Test | 5.2 |
| Fault Condition Test | 5.3 |

The EUT passed the test.

## Testing location:

All tests as described in Test Case and Measurement Sections were performed at the laboratory described on page 2.

## Summary of compliance with National Differences (List of countries addressed):

EU Group Differences, EU Special National Conditions, EU A-Deviations, AT, AU, BE, CA, CH, CN, CZ, DE, DK, FI, FR, GB, GR, HU, IT, IL*, JP, KR*, NL, NO, PL, SE, SI, SK, US

Explanation of used codes: AT=Austria, $\mathrm{AU}=$ Australia, $\mathrm{BE}=$ Belgium, $\mathrm{CA}=$ Canada, $\mathrm{CH}=$ Switzerland, CN=China, CZ=Czech Republic, DE=Germany, DK=Denmark, FI=Finland, FR=France, GB=United Kingdom, GR=Greece, HU=Hungary, IT=Italy, IL=Israel, JP=Japan, KR=Korea, NL=The Netherlands, $\mathrm{NO}=$ Norway, $\mathrm{PL}=$ Poland, $\mathrm{SE}=$ Sweden, $\mathrm{SI}=$ Slovenia, $\mathrm{SK}=$ Slovakia, US=United States of America

For National Differences see end of this test report.

* National differences to IEC 60950-1:2005 (Second Edition) + Am 1:2009 evaluated.

The product fulfils the requirements of EN 60950-1:2006 + A11:2009 + A1:2010 + A12:2011 + A2:2013.

## Copy of marking plate

The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.


Notes: The above label represents labels for model names other than above covered by the model name.


```
Manufacturer's Declaration per sub-clause 4.2.5 of IECEE 02:
```

The application for obtaining a CB Test
Certificate includes more than one factory location and a declaration from the Manufacturer stating that the sample(s) submitted for evaluation is (are) representative of the products from each factory has been provided $\qquad$

When differences exist; they shall be identified in the General product information section.
Name and address of factory (ies) $\qquad$ .. :

1 TPV Display Technology (Wuhan) Co., Ltd.
Unique No. 11, Zhuankou Development District of Economic Technological Development Zone, Wuhan City 430056, P.R. China
2 TPV Electronics (Fujian) Co., Ltd.
Shangzheng, Yuan Hong Road, Fuqing City, Fujian Province, P.R. China
3 L\&T Display Technology (Fujian) Ltd.
Optoelectronic Park, Rongqiao Economic and Technological, Development Zone, Fuqing, Fujian 350301, P.R. China
4 TPV Electronics (Fujian) Co., Ltd.
Rongqiao Economic and Technological Development Zone, Fuqing City, Fujian Province, P.R. China
5 Trend Smart CE Mexico S de RL de CV
Avenida Sor Juana Ines de la Cruz de 19602 Nueva Tijuana, 22435 Tijuans Baja California, MEXICO
6 TPV Display Technology (Beihai) Co., Ltd.
China Electronic Beihai Industry Park, Northeast of the Crossing Between Taiwan Road and Jilin Road, Beihai City, Guangxi, P.R. China
7 TPV Technology (Qingdao) Co., Ltd.
No. 99 Huoju Road, High-tech Industrial Development Zone, Qingdao City, Shandong Province, P.R. China

8 TPV Display Technology (China) Co., Ltd.
No. 106 Jinghai 3 Rd., BDA, Beijing City 100176, P.R. China.
9 TPV Electronics (Fujian) Co., Ltd.
Optoelectronic Park, Rongqiao Economic and Technological Development Zone, Fuqing City, Fujian Province, P.R. China
10 Envision Indústria de Produtos Eletrônicos Ltda.
Av. Torquato Tapajós, 2236, Flores - CEP 69058-830 - Manaus/AM Brasil
11 Pro Concept Manufacturer Co., Ltd.
88/1 Moo 12, Soi Phetkasem 120, Phetkasem Road, Omnoi, Krathumbaen, Samutsakhon 74130, Thailand
12 Treeview Co., Ltd.
106/29 Moo 8, Sukhumvit Road, T.Banglamung, A.Banglamung, Chonburi 20150 Thailand
13 TPV Technology (Thailand) Co., Ltd.
Tambon Tha Turn, Amphoe Si Maha Phot, Chang Wat Prachin Buri 25140 Thailand

## General product information:

The models are LCD MONITOR intended for general office use and information technology equipment with following features:

1. LCD Type: 34.0 inch curve TFT LCD with LED backlight;
2. Building-in power supply board 715GA649;
3. Main board 715GA732 with HDMI*1, DisplayPort*2, USB 3.0 type C*1, USB 3.0 type A*2 ports;
4. Extend USB board 715GA629;
5. The internal metal chassis is considered as fire enclosure and mechanical enclosure, and the external plastic enclosure is regarded as electrical enclosure and mechanical enclosure, made of min. HB material;
6. Maximum declared ambient: $40^{\circ} \mathrm{C}$.
7. All models are identical except for mode designation.

## Additional information:

1. The manufacturer declared that the product also fulfilled of the requirements of SANS 60950-1: 2014 (Edition 2.2) / IEC 60950-1: 2013 (Edition 2.2).

Other comments:
Declaration of the manufacturer: the sample(s) submitted for evaluation is (are) representative of the products from each factory.

Abbreviations used in the report:

| - normal conditions | N.C. | - single fault conditions | S.F.C |
| :--- | :--- | :--- | :--- |
| - functional insulation | OP | - basic insulation | BI |
| - double insulation |  |  |  |
| - between parts of opposite <br> polarity | DI | - supplementary insulation | SI |
| Indicate used abbreviations (if any) |  | BOP | - reinforced insulation |

Page 8 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 1 | GENERAL |  | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |


| 1.5 | Components |  | P |
| :---: | :---: | :---: | :---: |
| 1.5.1 | General |  | P |
|  | Comply with IEC 60950-1 or relevant component standard | (see appended table 1.5.1) | P |
| 1.5.2 | Evaluation and testing of components | Components which are certified to IEC and/or national standards are used correctly within their ratings. <br> Components not covered by IEC standards are tested under the conditions present in the equipment. | P |
| 1.5.3 | Thermal controls | No thermal controls. | N/A |
| 1.5.4 | Transformers | Transformers used are suitable for their intended application and comply with the relevant requirements of the standard and particularly Annex C. | P |
| 1.5.5 | Interconnecting cables | Interconnecting cable does not carry voltage higher than SELV and no higher energy level than 240VA. | P |
| 1.5.6 | Capacitors bridging insulation | Between lines: X1 or X2 capacitor according to IEC 60384-14 was used. <br> Between primary and earth: Y1 or Y2 capacitors according to IEC 60384-14 were used. <br> Between primary and secondary: <br> Y1 capacitor according to IEC 60384-14 was used. <br> (see appended table 1.5.1) | P |
| 1.5.7 | Resistors bridging insulation |  | P |
| 1.5.7.1 | Resistors bridging functional, basic or supplementary insulation | Only discharge resistors bridging between L-N (functional) | P |
| 1.5.7.2 | Resistors bridging double or reinforced insulation between a.c. mains and other circuits |  | N/A |
| 1.5.7.3 | Resistors bridging double or reinforced insulation between a.c. mains and antenna or coaxial cable |  | N/A |
| 1.5.8 | Components in equipment for IT power systems | (see appended table 1.5.1.) | P |

TRF No. IEC60950_1G

Page 9 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 1.5 .9 | Surge suppressors | No surge suppressors. | N/A |
| :--- | :--- | :--- | :---: |
| 1.5 .9 .1 | General |  | N/A |
| 1.5 .9 .2 | Protection of VDRs |  | N/A |
| 1.5 .9 .3 | Bridging of functional insulation by a VDR |  | N/A |
| 1.5 .9 .4 | Bridging of basic insulation by a VDR |  | N/A |
| 1.5 .9 .5 | Bridging of supplementary, double or reinforced <br> insulation by a VDR |  | N/A |


| 1.6 | Power interface |  | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 1.6 .1 | AC power distribution systems | Considered. | $\mathbf{P}$ |
| 1.6 .2 | Input current | (see appended table 1.6.2) | $\mathbf{P}$ |
| 1.6 .3 | Voltage limit of hand-held equipment | This appliance is not hand- <br> held equipment. | N/A |
| 1.6 .4 | Neutral conductor | The neutral conductor <br> insulated from the body <br> throughout the equipment as <br> if it were a line conductor. | $\mathbf{P}$ |


| 1.7 | Marking and instructions |  | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 1.7 .1 | Power rating and identification markings | See below. | P |
| 1.7 .1 .1 | Power rating marking | See below. | P |
|  | Multiple mains supply connections.......................: |  | N/A |
|  | Rated voltage(s) or voltage range(s) (V) .............: | See copy of marking plate for <br> details | $\mathbf{P}$ |
|  | Symbol for nature of supply, for d.c. only .............: | AC source | N/A |
|  | Rated frequency or rated frequency range (Hz) ....: | See copy of marking plate for <br> details | $\mathbf{P}$ |
|  | Rated current (mA or A) ...................................: | See copy of marking plate for <br> details | $\mathbf{P}$ |
| 1.7 .1 .2 | Identification markings | See below. |  |
|  | Manufacturer's name or trade-mark or identification <br> mark .......................................................: | See copy of marking plate for <br> details | $\mathbf{P}$ |
|  | Model identification or type reference ...................: | See copy of marking plate for <br> details | $\mathbf{P}$ |
|  | Symbol for Class II equipment only .....................: | See copy of marking plate for <br> details | $\mathbf{P}$ |
|  | Other markings and symbols .............................: | Additional symbol or marking <br> does not give rise to <br> misunderstanding. | $\mathbf{P}$ |

TRF No. IEC60950_1G

Page 10 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 1.7.1.3 | Use of graphical symbols | Graphical symbols used according to IEC 60417 or ISO 3864-2 or ISO 7000. | P |
| :---: | :---: | :---: | :---: |
| 1.7.2 | Safety instructions and marking | English safety instruction provided. | P |
| 1.7.2.1 | General |  | P |
| 1.7.2.2 | Disconnect devices | AC inlet serves as disconnect device. | P |
| 1.7.2.3 | Overcurrent protective device | Not type B pluggable equipment or permanently connected equipment. | N/A |
| 1.7.2.4 | IT power distribution systems | For Norway compliance has to be evaluated during the national approval. | N/A |
| 1.7.2.5 | Operator access with a tool | No such access required. | N/A |
| 1.7.2.6 | Ozone | Ozone not used or generated. | N/A |
| 1.7.3 | Short duty cycles | Equipment is designed for continuous operation. | N/A |
| 1.7.4 | Supply voltage adjustment ...............................: | Single input voltage range without adjustment. | N/A |
|  | Methods and means of adjustment; reference to installation instructions |  | N/A |
| 1.7.5 | Power outlets on the equipment ..........................: | No power outlets provided. | N/A |
| 1.7.6 | Fuse identification (marking, special fusing characteristics, cross-reference) | The fuse marking is marked near fuse on PCB as follow: F9901(on primary): T4AL/250Vac <br> CAUTION: <br> RISK OF FIRE REPLACE ONLY WITH SAME TYPE AND RATING OF FUSE. <br> F9902 (on secondary for L.P.S.): T5AL/250Vac <br> Not located in operator access areas. | P |
| 1.7.7 | Wiring terminals | See below. | P |
| 1.7.7.1 | Protective earthing and bonding terminals ...........: | Appliance inlets approved according to IEC 60320-1 are used. | P |
| 1.7.7.2 | Terminals for a.c. mains supply conductors | The equipment is not permanently connected or provided with a nondetachable power supply cord. | N/A |
| 1.7.7.3 | Terminals for d.c. mains supply conductors | Not connected to d.c. mains | N/A |

TRF No. IEC60950_1G

Page 11 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 1.7.8 | Controls and indicators | See below | P |
| :---: | :---: | :---: | :---: |
| 1.7.8.1 | Identification, location and marking ....................: | "STAND-BY" condition is indicated by the symbol according to IEC 60417-5009. | P |
| 1.7.8.2 | Colours .........................................................: | Colours used for LED indicate the operation status and not involved safety. | N/A |
| 1.7.8.3 | Symbols according to IEC 60417 .......................: | See 1.7.8.1 | P |
| 1.7.8.4 | Markings using figures ....................................: | No figures used. | N/A |
| 1.7.9 | Isolation of multiple power sources ...................: | Only one supply voltage range provided. | N/A |
| 1.7.10 | Thermostats and other regulating devices .........: | No such components. | N/A |
| 1.7.11 | Durability | The label was subjected to the permanence of marking test. The label was rubbed with cloth soaked with water for 15 sec . and then again for 15 sec . with the cloth soaked with petroleum spirit. <br> After this test there was no damage to the label. The marking on the label did not fade. There was no curling or lifting of the label edge. | P |
| 1.7.12 | Removable parts | None. | N/A |
| 1.7.13 | Replaceable batteries ......................................: | No replaceable batteries. | N/A |
|  | Language(s) ...................................................: |  | $\square$ |
| 1.7.14 | Equipment for restricted access locations ...........: | Equipment not intended for installation in restricted access locations. | N/A |


| 2 | PROTECTION FROM HAZARDS |  | P |
| :---: | :---: | :---: | :---: |
| 2.1 | Protection from electric shock and energy hazards |  | P |
| 2.1.1 | Protection in operator access areas | Only SELV signal interface accessible by operator. | P |
| 2.1.1.1 | Access to energized parts | See below | P |
|  | Test by inspection ...........................................: | Protection established by plastic enclosure. | P |
|  | Test with test finger (Figure 2A) .........................: | Protection established by plastic enclosure. | P |
|  | Test with test pin (Figure 2B) .............................: | No access to any energized parts with the removable stand detached. | P |

TRF No. IEC60950_1G

Page 12 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | Test with test probe (Figure 2C) .........................: |  | N/A |
| :---: | :---: | :---: | :---: |
| 2.1.1.2 | Battery compartments | No battery compartment. | N/A |
| 2.1.1.3 | Access to ELV wiring | No ELV wiring in operator accessible area. | N/A |
|  | Working voltage (Vpeak or Vrms); minimum distance through insulation (mm) |  | - |
| 2.1.1.4 | Access to hazardous voltage circuit wiring | No hazardous voltage wiring in operator accessible area. | N/A |
| 2.1.1.5 | Energy hazards ...............................................: | The energy does not exceed 240VA between any two points in accessible connector of secondary circuit. <br> (see appended table 2.1.1.5.) | P |
| 2.1.1.6 | Manual controls | No manual controls. | N/A |
| 2.1.1.7 | Discharge of capacitors in equipment | (See appended table 2.1.1.7) | P |
|  | Measured voltage (V); time-constant (s) ...............: | (See appended table 2.1.1.7) | - |
| 2.1.1.8 | Energy hazards - d.c. mains supply | a.c. mains supply | N/A |
|  | a) Capacitor connected to the d.c. mains supply ...: |  | N/A |
|  | b) Internal battery connected to the d.c. mains supply $\qquad$ |  | N/A |
| 2.1.1.9 | Audio amplifiers ..............................................: |  | N/A |
| 2.1 .2 | Protection in service access areas | No service access area. | N/A |
| 2.1.3 | Protection in restricted access locations | Equipment not intended for installation in restricted access locations | N/A |


| 2.2 | SELV circuits | $\mathbf{P}$ |  |
| :--- | :--- | :--- | :---: |
| 2.2 .1 | General requirements | The secondary circuits were <br> tested as SELV. See sub- <br> clauses 2.2.1 to 2.2.4. | $\mathbf{P}$ |
| 2.2 .2 | Voltages under normal conditions $(\mathrm{V}) \ldots . . . . . . . . . . . .: ~$ | 42.4V peak or 60V d.c. are <br> not exceeded in SELV circuit <br> under normal operation. | $\mathbf{P}$ |

Page 13 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 2.2 .3 | Voltages under fault conditions (V) ......................: | Single fault did not cause <br> excessive voltage in <br> accessible SELV circuits. <br> Limits of 71V peak and 120V <br> d.c. were not exceeded within <br> 0.2 sec. and limits 42.4V peak <br> and 60V d.c. were not <br> exceeded for longer than 0.2 <br> sec., see appended tables 2.2 <br> and 5.3. | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 2.2 .4 | Connection of SELV circuits to other circuits ......: | See sub-clauses 2.2.2 and <br> 2.2 .3. | $\mathbf{P}$ |


| 2.3 | TNV circuits |  |  |
| :--- | :--- | :--- | :---: |
| 2.3 .1 | Limits | N/A |  |
|  | Type of TNV circuits .........................................: |  | N/A |
| 2.3 .2 | Separation from other circuits and from accessible <br> parts |  | N/A |
| 2.3 .2 .1 | General requirements |  | N/A |
| 2.3 .2 .2 | Protection by basic insulation |  | N/A |
| 2.3 .2 .3 | Protection by earthing | N/A |  |
| 2.3 .2 .4 | Protection by other constructions ......................: |  | N/A |
| 2.3 .3 | Separation from hazardous voltages | N/A |  |
|  | Insulation employed ..........................................: |  | - |
| 2.3 .4 | Connection of TNV circuits to other circuits |  | N/A |
|  | Insulation employed ...........................................: |  | - |
| 2.3 .5 | Test for operating voltages generated externally |  | N/A |


| 2.4 | Limited current circuits | (see appended table 2.4.2) | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 2.4 .1 | General requirements | (see appended table 2.4.2) | $\mathbf{P}$ |
| 2.4 .2 | Limit values | Frequency $(\mathrm{Hz}) \ldots .$. |  |
|  | Measured current $(\mathrm{mA}) \ldots .$. | (see appended table 2.4.2) | - |
|  | Measured voltage $(\mathrm{V}) \ldots \ldots$ |  | - |
|  | Measured circuit capacitance $(\mathrm{nF}$ or $\mu \mathrm{F}) \ldots \ldots \ldots \ldots \ldots:$ | (see appended table 2.4.2) | - |

Page 14 of 63
Report No. 50298194001

| IEC 60950-1 |  |  | Result - Remark |
| :--- | :--- | :--- | :---: | Verdict | Clause | Requirement + Test | Only intended to be <br> connected with SELV circuits. |
| :--- | :--- | :--- |


| 2.5 | Limited power sources |  |  |
| :--- | :--- | :--- | :---: |
|  | a) Inherently limited output |  | P |
|  | b) Impedance limited output | N/A |  |
|  | c) Regulating network or IC current limiter, limits <br> output under normal operating and single fault <br> condition |  | N/A |
|  | Use of integrated circuit (IC) current limiters |  | N/A |
|  | d) Overcurrent protective device limited output | (see appended table 2.5) | P |
|  | Max. output voltage (V), max. output current (A), <br> max. apparent power (VA)...........................: | (see appended table 2.5) | - |
|  | Current rating of overcurrent protective device (A) .: | (see appended table 1.5.1) | - |


| 2.6 | Provisions for earthing and bonding |  | P |
| :---: | :---: | :---: | :---: |
| 2.6.1 | Protective earthing | Class I appliance inlet terminal provided as protective earthing terminal, and accessible metal plate is connected to earthed metal fire enclosure. The test of 2.6.3.4 complied. | P |
| 2.6.2 | Functional earthing | Class I appliance inlet terminal provided as protective earthing terminal, and accessible metal plate is connected to earthed metal fire enclosure. The test of 2.6.3.4 complied. | P |
|  | Use of symbol for functional earthing ..................: |  | P |
| 2.6.3 | Protective earthing and protective bonding conductors |  | P |
| 2.6.3.1 | General | Appliance inlet used. | P |
| 2.6.3.2 | Size of protective earthing conductors | Appliance inlet used. | N/A |
|  | Rated current (A), cross-sectional area ( $\mathrm{mm}^{2}$ ), AWG. |  | - |
| 2.6.3.3 | Size of protective bonding conductors | Screws fixing earthed PCB trace to metal chassis for protective bonding. | P |
|  | Rated current (A), cross-sectional area ( $\mathrm{mm}^{2}$ ), AWG | Refer to appended table $2.6 .3 .4$ | - |

Page 15 of 63

| IEC 60950-1 |  |  |  |
| :---: | :---: | :---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |
|  | Protective current rating (A), cross-sectional area ( $\mathrm{mm}^{2}$ ), AWG |  |  |
| 2.6.3.4 | Resistance of earthing conductors and their terminations; resistance ( $\Omega$ ), voltage drop ( V ), test current (A), duration (min) $\qquad$ | (see appended table 2.6.3.4) | P |
| 2.6.3.5 | Colour of insulation ..........................................: |  | N/A |
| 2.6.4 | Terminals | See below | P |
| 2.6.4.1 | General |  | P |
| 2.6.4.2 | Protective earthing and bonding terminals | Earthing terminal in appliance inlet provided as protective earthing terminal. | P |
|  | Rated current (A), type, nominal thread diameter (mm) | Evaluation by test. | - |
| 2.6.4.3 | Separation of the protective earthing conductor from protective bonding conductors | Separated PE and protective bonding conductor used. | P |
| 2.6.5 | Integrity of protective earthing | See below | P |
| 2.6.5.1 | Interconnection of equipment | Not depending on interconnection for protective earthing. | P |
| 2.6.5.2 | Components in protective earthing conductors and protective bonding conductors | No switch or overcurrent protective device in protective earthing or bonding conductor | P |
| 2.6.5.3 | Disconnection of protective earth | Appliance inlet used for disconnection of protective earth. | P |
| 2.6.5.4 | Parts that can be removed by an operator | AC inlet with PE terminal used. | P |
| 2.6.5.5 | Parts removed during servicing | It is not necessary to disconnect protective earth except for the removing of the earthed parts itself. | P |
| 2.6.5.6 | Corrosion resistance | All safety earthing connections comply with Annex J. | P |
| 2.6.5.7 | Screws for protective bonding | No self-tapping screws are used. For the earth connection to the metal chassis a spring washer and a screw are used | N/A |
| 2.6.5.8 | Reliance on telecommunication network or cable distribution system | No TNV circuit. | N/A |

Page 16 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 2.7 .1 | Basic requirements | The equipment relies on fuse <br> or circuit breaker of the wall <br> outlet protection of the building <br> installation in regard to L to N <br> short-circuits. A build-in fuse <br> provided as overcurrent <br> protection device (see 5.3) | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
|  | Instructions when protection relies on building <br> installation | Pluggable equipment type A. | N/A |
| 2.7 .2 | Faults not simulated in 5.3.7 | The protection devices are well <br> dimensioned and mounted. | $\mathbf{P}$ |
| 2.7 .3 | Short-circuit backup protection | Building installation is <br> considered as providing short- <br> circuit backup protection. | $\mathbf{P}$ |
| 2.7 .4 | Number and location of protective devices ..........: | Overcurrent protection by one <br> built-in fuse | $\mathbf{P}$ |
| 2.7 .5 | Protection by several devices | Protection by one fuse only. | N/A |
| 2.7 .6 | Warning to service personnel ............................. : | No service work necessary. | N/A |


| 2.8 | Safety interlocks |  | N/A |
| :--- | :--- | :--- | :---: |
| 2.8 .1 | General principles |  | N/A |
| 2.8 .2 | Protection requirements |  | N/A |
| 2.8 .3 | Inadvertent reactivation |  | N/A |
| 2.8 .4 | Fail-safe operation |  | N/A |
|  | Protection against extreme hazard |  | N/A |
| 2.8 .5 | Moving parts |  | N/A |
| 2.8 .6 | Overriding |  | N/A |
| 2.8 .7 | Switches, relays and their related circuits | N/A |  |
| 2.8 .7 .1 | Separation distances for contact gaps and their <br> related circuits (mm) ....................................: |  | N/A |
| 2.8 .7 .2 | Overload test |  | N/A |
| 2.8 .7 .3 | Endurance test |  | N/A |
| 2.8 .7 .4 | Electric strength test |  | N/A |
| 2.8 .8 | Mechanical actuators |  |  |


| 2.9 | Electrical insulation | $\mathbf{P}$ |
| :--- | :--- | :---: |

Page 17 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :---: | :---: | :---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |
| 2.9.1 | Properties of insulating materials | Natural rubber, asbestos or hygroscopic material not used. <br> After the humidity treatment of 2.9.2, the insulation is then subjected to the relevant electric strength test of 5.2.2. | P |
| 2.9.2 | Humidity conditioning | Performed at $40^{\circ} \mathrm{C}, 95 \%$ R.H. for 120 h by client's request. | P |
|  | Relative humidity (\%), temperature ( ${ }^{\circ} \mathrm{C}$ ) .............. : | See above. | - |
| 2.9.3 | Grade of insulation | See above. | P |
| 2.9.4 | Separation from hazardous voltages | The adequate levels of safety insulation provided and maintained to comply with the requirements of this standard. | P |
|  | Method(s) used ............................................. : | SELV separated from primary by reinforced or double insulation. | - |


| 2.10 | Clearances, creepage distances and distances through insulation |  | P |
| :---: | :---: | :---: | :---: |
| 2.10.1 | General | See sub-clauses 2.10.3, 2.10.4 and 2.10.5. | P |
| 2.10.1.1 | Frequency ......................................................: | Considered | P |
| 2.10.1.2 | Pollution degrees .............................................: | 2 | P |
| 2.10.1.3 | Reduced values for functional insulation | Considered | P |
| 2.10.1.4 | Intervening unconnected conductive parts | Considered | P |
| 2.10.1.5 | Insulation with varying dimensions | Insulation kept homogenous. | N/A |
| 2.10.1.6 | Special separation requirements | Not applied. | N/A |
| 2.10.1.7 | Insulation in circuits generating starting pulses | No such circuits. | N/A |
| 2.10 .2 | Determination of working voltage |  | P |
| 2.10.2.1 | General | Considered. | P |
| 2.10.2.2 | RMS working voltage | See table 2.10.2 | P |
| 2.10.2.3 | Peak working voltage | See table 2.10.2 | P |
| 2.10 .3 | Clearances | See below and advantage of annex G is not considered. | P |
| 2.10.3.1 | General | Considered. | P |
| 2.10.3.2 | Mains transient voltages |  | P |
|  | a) AC mains supply .........................................: | 240 V a.c. and Overvoltage Category II | P |

TRF No. IEC60950_1G

Page 18 of 63

| IEC 60950-1 |  |  |  |
| :---: | :---: | :---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |
|  | b) Earthed d.c. mains supplies ...........................: |  | N/A |
|  | c) Unearthed d.c. mains supplies ........................: |  | N/A |
|  | d) Battery operation .........................................: |  | N/A |
| 2.10.3.3 | Clearances in primary circuits | (see appended table 2.10.3 and 2.10.4) | P |
| 2.10.3.4 | Clearances in secondary circuits | Sub-clause 5.3.4 considered. | P |
| 2.10.3.5 | Clearances in circuits having starting pulses |  | N/A |
| 2.10.3.6 | Transients from a.c. mains supply .......................: | Normal transient voltage considered (overvoltage category II for primary circuit). | N/A |
| 2.10.3.7 | Transients from d.c. mains supply ......................: |  | N/A |
| 2.10.3.8 | Transients from telecommunication networks and cable distribution systems |  | N/A |
| 2.10.3.9 | Measurement of transient voltage levels |  | N/A |
|  | a) Transients from a mains supply |  | N/A |
|  | For an a.c. mains supply ...................................: |  | N/A |
|  | For a d.c. mains supply ....................................: |  | N/A |
|  | b) Transients from a telecommunication network |  | N/A |
| 2.10 .4 | Creepage distances |  | P |
| 2.10.4.1 | General |  | P |
| 2.10.4.2 | Material group and comparative tracking index |  | P |
|  | CTI tests .......................................................: | Material group IIIb is assumed to be used. | - |
| 2.10.4.3 | Minimum creepage distances | (see appended table 2.10.3 and 2.10.4) | P |
| 2.10 .5 | Solid insulation |  | P |
| 2.10.5.1 | General |  | P |
| 2.10.5.2 | Distances through insulation | (see appended table 2.10.5) | P |
| 2.10.5.3 | Insulating compound as solid insulation | Only inside approved optocoupler. | N/A |
| 2.10.5.4 | Semiconductor devices | Approved optocoupler complies to IEC 60747-5-5 and having dti. 0.4 mm . | P |
| 2.10.5.5. | Cemented joints | Not applied. | N/A |
| 2.10.5.6 | Thin sheet material - General |  | P |
| 2.10.5.7 | Separable thin sheet material | Used in transformer. | P |
|  | Number of layers (pcs) .....................................: | (see appended table C.2) | - |
| 2.10.5.8 | Non-separable thin sheet material | Not applied for. | N/A |

TRF No. IEC60950_1G

Page 19 of 63

| IEC 60950-1 |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| 2.10.5.9 | Thin sheet material - standard test procedure |  | N/A |
| :---: | :---: | :---: | :---: |
|  | Electric strength test |  | - |
| 2.10.5.10 | Thin sheet material - alternative test procedure |  | P |
|  | Electric strength test | (see appended table 5.2) | - |
| 2.10.5.11 | Insulation in wound components | See only 2.10.5.6. | P |
| 2.10.5.12 | Wire in wound components | T9102 | P |
|  | Working voltage ...............................................: | Exceeds 71 V . | P |
|  | a) Basic insulation not under stress .....................: |  | N/A |
|  | b) Basic, supplementary, reinforced insulation ......: | Reinforced. | P |
|  | c) Compliance with Annex U ..............................: | Approved triple insulated wire used. | P |
|  | Two wires in contact inside wound component; angle between $45^{\circ}$ and $90^{\circ}$ $\qquad$ | Physical separation provided by insulation tape or tube to relieve mechanical stress at the crossover point. | P |
| 2.10.5.13 | Wire with solvent-based enamel in wound components | Not applied. | N/A |
|  | Electric strength test |  | - |
|  | Routine test |  | N/A |
| 2.10.5.14 | Additional insulation in wound components | Not applied. | N/A |
|  | Working voltage ...............................................: |  | N/A |
|  | - Basic insulation not under stress ......................: |  | N/A |
|  | - Supplementary, reinforced insulation .................: |  | N/A |
| 2.10.6 | Construction of printed boards |  | P |
| 2.10.6.1 | Uncoated printed boards | (see appended table 2.10.3 and 2.10.4) | P |
| 2.10.6.2 | Coated printed boards | Not applied. | N/A |
| 2.10.6.3 | Insulation between conductors on the same inner surface of a printed board | Not multi-layer printed board. | N/A |
| 2.10.6.4 | Insulation between conductors on different layers of a printed board | See above. | N/A |
|  | Distance through insulation |  | N/A |
|  | Number of insulation layers (pcs)........................: |  | N/A |
| 2.10.7 | Component external terminations | Coatings not used over terminations to increase effective clearance and creepage distance. | N/A |
| 2.10.8 | Tests on coated printed boards and coated components |  | N/A |
| 2.10.8.1 | Sample preparation and preliminary inspection |  | N/A |

TRF No. IEC60950_1G

Page 20 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 2.10 .8 .2 | Thermal conditioning |  | N/A |
| :--- | :--- | :--- | :---: |
| 2.10 .8 .3 | Electric strength test |  | N/A |
| 2.10 .8 .4 | Abrasion resistance test |  | N/A |
| 2.10 .9 | Thermal cycling | Pollution Degree 2. | N/A |
| 2.10 .10 | Test for Pollution Degree 1 environment and <br> insulating compound | Photo couplers are approved <br> components. No other <br> components applied for. | N/A |
| 2.10 .11 | Tests for semiconductor devices and cemented <br> joints | No hermetically sealed <br> component. | N/A |
| 2.10 .12 | Enclosed and sealed parts |  |  |


| 3 | WIRING, CONNECTIONS AND SUPPLY |  | P |
| :---: | :---: | :---: | :---: |
| 3.1 | General |  | P |
| 3.1.1 | Current rating and overcurrent protection | The cross-sectional area and the temperature of the internal wires are adequate. | P |
| 3.1 .2 | Protection against mechanical damage | Wires do not touch sharp edges which could damage the insulation and cause hazard. | P |
| 3.1.3 | Securing of internal wiring | Wires with only basic insulation are routed so that they are not close to any live bare components. Wires are secured by soldering method and additionally fixed by glue or by connectors. | P |
| 3.1 .4 | Insulation of conductors | The insulation of the individual conductors suitable for the application and the working voltage. For the insulation material see 3.1.1. | P |
| 3.1 .5 | Beads and ceramic insulators | Not used. | N/A |
| 3.1 .6 | Screws for electrical contact pressure | Only metal screw is used for electrical connection between power baord and metal chassis, and engages more than 2 complete threads. | P |
| 3.1.7 | Insulating materials in electrical connections | The integrity of protective bonding made by screw, PCB trace and spring washer. | P |
| 3.1 .8 | Self-tapping and spaced thread screws | No self-tapping or spaced thread screws are used. | N/A |

TRF No. IEC60950_1G

Page 21 of 63
Report No. 50298194001

| IEC 60950-1 |  |  | Result - Remark |
| :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | All conductors are reliably <br> secured. | $\mathbf{P}$ |
| 3.1 .9 | Termination of conductors |  | $\mathbf{P}$ |
|  | 10 N pull test |  | N/A |
| 3.1 .10 | Sleeving on wiring |  |  |


| 3.2 | Connection to a mains supply |  | P |
| :---: | :---: | :---: | :---: |
| 3.2.1 | Means of connection | See below. | P |
| 3.2.1.1 | Connection to an a.c. mains supply | Appliance inlet used. | P |
| 3.2.1.2 | Connection to a d.c. mains supply | Only a.c. mains supply. | N/A |
| 3.2.2 | Multiple supply connections | Only for one mains connection. | N/A |
| 3.2.3 | Permanently connected equipment | Unit is not a permanently connected equipment. | N/A |
|  | Number of conductors, diameter of cable and conduits (mm) |  | - |
| 3.2.4 | Appliance inlets | Approved appliance inlet used. | P |
| 3.2 .5 | Power supply cords | See below. | N/A |
| 3.2.5.1 | AC power supply cords | Not provided. | N/A |
|  | Type ............................................................. : |  | - |
|  | Rated current (A), cross-sectional area ( $\mathrm{mm}^{2}$ ), <br> AWG |  | - |
| 3.2.5.2 | DC power supply cords | Not provided. | N/A |
| 3.2.6 | Cord anchorages and strain relief | Appliance inlet used | N/A |
|  | Mass of equipment (kg), pull (N) ....................... : |  | - |
|  | Longitudinal displacement (mm) ......................... : |  | - |
| 3.2 .7 | Protection against mechanical damage |  | N/A |
| 3.2 .8 | Cord guards | No cord guards. | N/A |
|  | Diameter or minor dimension D (mm); test mass (g) |  | - |
|  | Radius of curvature of cord (mm)........................ : |  | - |
| 3.2.9 | Supply wiring space | Not permanent connection or non-detachable power cord type. | N/A |


| 3.3 | Wiring terminals for connection of external conductors | N/A |  |
| :--- | :--- | :--- | :---: |
| 3.3 .1 | Wiring terminals | AClet used. | N/A |
| 3.3 .2 | Connection of non-detachable power supply cords |  | N/A |
| 3.3 .3 | Screw terminals |  | N/A |

TRF No. IEC60950_1G

Page 22 of 63

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 3.3.4 | Conductor sizes to be connected |  | N/A |
| :---: | :---: | :---: | :---: |
|  | Rated current (A), cord/cable type, cross-sectional area ( $\mathrm{mm}^{2}$ ). |  | - |
| 3.3.5 | Wiring terminal sizes |  | N/A |
|  | Rated current (A), type, nominal thread diameter (mm) |  | - |
| 3.3.6 | Wiring terminal design |  | N/A |
| 3.3.7 | Grouping of wiring terminals |  | N/A |
| 3.3.8 | Stranded wire |  | N/A |


| 3.4 | Disconnection from the mains supply | Disconnect device provided | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 3.4 .1 | General requirement | Appliance coupler used as <br> disconnect device. | $\mathbf{P}$ |
| 3.4 .2 | Disconnect devices | Not permanently connected <br> equipment | N/A |
| 3.4 .3 | Permanently connected equipment | When AC coupler is <br> disconnected from inlet, there <br> are no parts remaining with <br> hazardous voltage or energy in <br> the equipment. | $\mathbf{P}$ |
| 3.4 .4 | Parts which remain energized | No such switch in flexible <br> cords | N/A |
| 3.4 .5 | Switches in flexible cords | Number oppliance coupler <br> disconnects both poles <br> simultaneously. | P |
| 3.4 .6 | Number of poles - three-phase equipment | Single-phase equipment | N/A |
| 3.4 .7 | Switches as disconnect devices | No such switch | N/A |
| 3.4 .8 | Plugs as disconnect devices | Plug not used | N/A |
| 3.4 .9 | Interconnected equipment | Only interconnected with other <br> unit through SELV interface. | P |
| 3.4 .10 | Single power source | N/A |  |


| 3.5 | Interconnection of equipment | This power supply is not <br> considered for connection to <br> TNV. | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 3.5 .1 | General requirements | Types of interconnection circuits $\ldots . . . . . . . . . . . . . . . . . . .: ~: ~$Interconnection circuits of <br> SELV through the connector. <br> No ELV interconnection <br> circuits. | $\mathbf{P}$ |
| 3.5 .2 | Ty |  |  |

TRF No. IEC60950_1G

Page 23 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :---: | :---: | :---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |
| 3.5.3 | ELV circuits as interconnection circuits | No ELV interconnection | N/A |
| 3.5.4 | Data ports for additional equipment | All data ports are supplied by LPS. | P |


| 4 | PHYSICAL REQUIREMENTS |  | P |
| :---: | :---: | :---: | :---: |
| 4.1 | Stability |  | P |
|  | Angle of $10^{\circ}$ | The equipment does not overbalance when tilted to $10^{\circ}$ | P |
|  | Test force (N) ................................................. : | Equipment is not a floor standing unit. | N/A |


| 4.2 | Mechanical strength |  | P |
| :---: | :---: | :---: | :---: |
| 4.2.1 | General | See below. After tests, unit comply with 2.1.1, 2.6.1 and 2.10. | P |
|  | Rack-mounted equipment. |  | N/A |
| 4.2.2 | Steady force test, 10 N | Test performed on internal components. <br> No components located such that distances according to 2.10 can be reduced. | P |
| 4.2.3 | Steady force test, 30 N | Test performed on internal metal cover. | P |
| 4.2.4 | Steady force test, 250 N | Test performed on plastic enclosure. | P |
| 4.2.5 | Impact test | 500 g steel ball falls freely from 1.3 m on top, back and bottom of plastic enclosure, no access to hazardous parts. | P |
|  | Fall test |  | P |
|  | Swing test |  | N/A |
| 4.2.6 | Drop test; height (mm) ...................................... : |  | N/A |
| 4.2.7 | Stress relief test | $70^{\circ} \mathrm{C}, 7$ hours, no deformation on all sources of plastic enclosure. | P |
| 4.2 .8 | Cathode ray tubes | No CRT | N/A |
|  | Picture tube separately certified .......................... : |  | N/A |
| 4.2.9 | High pressure lamps | No high pressure lamps | N/A |

TRF No. IEC60950_1G

Page 24 of 63
Report No. 50298194001

| IEC $60950-1$ |  |  | Result - Remark |
| :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Verdict |  |
| 4.2 .10 | Wall or ceiling mounted equipment; force (N) ...... : | An additional force 191.4N <br> applied downwards through <br> the centre of gravity of the <br> equipment for 1 min after the <br> removal of base (by client's <br> request). <br> After the test, the equipment <br> was not damaged. | P |


| 4.3 | Design and construction |  | P |
| :---: | :---: | :---: | :---: |
| 4.3.1 | Edges and corners | Edges and corners of the enclosure are rounded. | P |
| 4.3.2 | Handles and manual controls; force (N) ............: | No safety relevant handles or manual controls. | N/A |
| 4.3.3 | Adjustable controls | No such controls. | N/A |
| 4.3.4 | Securing of parts | All parts secured properly. Spring washer used for securing screws. | P |
| 4.3.5 | Connection by plugs and sockets |  | N/A |
| 4.3.6 | Direct plug-in equipment | Not such equipment. | N/A |
|  | Torque .......................................................... : |  | - |
|  | Compliance with the relevant mains plug standard |  | N/A |
| 4.3.7 | Heating elements in earthed equipment | None. | N/A |
| 4.3 .8 | Batteries | No batteries. | N/A |
|  | - Overcharging of a rechargeable battery |  | N/A |
|  | - Unintentional charging of a non-rechargeable battery |  | N/A |
|  | - Reverse charging of a rechargeable battery |  | N/A |
|  | - Excessive discharging rate for any battery |  | N/A |
| 4.3.9 | Oil and grease | None. | N/A |
| 4.3.10 | Dust, powders, liquids and gases | Equipment in intended use not considered to be exposed to these. | N/A |
| 4.3.11 | Containers for liquids or gases | None | N/A |
| 4.3.12 | Flammable liquids .......................................... : | None | N/A |
|  | Quantity of liquid (I) ......................................... : |  | N/A |
|  | Flash point ( ${ }^{\circ} \mathrm{C}$ ) .............................................. : |  | N/A |
| 4.3.13 | Radiation |  | P |
| 4.3.13.1 | General | See below | P |
| 4.3.13.2 | Ionizing radiation | No ionizing radiation. | N/A |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | Measured radiation (pA/kg) ............................. : |  | - |
| :---: | :---: | :---: | :---: |
|  | Measured high-voltage (kV) .............................. : |  | - |
|  | Measured focus voltage (kV) ............................ : |  | - |
|  | CRT markings ................................................ : |  | - |
| 4.3.13.3 | Effect of ultraviolet (UV) radiation on materials | No ultraviolet radiation | N/A |
|  | Part, property, retention after test, flammability classification |  | N/A |
| 4.3.13.4 | Human exposure to ultraviolet (UV) radiation ...... : | No ultraviolet radiation | N/A |
| 4.3.13.5 | Lasers (including laser diodes) and LEDs | See below. | P |
| 4.3.13.5.1 | Lasers (including laser diodes) | Not used. | N/A |
|  | Laser class .................................................... : |  | - |
| 4.3.13.5.2 | Light emitting diodes (LEDs) | The following parts are considered complied without tests: <br> Indicating lights. <br> Optocouplers. <br> For LED backlight, the luminance is far less than $10000 \mathrm{~cd} / \mathrm{m}^{2}$. With reference to sub clause 4.1 of IEC 62471:2006 no further test is necessary. | P |
| 4.3.13.6 | Other types ................................................... : |  | N/A |


| 4.4 | Protection against hazardous moving parts | N/A |  |
| :--- | :--- | :--- | :---: |
| 4.4 .1 | General |  | N/A |
| 4.4 .2 | Protection in operator access areas ................ : |  | N/A |
|  | Household and home/office document/media <br> shredders |  | N/A |
| 4.4 .3 | Protection in restricted access locations ............ : |  | N/A |
| 4.4 .4 | Protection in service access areas |  | N/A |
| 4.4 .5 | Protection against moving fan blades |  | N/A |
| 4.4 .5 .1 | General | N/A |  |
|  | Not considered to cause pain or injury. a) $\ldots \ldots \ldots \ldots .:$ | N/A |  |
|  | Is considered to cause pain, not injury. b) $\ldots \ldots \ldots \ldots:$ |  | N/A |
|  | Considered to cause injury. | c) $\ldots \ldots \ldots . .:$ |  |
| 4.4 .5 .2 | Protection for users | N/A |  |
|  | Use of symbol or warning ............................... : |  | N/A |
| 4.4 .5 .3 | Protection for service persons |  | N/A |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict | |  |  |  |  |
| :--- | :--- | :---: | :---: |
|  | Use of symbol or warning $\ldots \ldots \ldots$ | N/A |  |


| 4.5 | Thermal requirements |  | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 4.5 .1 | General |  | $\mathbf{P}$ |
| 4.5 .2 | Temperature tests | (see appended table 4.5) | $\mathbf{P}$ |
|  | Normal load condition per Annex L .................... : | Equipment loaded with rated <br> output current. | - |
| 4.5 .3 | Temperature limits for materials | (see appended table 4.5) | $\mathbf{P}$ |
| 4.5 .4 | Touch temperature limits | Resistance to abnormal heat ...........................: | Bobbin materials of all <br> transformer and all PFC <br> chokes L9801 are phenolic <br> that is accepted without <br> further tests |


| 4.6 | Openings in enclosures |  | P |
| :---: | :---: | :---: | :---: |
| 4.6.1 | Top and side openings | See below. | P |
|  | Dimensions (mm) .......................................... : | (see appended table 4.6.1 and 4.6.2) | - |
| 4.6.2 | Bottoms of fire enclosures | See below. | P |
|  | Construction of the bottomm, dimensions (mm) .. : | (see appended table 4.6.1 and 4.6.2) | - |
| 4.6.3 | Doors or covers in fire enclosures | No doors or covers. | N/A |
| 4.6.4 | Openings in transportable equipment | Not transportable equipment. | N/A |
| 4.6.4.1 | Constructional design measures |  | N/A |
|  | Dimensions (mm) ........................................... : |  | - |
| 4.6.4.2 | Evaluation measures for larger openings |  | N/A |
| 4.6.4.3 | Use of metallized parts |  | N/A |
| 4.6 .5 | Adhesives for constructional purposes | No adhesives for constructional purposes. | N/A |
|  | Conditioning temperature ( ${ }^{\circ} \mathrm{C}$ ), time (weeks) ....... : |  | - |


| 4.7 | Resistance to fire |  | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 4.7 .1 | Reducing the risk of ignition and spread of flame | No excessive temperatures. <br> No easily burning materials <br> employed. Fire enclosure <br> provided. Safety relevant <br> components used within their <br> specified temperature limits. | $\mathbf{P}$ |

Page 27 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | Method 1, selection and application of components wiring and materials | (see appended table 4.7) | P |
| :---: | :---: | :---: | :---: |
|  | Method 2, application of all of simulated fault condition tests |  | N/A |
| 4.7.2 | Conditions for a fire enclosure | See below. | P |
| 4.7.2.1 | Parts requiring a fire enclosure | Following parts require a fire enclosure: <br> - Components in primary circuits <br> - Components in secondary circuits not supplied by limited power source <br> - Insulating wiring | P |
| 4.7.2.2 | Parts not requiring a fire enclosure |  | N/A |
| 4.7.3 | Materials |  | P |
| 4.7.3.1 | General | PCB rated V-1 | P |
| 4.7.3.2 | Materials for fire enclosures | Earthed metal enclosure is considered as fire enclosure, which complies without test. | P |
| 4.7.3.3 | Materials for components and other parts outside fire enclosures | HB plastic enclosure used, which is outside the fire enclosure. | P |
| 4.7.3.4 | Materials for components and other parts inside fire enclosures |  | P |
| 4.7.3.5 | Materials for air filter assemblies | No air filter. | N/A |
| 4.7.3.6 | Materials used in high-voltage components | No such high voltage components in this meaning | N/A |


| $\mathbf{5}$ | ELECTRICAL REQUIREMENTS AND SIMULATED ABNORMAL CONDITIONS |  | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 5.1 | Touch current and protective conductor current | $\mathbf{P}$ |  |
| 5.1 .1 | General | See sub-clauses 5.1 .2 to <br> 5.1 .6. | $\mathbf{P}$ |
| 5.1 .2 | Configuration of equipment under test (EUT) | See below. | $\mathbf{P}$ |
| 5.1 .2 .1 | Single connection to an a.c. mains supply | EUT has only one mains <br> connection. | $\mathbf{P}$ |
| 5.1 .2 .2 | Redundant multiple connections to an a.c. mains <br> supply |  | N/A |
| 5.1 .2 .3 | Simultaneous multiple connections to an a.c. mains <br> supply | N/A |  |
| 5.1 .3 | Test circuit | Using figure 5A. | $\mathbf{P}$ |

TRF No. IEC60950_1G

Page 28 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 5.1.4 | Application of measuring instrument | Using measuring instrument in annex D. | P |
| :---: | :---: | :---: | :---: |
| 5.1.5 | Test procedure |  | P |
| 5.1.6 | Test measurements | (see appended table 5.1.6) | P |
|  | Supply voltage (V) ...........................................: |  | - |
|  | Measured touch current (mA) ............................: |  | - |
|  | Max. allowed touch current (mA) ........................: |  | - |
|  | Measured protective conductor current (mA) .......: |  | - |
|  | Max. allowed protective conductor current (mA) ...: |  | - |
| 5.1.7 | Equipment with touch current exceeding 3,5 mA | Touch current does not exceed 3.5 mA . | N/A |
| 5.1.7.1 | General .........................................................: |  | N/A |
| 5.1.7.2 | Simultaneous multiple connections to the supply |  | N/A |
| 5.1.8 | Touch currents to telecommunication networks and cable distribution systems and from telecommunication networks | No TNV circuits. | N/A |
| 5.1.8.1 | Limitation of the touch current to a telecommunication network or to a cable distribution system |  | N/A |
|  | Supply voltage (V) ...........................................: |  | - |
|  | Measured touch current (mA) ............................: |  | - |
|  | Max. allowed touch current (mA) .......................: |  | - |
| 5.1.8.2 | Summation of touch currents from telecommunication networks |  | N/A |
|  | a) EUT with earthed telecommunication ports ......: |  | N/A |
|  | b) EUT whose telecommunication ports have no reference to protective earth |  | N/A |


| 5.2 | Electric strength | (see appended table 5.2) | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 5.2 .1 | General | (see appended table 5.2) | $\mathbf{P}$ |
| 5.2 .2 | Test procedure |  |  |


| 5.3 | Abnormal operating and fault conditions |  | P |
| :--- | :--- | :--- | :---: |
| 5.3 .1 | Protection against overload and abnormal <br> operation | Ventilation openings blocked, <br> output of power supply board <br> overloaded, no unaccepted <br> overheating of parts (see <br> appended table 5.3) | P |
| 5.3 .2 | Motors | Motors not used. | N/A |

TRF No. IEC60950_1G

Page 29 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 5.3 .3 | Transformers | (see appended Annex C and <br> table 5.3) | $\mathbf{P}$ |
| :--- | :--- | :--- | :---: |
| 5.3 .4 | Functional insulation .....................................: | By short-circuited, results see <br> appended table 5.3. | $\mathbf{P}$ |
| 5.3 .5 | Electromechanical components | No electromechanical <br> component. | N/A |
| 5.3 .6 | Audio amplifiers in ITE ..................................: |  | $\mathbf{P}$ |
| 5.3 .7 | Simulation of faults | (see appended table 5.3.) | $\mathbf{P}$ |
| 5.3 .8 | Unattended equipment | No such equipment. | $\mathbf{N / A}$ |
| 5.3 .9 | Compliance criteria for abnormal operating and <br> fault conditions | P <br> 5.3 .9 .1 During the tests | No fire or molten metal <br> occurred and no deformation <br> of enclosure during the tests. |
| 5.3 .9 .2 | After the tests | No reduction of clearance and <br> creepage distance. Electric <br> strength test is made on basic, <br> supplementary and reinforced <br> insulation after test. | $\mathbf{P}$ |


| 6 | CONNECTION TO TELECOMMUNICATION NETWORKS |  | N/A |
| :---: | :---: | :---: | :---: |
| 6.1 | Protection of telecommunication network service persons, and users of other equipment connected to the network, from hazards in the equipment |  | N/A |
| 6.1.1 | Protection from hazardous voltages |  | N/A |
| 6.1.2 | Separation of the telecommunication network from earth |  | N/A |
| 6.1.2.1 | Requirements |  | N/A |
|  | Supply voltage (V) ............................................: |  | - |
|  | Current in the test circuit (mA) ..........................: |  | - |
| 6.1.2.2 | Exclusions ......................................................: |  | N/A |


| 6.2 | Protection of equipment users from overvoltages on telecommunication <br> networks |  | N/A |
| :--- | :--- | :--- | :---: |
| 6.2 .1 | Separation requirements |  | N/A |
| 6.2 .2 | Electric strength test procedure |  | N/A |
| 6.2 .2 .1 | Impulse test |  | N/A |
| 6.2 .2 .2 | Steady-state test |  | N/A |
| 6.2 .2 .3 | Compliance criteria | N/A |  |


| 6.3 | Protection of the telecommunication wiring system from overheating | N/A |
| :--- | :--- | :--- |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |
|  |  |  |  |  |
|  | Max. output current (A) .................................... : |  | - |  |
|  | Current limiting method ................................................ |  | - |  |


| 7 | CONNECTION TO CABLE DISTRIBUTION SYSTEMS |  | N/A |
| :--- | :--- | :--- | :---: |
| 7.1 | General |  | N/A |
| 7.2 | Protection of cable distribution system service <br> persons, and users of other equipment connected <br> to the system, from hazardous voltages in the <br> equipment |  | N/A |
| 7.3 | Protection of equipment users from overvoltages <br> on the cable distribution system |  | N/A |
| 7.4 | Insulation between primary circuits and cable <br> distribution systems |  | N/A |
| 7.4 .1 | General |  | N/A |
| 7.4 .2 | Voltage surge test |  | N/A |
| 7.4 .3 | Impulse test | N/A |  |


| A | ANNEX A, TESTS FOR RESISTANCE TO HEAT AND FIRE |  | N/A |
| :---: | :---: | :---: | :---: |
| A. 1 | Flammability test for fire enclosures of movable equipment having a total mass exceeding 18 kg , and of stationary equipment (see 4.7.3.2) |  | N/A |
| A.1.1 | Samples.........................................................: |  | - |
|  | Wall thickness (mm).........................................: |  | - |
| A.1.2 | Conditioning of samples; temperature ( ${ }^{\circ} \mathrm{C}$ ) ..........: |  | N/A |
| A.1.3 | Mounting of samples .......................................: |  | N/A |
| A.1.4 | Test flame (see IEC 60695-11-3) |  | N/A |
|  | Flame A, B, C or D .........................................: |  | - |
| A.1.5 | Test procedure |  | N/A |
| A.1.6 | Compliance criteria |  | N/A |
|  | Sample 1 burning time (s) .................................: |  | - |
|  | Sample 2 burning time (s) .................................: |  | - |
|  | Sample 3 burning time (s) .................................: |  | - |
| A. 2 | Flammability test for fire enclosures of movable mass not exceeding 18 kg , and for material and fire enclosures (see 4.7.3.2 and 4.7.3.4) | equipment having a total components located inside | N/A |
| A.2.1 | Samples, material.............................................: |  | - |
|  | Wall thickness (mm).........................................: |  | - |
| A.2.2 | Conditioning of samples; temperature ( ${ }^{\circ} \mathrm{C}$ ) ..........: |  | N/A |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| A.2.3 | Mounting of samples .......................................: |  | N/A |
| :---: | :---: | :---: | :---: |
| A.2.4 | Test flame (see IEC 60695-11-4) |  | N/A |
|  | Flame A, B or C ...............................................: |  | - |
| A.2.5 | Test procedure |  | N/A |
| A.2.6 | Compliance criteria |  | N/A |
|  | Sample 1 burning time (s) .................................: |  | - |
|  | Sample 2 burning time (s) .................................: |  | - |
|  | Sample 3 burning time (s) .................................: |  | - |
| A.2.7 | Alternative test acc. to IEC 60695-11-5, cl. 5 and 9 |  | N/A |
|  | Sample 1 burning time (s) .................................: |  | - |
|  | Sample 2 burning time (s) .................................: |  | - |
|  | Sample 3 burning time (s) .................................: |  | - |
| A. 3 | Hot flaming oil test (see 4.6.2) |  | N/A |
| A.3.1 | Mounting of samples |  | N/A |
| A.3.2 | Test procedure |  | N/A |
| A.3.3 | Compliance criterion |  | N/A |


| B | ANNEX B, MOTOR TESTS UNDER ABNORMAL CONDITIONS (see 4.7.2.2 and <br> $5.3 .2)$ | N/A |  |
| :--- | :--- | :--- | :---: |
| B.1 | General requirements |  | N/A |
|  | Position .......................................................: |  | - |
|  | Manufacturer ..............................................: |  | - |
|  | Type .........................................................: |  | - |
|  | Rated values ................................................: |  | - |
| B.2 | Test conditions | Maximum temperatures |  |
| B.3 | Running overload test |  | N/A |
| B.4 | Locked-rotor overload test |  | N/A |
| B.5 | Test duration (days) ......................................: |  | N/A |
|  | Electric strength test: test voltage (V) .................: |  | - |
|  | Running overload test for d.c. motors in <br> secondary circuits |  | N/A |
| B.6 | General |  | N/A |
| B.6.1 | Test procedure |  | N/A |
| B.6.2 | Alternative test procedure | N/A |  |
| B.6.3 | Electric strength test; test voltage (V) ................: |  | N/A |
| B.6.4 |  |  |  |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| B. 7 | Locked-rotor overload test for d.c. motors in secondary circuits |  | N/A |
| :---: | :---: | :---: | :---: |
| B.7.1 | General |  | N/A |
| B.7.2 | Test procedure |  | N/A |
| B.7.3 | Alternative test procedure |  | N/A |
| B.7.4 | Electric strength test; test voltage (V) .................: |  | N/A |
| B. 8 | Test for motors with capacitors |  | N/A |
| B. 9 | Test for three-phase motors |  | N/A |
| B. 10 | Test for series motors |  | N/A |
|  | Operating voltage (V) .......................................: |  | - |


| C | ANNEX C, TRANSFORMERS (see 1.5.4 and 5.3.3) |  | P |
| :---: | :---: | :---: | :---: |
|  | Position .........................................................: | See appended table 1.5.1. | - |
|  | Manufacturer ..................................................: | See appended table 1.5.1. | - |
|  | Type .............................................................: | See appended table 1.5.1. | - |
|  | Rated values .................................................: | See appended table 1.5.1. | - |
|  | Method of protection ........................................ : | By protection circuit. | - |
| C. 1 | Overload test | (see appended table 5.3) | P |
| C. 2 | Insulation | (see appended table 5.2) | P |
|  | Protection from displacement of windings ........... : | Fixed by insulation tape or bobbin. | P |


| D | ANNEX D, MEASURING INSTRUMENTS FOR TOUCH-CURRENT TESTS <br> (see 5.1.4) | P |  |
| :--- | :--- | :--- | :---: |
| D.1 | Measuring instrument |  | P |
| D.2 | Alternative measuring instrument |  | N/A |


| E | ANNEX E, TEMPERATURE RISE OF A WINDING (see 1.4.13) | N/A |
| :--- | :--- | :---: |


| F | ANNEX F, MEASUREMENT OF CLEARANCES AND CREEPAGE DISTANCES <br> (see 2.10 and Annex G) | P |
| :--- | :--- | :---: |


| G | ANNEX G, ALTERNATIVE METHOD FOR DETERMINING MINIMUM <br> CLEARANCES |  | N/A |
| :--- | :--- | :--- | :---: |
| G.1 | Clearances |  | N/A |
| G.1.1 | General |  | N/A |

Page 33 of 63

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| G.1.2 | Summary of the procedure for determining <br> minimum clearances |  | N/A |
| :--- | :--- | :--- | :---: |
| G.2 | Determination of mains transient voltage (V) |  | N/A |
| G.2.1 | AC mains supply ...........................................: |  | N/A |
| G.2.2 | Earthed d.c. mains supplies ...........................: |  | N/A |
| G.2.3 | Unearthed d.c. mains supplies .........................: |  | N/A |
| G.2.4 | Battery operation ............................................: |  | N/A |
| G.3 | Determination of telecommunication network <br> transient voltage (V) ..................................: |  | N/A |
| G.4 | Determination of required withstand voltage (V) |  | N/A |
| G.4.1 | Mains transients and internal repetitive peaks ......: |  | N/A |
| G.4.2 | Transients from telecommunication networks ......: |  | N/A |
| G.4.3 | Combination of transients | N/A |  |
| G.4.4 | Transients from cable distribution systems |  | N/A |
| G.5 | Measurement of transient voltages (V) |  | N/A |
|  | a) Transients from a mains supply | N/A |  |
|  | For an a.c. mains supply | N/A |  |
|  | For a d.c. mains supply | N/A |  |
|  | b) Transients from a telecommunication network |  | N/A |


| H | ANNEX H, IONIZING RADIATION (see 4.3.13) | N/A |
| :--- | :--- | :---: |


| J | ANNEX J, TABLE OF ELECTROCHEMICAL POTENTIALS (see 2.6.5.6) |  | P |
| :---: | :---: | :---: | :---: |
|  | Metal(s) used .................................................: | The internal metal enclosure is made of mild steel, screw spring washer are made of Ni on steel, the combined electrochemical potential is below 0.6 V according to Table J. 1 . | - |


| K | ANNEX K, THERMAL CONTROLS (see 1.5.3 and 5.3.8) |  | N/A |
| :---: | :---: | :---: | :---: |
| K. 1 | Making and breaking capacity |  | N/A |
| K. 2 | Thermostat reliability; operating voltage (V) .........: |  | N/A |
| K. 3 | Thermostat endurance test; operating voltage (V) |  | N/A |
| K. 4 | Temperature limiter endurance; operating voltage (V) |  | N/A |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  | Result - Remark |
| :--- | :--- | :--- | :---: |
| Clause | Requirement + Test |  | Verdict |
|  |  |  |  |
| K.5 | Thermal cut-out reliability |  | N/A |
| K. 6 | Stability of operation | N/A |  |


| L | ANNEX L, NORMAL LOAD CONDITIONS FOR SOME TYPES OF ELECTRICAL <br> BUSINESS EQUIPMENT (see 1.2.2.1 and 4.5.2) |  | P |
| :--- | :--- | :--- | :---: |
| L.1 | Typewriters |  | N/A |
| L.2 | Adding machines and cash registers |  | N/A |
| L.3 | Erasers |  | N/A |
| L.4 | Pencil sharpeners |  | N/A |
| L.5 | Duplicators and copy machines | See 1.6.2. | N/A |
| L.6 | Motor-operated files | N/A |  |
| L. 7 | Other business equipment | P |  |


| M | ANNEX M, CRITERIA FOR TELEPHONE RINGING SIGNALS (see 2.3.1) |  | N/A |
| :---: | :---: | :---: | :---: |
| M. 1 | Introduction |  | N/A |
| M. 2 | Method A |  | N/A |
| M. 3 | Method B |  | N/A |
| M.3.1 | Ringing signal |  | N/A |
| M.3.1.1 | Frequency (Hz) ...............................................: |  | - |
| M.3.1.2 | Voltage (V) .....................................................: |  | - |
| M.3.1.3 | Cadence; time (s), voltage (V) ...........................: |  | - |
| M.3.1.4 | Single fault current (mA) ...................................: |  | - |
| M.3.2 | Tripping device and monitoring voltage ...............: |  | N/A |
| M.3.2.1 | Conditions for use of a tripping device or a monitoring voltage |  | N/A |
| M.3.2.2 | Tripping device |  | N/A |
| M.3.2.3 | Monitoring voltage (V) ......................................: |  | N/A |


| $\mathbf{N}$ | ANNEX N, IMPULSE TEST GENERATORS (see 1.5.7.2, 1.5.7.3, 2.10.3.9, 6.2.2.1, <br> $7.3 .2,7.4 .3$ and Clause G.5) |  | N/A |
| :--- | :--- | :--- | :---: |
| N.1 | ITU-T impulse test generators |  | N/A |
| N. 2 | IEC 60065 impulse test generator |  | N/A |


| $\mathbf{P}$ | ANNEX $P$, NORMATIVE REFERENCES | - |
| :--- | :--- | :--- |


| Q | ANNEX Q, Voltage dependent resistors (VDRs) (see 1.5.9.1) | N/A |
| :--- | :--- | :--- |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| - Preferred climatic categories ...........................: |  | N/A |
| :---: | :---: | :---: |
| - Maximum continuous voltage ..........................: |  | N/A |
| - Combination pulse current ...............................: |  | N/A |
| Body of the VDR <br> Test according to IEC60695-11-5 |  | N/A |
| Body of the VDR. <br> Flammability class of material ( min V-1) |  | N/A |


| $\mathbf{R}$ | ANNEX R, EXAMPLES OF REQUIREMENTS FOR QUALITY CONTROL <br> PROGRAMMES |  | N/A |
| :--- | :--- | :--- | :---: |
| R.1 | Minimum separation distances for unpopulated <br> coated printed boards (see 2.10.6.2) |  | N/A |
| R. 2 | Reduced clearances (see 2.10.3) |  | N/A |


| S | ANNEX S, PROCEDURE FOR IMPULSE TESTING (see 6.2.2.3) | N/A |  |
| :--- | :--- | :--- | :---: |
| S.1 | Test equipment |  | N/A |
| S.2 | Test procedure |  | N/A |
| S.3 | Examples of waveforms during impulse testing |  | N/A |


| $\mathbf{T}$ | ANNEX T, GUIDANCE ON PROTECTION AGAINST INGRESS OF WATER <br> $($ see 1.1.2) | N/A |  |
| :--- | :--- | :--- | :---: |
|  |  |  | - |


| U | ANNEX U, INSULATED WINDING WIRES FOR USE WITHOUT INTERLEAVED <br> INSULATION (see 2.10.5.4) | P |  |
| :--- | :--- | :--- | :---: |
|  |  | Approved triple insulated wire <br> used in main transformer. | - |


| V | ANNEX V, AC POWER DISTRIBUTION SYSTEMS (see 1.6.1) | $\mathbf{P}$ |  |
| :--- | :--- | :--- | :--- |
| V.1 | Introduction |  | $\mathbf{P}$ |
| V.2 | TN power distribution systems |  | $\mathbf{P}$ |


| W | ANNEX W, SUMMATION OF TOUCH CURRENTS | N/A |  |
| :--- | :--- | :--- | :---: |
| W.1 | Touch current from electronic circuits |  | N/A |
| W.1.1 | Floating circuits |  | N/A |
| W.1.2 | Earthed circuits |  | N/A |
| W.2 | Interconnection of several equipments |  | N/A |
| W.2.1 | Isolation | N/A |  |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  | Result - Remark |
| :--- | :--- | :--- | :---: |
| Clause | Requirement + Test |  | Verdict |


| X | ANNEX X, MAXIMUM HEATING EFFECT IN TRANSFORMER TESTS (see clause C.1) |  | N/A |
| :---: | :---: | :---: | :---: |
| X. 1 | Determination of maximum input current |  | N/A |
| X. 2 | Overload test procedure |  | N/A |
| Y | ANNEX Y, ULTRAVIOLET LIGHT CONDITIONING TEST (see 4.3.13.3) |  | N/A |
| Y. 1 | Test apparatus ...............................................: |  | N/A |
| Y. 2 | Mounting of test samples .................................: |  | N/A |
| Y. 3 | Carbon-arc light-exposure apparatus .................: |  | N/A |
| Y. 4 | Xenon-arc light exposure apparatus ...................: |  | N/A |


| $Z$ | ANNEX Z, OVERVOLTAGE CATEGORIES (see 2.10.3.2 and Clause G.2) | P |
| :--- | :--- | :---: |


| AA | ANNEX AA, MANDREL TEST (see 2.10.5.8) | N/A |
| :--- | :--- | :---: |


| BB | ANNEX BB, CHANGES IN THE SECOND EDITION | - |
| :--- | :--- | :--- |


| CC | ANNEX CC, Evaluation of integrated circuit (IC) current limiters |  | N/A |
| :---: | :---: | :---: | :---: |
| CC. 1 | General |  | N/A |
| CC. 2 | Test program 1 ...............................................: |  | N/A |
| CC. 3 | Test program 2 ............................................... : |  | N/A |
| CC. 4 | Test program 3 ...............................................: |  | N/A |
| CC. 5 | Compliance .................................................... |  | N/A |


| DD | ANNEX DD, Requirements for the mounting means of rack-mounted equipment |  | N/A |
| :---: | :---: | :---: | :---: |
| DD. 1 | General |  | N/A |
| DD. 2 | Mechanical strength test, variable N..................: |  | N/A |
| DD. 3 | Mechanical strength test, 250 N, including end stops. |  | N/A |
| DD. 4 | Compliance.............................................: |  | N/A |


| EE | ANNEX EE, Household and home/office document/media shredders | N/A |
| :--- | :--- | :---: |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| EE. 1 | General |  | N/A |
| :---: | :---: | :---: | :---: |
| EE. 2 | Markings and instructions |  | N/A |
|  | Use of markings or symbols.............................: |  | N/A |
|  | Information of user instructions, maintenance and/or servicing instructions. |  | N/A |
| EE. 3 | Inadvertent reactivation test.............................: |  | N/A |
| EE. 4 | Disconnection of power to hazardous moving parts: |  | N/A |
|  | Use of markings or symbols............................: |  | N/A |
| EE. 5 | Protection against hazardous moving parts |  | N/A |
|  | Test with test finger (Figure 2A) .......................: |  | N/A |
|  | Test with wedge probe (Figure EE1 and EE2) ......: |  | N/A |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |



| IEC 60950-1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| Alt.) | LG CHEM LTD | HF350(\#), <br> HF380(m), <br> HF380NS, <br> HF380(\#), <br> HF-380(\#), <br> HF-380(m), <br> HF-380, <br> HF-380NS, HF380X, <br> AF312T1, <br> AF342T1, <br> LUPOY GN- <br> 5001TF(\#), <br> GN-5001RFD, <br> LUPOY GN- <br> 5008HF(\#), <br> LUPOY GP- <br> 5008BF(\#), <br> SE750(\#), <br> XG568(\#), <br> XG569(\#), <br> GP-1000L, <br> GP-1000F(\#), <br> GP-1000(m)(\#), <br> LUMILOY GP- <br> 1000(\#), <br> SE750(\#), <br> LUPOY GN- <br> 5001RF(T), <br> SE885(\#), <br> HF388(\#) | HB or better, min. 1.6 mm thickness | UL 94 | UL (E171666) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | CHI LIN | GA-1535 | HB or better, min. 1.6 mm thickness | UL 94 | UL (E177071) |
| Alt.) | PONTEX | AFE5000N, AFE5100N, 9004BK | HB or better, min. 1.6mm thickness | UL 94 | UL (E205938) |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Alt.) | KINGFA SCI \& TECH CO LTD | 4418, <br> 5197, <br> FRABS-518, <br> HIPS-5197, <br> HF-606, <br> HF-626, <br> FRABS-518, <br> GAR-011C, <br> JH960 6(M), <br> FRHIPS-960, <br> RS-900, <br> RS-300, <br> RS-400, <br> GAR-011, <br> GAR-011(L65), <br> GAR-011(L85), <br> GAR-011(HG6), <br> CK-100, <br> CK-900, <br> CK-55111, <br> JH960 6(M), <br> FRHIPS-960, <br> HIPS-4418, <br> HIPS-3399, <br> HIPS-CM(ee), <br> HIPS-HG(ee), <br> HIPS-510 (o), <br> HIPS-550, <br> CK-61(M) (\#\#), <br> RS-(hh)0, <br> HP-126, <br> ABS-660, <br> ABS-122, <br> GAR-322, <br> GAR-332, <br> GAR-220, <br> H12, <br> G360, <br> CK-55(M) (\#\#), <br> CK-58(M) (\#\#), <br> GAR-011C, <br> GAR-011(ww) | HB or better, min. 1.6 mm thickness | UL 94 | UL (E230779) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | QINGDAO <br> HAIER NEW <br>  <br> D CO LTD | HRABS-RS, HRABS-HG, CR-3002 | HB or better, min. 1.6 mm thickness | UL 94 | UL (E328304) |
| Alt.) | DONGGUAN HINGLONG PLASTIC TECHNOLOGY CO LTD | HL-ABS-PCR85, HL-ABS-PCR65, HL-ABS-PCR35 | HB or better, min. 1.6mm thickness | UL 94 | UL (E471190) |

Page 41 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Alt.) | ORINKO <br> (HEFEI) <br> ADVANCED <br> PLASTIC CO <br> LTD | ABS-3070H, <br> HIPS-2000 | HB or better, min. <br> 1.6 mm thickness | UL 94 | UL (E471190) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Alt.) | WISTRON <br> ADVANCED <br> MATERIALS <br> (KUNSHAN) CO <br> LTD | GA(M)(b)(c), <br> GA35(a), <br> NC30) | HB or better, min. <br> $1.6 m m$ thickness | UL 94 | UL (E310240) |
| (E359575) |  |  |  |  |  |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Alt.) | SICHUAN DONGFANG INSULATING MATERIAL CO LTD | DFR700, DFR700F | min. 0.4 mm <br> thickness, min. V- <br> 1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | CHENGDU KANGLONGXIN PLASTICS CO LTD | $\begin{aligned} & \hline \text { KLX FRPC- } \\ & \text { 1860B, } \\ & \text { KLX FRPC- } \\ & \text { 1870B } \\ & \hline \end{aligned}$ | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | CHENGDU KANGLONGXIN PLASTICS CO LTD | KLX FRPC-870B | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | SICHUAN DONGFANG INSULATING MATERIAL CO LTD | DFR117ECOC, DFR117ECOB | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | SICHUAN DONGFANG INSULATING MATERIAL CO LTD | DFR117ECO | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | JINGMEN GORUN TECHNOLOGY CO LTD | HF70 | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | SICHUAN DONGFANG INSULATING MATERIAL CO LTD | DFR3A(d) | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | SHENZHEN TEESUN TECHNOLOGY CO LTD | $\begin{aligned} & \text { FR370, } \\ & \text { FR370F, } \\ & \text { FE383 } \end{aligned}$ | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | CHENGDU KANGLONGXIN PLASTICS CO LTD | KLX PP BK-10 | min. 0.4 mm thickness, min. V$1,105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Alt.) | KUNSHAN DOBESTY OPTOELECTR O NIC MATERIALS CO LTD | PC9842B | min. 0.4 mm thickness, min. V1, $105^{\circ} \mathrm{C}$ | UL 94 | UL |
| Adhesive for mylar sheet | SYMBIO | DS50-A, DS50L | $100^{\circ} \mathrm{C}, 0.05 \mathrm{~mm}$ <br> Thickness | UL 969 | UL |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Alt.) | 3 M | 55236 | $100^{\circ} \mathrm{C}, 0.05 \mathrm{~mm}$ <br> Thickness | UL 969 | UL |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Switching mode power supply board: 715GA649 by TPV

| AC-Inlet (CN9102) | Solteam | ST-01 | 10A, 250Vac | IEC/ EN 60320-1 UL60320-1 | VDE, UL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | Hua Jie | SA-4S | 10A, 250Vac | IEC/ EN 60320-1 UL60320-1 | VDE, UL |
| Alt.) | Rong Feng | $\begin{aligned} & \text { SS-120, } \\ & \text { SS-7B } \end{aligned}$ | 10A, 250Vac | IEC/ EN 60320-1 UL60320-1 | VDE, UL |
| Alt.) | DELIKANG/ Douling | $\begin{aligned} & \text { CDJ-3, } \\ & \text { CDJ-3-1 } \end{aligned}$ | 10A, 250Vac | IEC/ EN 60320-1 UL60320-1 | VDE, UL |
| Alt.) | Inalways | $\begin{array}{\|l} 0707-1, \\ 0711-2, \\ 0714 \end{array}$ | 10A, 250Vac | IEC/ EN 60320-1 UL60320-1 | VDE, UL |
| Alt.) | TECX | $\begin{aligned} & \text { TU-301-A, } \\ & \text { TU-301-AP, } \\ & \text { TU-301-S, } \\ & \text { TU-301-SP } \end{aligned}$ | 10A, 250Vac | IEC/ EN 60320-1 UL60320-1 | VDE, UL |
| Fuse (F9901 in primary) | Littelfuse, Inc. Wickmann | $\begin{aligned} & 382 \text {-series, } \\ & 392 \end{aligned}$ | T4AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |
| Alt.) | Littelfuse Phils. Inc. | TE5 400 series | T4AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE |
| Alt.) | Conquer | MET series MST series PTU | T4AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |
| Alt.) | Cooper Bussmann | $\begin{aligned} & \text { SR-5, } \\ & \text { SS-5 } \end{aligned}$ | T4AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |
| Alt.) | Ever Island Electric Co., Ltd. \& Walter Electric | $\begin{aligned} & 2000, \\ & 2010 \text { series } \end{aligned}$ | T4AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |
| Alt.) | Littelfuse Phils. Inc. | 877 | T4AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |
| Fuse (F9902 in secondary for L.P.S.) | Littelfuse, Inc. Wickmann | $\begin{aligned} & 382 \text {-series, } \\ & 392 \end{aligned}$ | T5AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |
| Alt.) | Littelfuse Phils. Inc. | TE5 400 series | T5AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE |
| Alt.) | Conquer | MET series MST series PTU | T5AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Alt.) | Cooper Bussmann | $\begin{aligned} & \text { SR-5, } \\ & \text { SS-5 } \end{aligned}$ | T5AL, 250Vac | IEC/ EN 60127-1 IEC/ EN 60127-3 UL 248-1 | VDE, UL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | Ever Island Electric Co., Ltd. \& Walter Electric | $\begin{aligned} & 2000, \\ & 2010 \text { series } \end{aligned}$ | T5AL, 250Vac | $\begin{aligned} & \text { IEC/ EN 60127-1 } \\ & \text { IEC/ EN 60127-3 } \\ & \text { UL 248-1 } \end{aligned}$ | VDE, UL |
| Alt.) | Littelfuse Phils. Inc. | 877 | T5AL, 250Vac | $\begin{aligned} & \text { IEC/ EN 60127-1 } \\ & \text { IEC/ EN 60127-3 } \\ & \text { UL 248-1 } \end{aligned}$ | VDE, UL |
| Y- Capacitor (C9915, C9916, C9917, C9919) Y1 or Y2 type (optional) | Walsin | AC, AH | Max. 470pF, 250 Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | Wansheng | CT7 | Max. 470pF, 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | TDK | CS, CD | Max. 470pF, 250 Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | Murata | KH, KX | Max. 470pF, 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | Matsushita | NS-A, NS-B | Max. 470pF, $250 \mathrm{Vac}, 85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | JYA-NAY | JY, JN | Max. 470pF, $250 \mathrm{Vac}, 85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | Hongming | F | Max. 470pF, 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | Yinan Don's | CT81 | Max. 470pF, 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | SUCCESS | SB, SE | Max. 470pF, 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Y- Capacitor (C9911) <br> Y1 type (optional) | Walsin | AH | Max. 1000pF, 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | TDK | CD | Max. 1000pF, 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | Murata | KX | Max. 1000pF, 250 Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | Kunshan Wansheng | CT7 | Max. 1000pF, 250 Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| Alt.) | YINAN DON'S ELECTRONI C COMPONENT CO.,LTD | CT81 | Max. 1000pF, $250 \mathrm{Vac}, 85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Alt.) | SUCCESS | SE | Max. 1000pF, $250 \mathrm{Vac}, 85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | SUCCESS | SB | Max. 1000pF, $250 \mathrm{Vac}, 85^{\circ} \mathrm{C}$ | IEC/EN 60384- <br> 14, UL 60384-14 | VDE, UL |
| $\begin{aligned} & \text { X-Capacitor (X1 } \\ & \text { or X2 type) } \\ & \text { (C9918, C9920) } \\ & \text { (optional) } \end{aligned}$ | Ultra Tech Xiphi | HQX | Max. 0.33 $\mu$ F, Min. 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384-14 UL 60384-14 | VDE, UL |
| Alt.) | Europtronic | MPX | Max. 0.33 $\mu$ F, Min. 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384-14 UL 60384-14 | VDE, UL |
| Alt.) | Europtronic | MPX2 | Max. $0.33 \mu \mathrm{~F}$, Min. 250Vac, $85^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { IEC/EN 60384-14 } \\ & \text { UL 60384-14 } \end{aligned}$ | VDE, UL |
| Alt.) | Liow Gu | GS-L | Max. $0.33 \mu \mathrm{~F}$, Min. 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384-14 <br> UL 60384-14 | VDE, UL |
| Alt.) | Arcotronics (KEMET) | R. 46 | $\begin{aligned} & \text { Max. } 0.33 \mu \mathrm{~F}, \\ & \text { Min. } 250 \mathrm{Vac}, \\ & 85^{\circ} \mathrm{C} \end{aligned}$ | $\begin{array}{\|l} \text { IEC/EN 60384-14 } \\ \text { UL 60384-14 } \end{array}$ | $\begin{aligned} & \text { ENEC, } \\ & \text { UL } \end{aligned}$ |
| Alt.) | EPCOS | B3292\# | Max. $0.33 \mu \mathrm{~F}$, <br> Min. 250Vac, $85^{\circ} \mathrm{C}$ | $\begin{array}{\|l} \text { IEC/EN 60384-14 } \\ \text { UL 60384-14 } \end{array}$ | VDE, UL |
| Alt.) | Nanjing Tengen Rongguangda | MKP | Max. $0.33 \mu \mathrm{~F}$, Min. 250Vac, $85^{\circ} \mathrm{C}$ | IEC/EN 60384-14 UL 60384-14 | VDE, UL |
| Discharge IC (U9104) | Leadtrend Technology Corp. | LD5760 | $85^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { IEC/EN 60950- } \\ & \text { 1:2005+ A1 } \end{aligned}$ | Nemko CB (Certif. No: NO77082, Date: \|2013.09.10) |
| Photo Coupler (U9102, U9401) | Sharp | PC123 | Di more than 0.4 mm , int $=$ thermal cycling test,ext. more than 8.0 mm , 5000 Vac , $100^{\circ} \mathrm{C}$. | $\begin{aligned} & \text { DIN EN 60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC/EN 60950-1 } \\ & \text { UL } 1577 \end{aligned}$ | VDE, UL, Semko, Nemko, Fimko |
| Alt.) | Vishay Semiconductor | TCET1103 | Di more than 0.5 mm , int. cr more than 6.0mm, ext. cr more than 7.7 mm , 3000 Vac , $100^{\circ} \mathrm{C}$. | $\begin{aligned} & \text { DIN EN 60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC/EN 60950-1 } \\ & \text { UL 1577 } \end{aligned}$ | VDE, UL, Semko, Fimko |


| IEC 60950-1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| Alt.) | Everlight Electronics Co., Ltd. | EL817, EL817M | Di more than 0.5 mm , int. $\mathrm{cr}=$ thermal cycling test, ext. cr more than 7.7 mm , 3000 Vac, $100^{\circ} \mathrm{C}$. | $\begin{aligned} & \text { DIN EN 60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC/EN 60950-1 } \\ & \text { UL 1577 } \end{aligned}$ | VDE, UL, <br> Semko, Nemko, Fimko |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | TOSHIBA | TLP781F , TLP781 | Di more than 0.5 mm , int. cr =thermal cycling test, ext. cr more than 8.0 mm , 4800 Vac , $100^{\circ} \mathrm{C}$. | $\begin{aligned} & \text { DIN EN 60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC/EN 60950-1 } \\ & \text { UL 1577 } \end{aligned}$ | VDE, UL, Semko |
| Alt.) | TOSHIBA | TLP421F | Di more than 0.4 mm , int.cr=thermal cycling test, ext. cr more than 8.0 mm , 5000 Vac , $100^{\circ} \mathrm{C}$. | $\begin{aligned} & \text { DIN EN 60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC/EN 60950-1 } \\ & \text { UL 1577 } \end{aligned}$ | VDE, UL |
| Alt.) | RENESAS <br> ELECTRONICS <br> CORPORATIO <br> N | $\begin{array}{\|l} \hline \text { PS2561-1, } \\ \text { PS2561L-1, } \\ \text { PS2561L1-1, } \\ \text { PS2561L2-1. } \\ \text { PS2561DL1-1 } \end{array}$ | Di more than 0.4 mm , int.cr=thermal cycling test, ext. cr more than 8.0 mm , 5000 Vac , $100^{\circ} \mathrm{C}$. | $\begin{aligned} & \text { DIN EN 60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC/EN 60950-1 } \\ & \text { UL 1577 } \end{aligned}$ | VDE, UL, Nemko, Fimko |
| Alt.) | Everlight Electronics Co., Ltd. | EL1013 | Di more than 0.4 mm , int.cr=thermal cycling test, ext. cr more than 8.1 mm , 3000 Vac , $100^{\circ} \mathrm{C}$. | $\begin{aligned} & \text { DIN EN 60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC60747-5- } \\ & \text { 5:2007 } \\ & \text { IEC/EN 60950-1 } \\ & \text { UL 1577 } \end{aligned}$ | VDE, UL, Semko, Fimko |
| Alt.) | Lite-On | LTV-817 | Di more than 0.6 mm , int.cr=thermal cycling test, ext. cr more than 8.0 mm , 4800Vac, $100^{\circ} \mathrm{C}$. | $\begin{array}{\|l} \text { DIN EN 60747-5- } \\ \text { 5:2007 } \\ \text { IEC60747-5- } \\ \text { 5:2007 } \\ \text { IEC/EN 60950-1 } \\ \text { UL 1577 } \end{array}$ | VDE, UL, Semko, Fimko |
| Line Choke (L9801) (Optional) | CHANNELON | 373G0174315H | $105^{\circ} \mathrm{C}$ | -- | -- |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Alt.) | ASET | 373G0174315X | $105^{\circ} \mathrm{C}$ | -- | -- |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alt.) | YUVA | 373G0174315N | $105^{\circ} \mathrm{C}$ | -- | -- |
| Alt.) | CHEN PING | 373G0174315CP |  |  |  |
| Line Choke (L9901, L9902) (Optional) | CHANNELON | 373G0174575H | $105^{\circ} \mathrm{C}$ | -- | -- |
| Alt.) | LIANZHEN | 373G0174575Z | $105^{\circ} \mathrm{C}$ | -- | -- |
| Transformer (T9102) (Alt.) | CHANNELON | 380GL32P530H | Min. Class 130 material (B) | Applicable parts of IEC 60950-1 and according to IEC 60085 | Accepted by TÜV <br> Rheinland |
| - Bobbin | SUMITOMO | PM-9820 | V-0, Phenolic, $150^{\circ} \mathrm{C}$ | UL 94 | UL |
| - Triple insulation wire | COSMOLINK YUSHENG | TIW-M | Max. $130^{\circ} \mathrm{C}$ | IEC/EN 60950-1, VDE0805 Teil1, UL 2353 | UL, VDE |
| - Teflon tube | GREAT <br> HOLDING | TFL | $200^{\circ} \mathrm{C}$ | UL 224 | UL |
| - Insulation tape | Jing jiang YaHua SYMBIO | CT <br> NO. 35660 Y | $130^{\circ} \mathrm{C}$ | UL 510 | UL |
| Transformer (T9102) (Alt.) | YUVA | 380GL32P530N | Min. Class 130 material (B) | Applicable parts of IEC 60950-1 and according to IEC 60085 | Accepted by TÜV <br> Rheinland |
| - Bobbin | SUMITOMO | PM-9820 | V-0, Phenolic, $150^{\circ} \mathrm{C}$ | UL 94 | UL |
| - Triple insulation wire | COSMOLINK YUSHENG | TIW-M | Max. $130^{\circ} \mathrm{C}$ | IEC/EN 60950-1, VDE0805 Teil1, UL 2353 | UL, VDE |
| - Teflon tube | GREAT <br> HOLDING | TFL | $200^{\circ} \mathrm{C}$ | UL 224 | UL |
| - Insulation tape | Jing jiang YaHua SYMBIO | CT <br> NO. 35660 Y | $130^{\circ} \mathrm{C}$ | UL 510 | UL |

Page 48 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |

## Supplementary information:

1. ${ }^{1)}$ Provided evidence ensures the agreed level of compliance. See OD-CB2039.
2. 'Di' means distance through insulation, 'int.' Means internal distance of creepage and 'ext.' Means external distance of creepage.
3. All sources of transformer were checked with same construction.
4. Rating information of components which are not critical component:

Thermistor (TH9903, TH9904): Min. $2.5 \Omega$, Min. 2A, $25^{\circ} \mathrm{C}$
Bridging Diode (BD9901): Min. 2A, Max 800V.
Ripple Capacitor (C9813, C9814 and C9815): 30-68uF, min. 450 V, min $.105^{\circ} \mathrm{C}$
Transistor (Q9801, Q9101): Min. 5A, 500V min.
Current sensor resistor (R9111, R9808): Min. $0.15 \Omega$, 2W

| 1.5.1 | TABLE: Opto Electronic Devices |  | P |
| :---: | :---: | :---: | :---: |
| Manufacturer ..........................................: See appended table 1.5.1 (List of critical components) |  |  |  |
| Type .....................................................: See appended table 1.5.1 (List of critical components) |  |  |  |
| Separ | ested ....................................: T | Tested with appliance |  |
| Bridgi | ulation ....................................: R | Reinforced insulation. |  |
| Extern | epage distance.......................: S | See appended table 1 |  |
| Internal creepage distance ........................: Approved source used ${ }^{1 .}$ |  |  |  |
| Distance through insulation.......................: See appended table 1.5.1 (List of critical components) |  |  |  |
| Tested under the following conditions..........: |  |  |  |
| Input $\qquad$ Tested with appliance |  |  |  |
|  |  |  |  |
| Supplementary information: <br> 1. All sources of photo coupler were in compliance with EN60747-5-5 and CTL DSH 759 decision. |  |  |  |


| 1.6.2 | TABLE: Electrical data (in normal conditions) |  |  |  |  |  | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U (V) | 1 (A) | Irated (A) | P (W) | Fuse \# | Ifuse (A) | Condition/stat |  |
| HDMI mode |  |  |  |  |  |  |  |
| 90/50 | 0.960 | -- | 85.8 | F9901 | 0.960 | Maximum normal load |  |
| 90/60 | 0.977 | -- | 85.9 | F9901 | 0.977 | Maximum normal load |  |
| 100/50 | 0.858 | 1.5 | 84.9 | F9901 | 0.858 | Maximum normal load |  |
| 100/60 | 0.864 | 1.5 | 84.9 | F9901 | 0.864 | Maximum normal load |  |
| 240/50 | 0.387 | 1.5 | 82.3 | F9901 | 0.387 | Maximum normal load |  |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| $240 / 60$ | 0.389 | 1.5 | 82.3 | F9901 | 0.389 | Maximum normal load |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $264 / 50$ | 0.370 | -- | 81.9 | F9901 | 0.370 | Maximum normal load |
| $264 / 60$ | 0.365 | -- | 82.0 | F9901 | 0.365 | Maximum normal load |
| DisplayPort mode |  |  |  |  |  |  |
| $90 / 50$ | 0.960 | -- | 85.8 | F9901 | 0.960 | Maximum normal load |
| $90 / 60$ | 0.964 | -- | 85.7 | F9901 | 0.964 | Maximum normal load |
| $100 / 50$ | 0.859 | 1.5 | 85.1 | F9901 | 0.859 | Maximum normal load |
| $100 / 60$ | 0.867 | 1.5 | 85.4 | F9901 | 0.867 | Maximum normal load |
| $240 / 50$ | 0.385 | 1.5 | 81.9 | F9901 | 0.385 | Maximum normal load |
| $240 / 60$ | 0.388 | 1.5 | 82.3 | F9901 | 0.388 | Maximum normal load |
| $264 / 50$ | 0.367 | -- | 81.7 | F9901 | 0.367 | Maximum normal load |
| $264 / 60$ | 0.364 | -- | 81.7 | F9901 | 0.364 | Maximum normal load |
| Supplem |  |  |  |  |  |  |

## Supplementary information:

1. Maximum normal load: maximum brightness, maximum contrast, full white screen; each USB 2.0 port in main board was maximum loaded to $5 \mathrm{~V} / 0.9 \mathrm{~A}$, each USB 3.0 port in USB board was maximum loaded to 5V/1.5A.
2.1.1.5 c) TABLE: max. V, A, VA test
1) 

| Voltage (rated) <br> $(\mathrm{V})$ | Current (rated) <br> $(\mathrm{A})$ | Voltage (max.) <br> $(\mathrm{V})$ | Current (max.) <br> $(\mathrm{A})$ | VA (max.) <br> $($ VA $)$ |
| :---: | :---: | :---: | :---: | :---: |
| +19 V | -- | 19.11 | 5.46 | 100.70 |

Supplementary information: Test voltage is $264 \mathrm{Vac}, 60 \mathrm{~Hz}$.

| 2.1.1.5 c) <br> 2) | TABLE: stored energy | N/A |  |
| :--- | :---: | :---: | :---: |
| Capacitance C $(\mu \mathrm{F})$ |  | Voltage $\cup(\mathrm{V})$ | Energy E (J) |
| -- | -- | -- |  |
| Supplementary information: |  |  |  |


| 2.2 | TABLE: evaluation of voltage limiting components in SELV circuits | P |  |
| :--- | :--- | :---: | :---: | :---: |
| Component (measured between) | max. voltage (V) <br> (normal operation) | Voltage Limiting Components |  |
|  | V peak | V d.c. |  |
|  | 86.2 | -- |  |
| After D9105/C9141 | 21.2 | -- | D9105/C9141 |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| After L801 to earth | -- | 51.6 |  |
| :--- | :---: | :---: | :---: |
| Fault test performed on voltage limiting components | Voltage measured (V) in SELV circuits <br> (V peak or V d.c.) |  |  |
| C9141 (s-c) | 14.5 (for +19 V output) |  |  |
| D9105 (s-c) | 0 (for +19 V output) |  |  |
| supplementary information: Input Voltage is $264 \mathrm{Vac}, 60 \mathrm{~Hz}$. |  |  |  |


| 2.5 | TABLE: Limited power sources |  |  |  |  | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit output tested: 14V outputs of power board |  |  |  |  |  |  |
| Note: Measured Uoc (V) with all load circuits disconnected: See below |  |  |  |  |  |  |
| Components | Test condition (Single fault) | Uoc (V) | $\mathrm{Isc}^{\text {( }}$ ( |  | VA |  |
|  |  |  | Meas. | Limit | Meas. | Limit |
| Circuit output tested: +19V outputs of power board ${ }^{2}$ ). |  |  |  |  |  |  |
| $1)$. | Normal condition | 19.1 | 5.46 | $\begin{gathered} 1000 / \mathrm{Uoc}= \\ 52.4 \end{gathered}$ | 100.70 | 250 |
| Supplementary information: <br> 1. Input Voltage is $264 \mathrm{Vac}, 60 \mathrm{~Hz}$. <br> 2. Output protected by fuses that will break the circuit within 120 s with a current equal to $210 \%$. Current limit of table 2C reduced to breaking capacity of the fuse (50A). |  |  |  |  |  |  |


| $\mathbf{2 . 1 0 . 2}$ | Table: working voltage measurement |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Location | RMS voltage (V) | Peak voltage (V) | Comments |  |  |  |
| Input Voltage is 264Vac, 60 Hz . |  |  |  |  |  |  |
| T9102: Pin 1 to pin 6,7,8 | 200 | 409 |  |  |  |  |
| T9102: Pin 1 to pin 10,11,12 | 200 | 384 |  |  |  |  |
| T9102: Pin 2 to pin 6,7,8 | 200 | 388 |  |  |  |  |
| T9102: Pin 2 to pin 10,11,12 | 200 | 441 |  |  |  |  |
| T9102: Pin 3 to pin 6,7,8 | 315 | 553 |  |  |  |  |
| T9102: Pin 3 to pin 10,11,12 | 330 | 575 | Max. Vpeak and Max. Vrms |  |  |  |
| T9102: Pin 5 to pin 6,7,8 | 300 | 516 |  |  |  |  |
| T9102: Pin 5 to pin 10,11,12 | 258 | 422 |  |  |  |  |
|  |  |  |  |  |  |  |
| U9401 Pin 1-3 | 192 | 382 |  |  |  |  |
| U9401 Pin 1-4 | 192 | 381 |  |  |  |  |
| U9401 Pin 2-3 | 192 | 378 |  |  |  |  |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| U9401 Pin 2-4 | 192 | 382 |  |
| :--- | :--- | :--- | :--- |
| U9102 Pin 1-3 | 176 | 372 |  |
| U9102 Pin 1-4 | 175 | 366 |  |
| U9102 Pin 2-3 | 176 | 369 |  |
| U9102 Pin 2-4 | 175 | 372 |  |
|  |  |  |  |
| C9911 primary pin - secondary pin | 197 | 384 |  |

## Supplementary information:



TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Under C9911 | 420 | 250 | 6.0 | 8.1 | 6.0 | 9.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Under U9401 | 420 | 250 | 6.0 | 8.2 | 6.0 | 8.2 |
| Under U9102 | 420 | 250 | 6.0 | 8.2 | 6.0 | 8.2 |

## Supplementary information:

1. There is one slot measured 1 mm width.
2. Core of main transformers T9102 and T905 consider as primary.
3. One mylar sheet is fixed around power board to fulfil the requirement for basic. See table 5.2 for the electric strength test for mylar.
4. Glued component: C9815, C9813 and C9814.
5. Considered altitude correction factor 1.48 for clearances for an altitude of 5000 m .
6. For clearance and creepage that did not describe above are far larger than limit above.

| 2.10 .5 | TABLE: Distance through insulation measurements | $\mathbf{P}$ |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Distance through insulation (DTI) at/of: | U peak <br> $(\mathrm{V})$ | U rms <br> $(\mathrm{V})$ | Test <br> voltage <br> $(\mathrm{V})$ | Required DTI <br> $(\mathrm{mm})$ | DTI <br> $(\mathrm{mm})$ |
| Photo coupler (reinforced insulation) | 420 | 250 | 3000 | 0.4 | 1. |
| Mylar sheet between around power board | 420 | 250 | 3000 | 0.4 | min. 0.4 |

## Supplementary information:

1. For approved component source see appended table 1.5.1.

| 4.3.8 | TABLE: Batteries |  |  |  |  |  |  |  | N/A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The tests of 4.3.8 are applicable only when appropriate battery data is not available |  |  |  |  |  |  |  |  |  |
| Is it possible to install the battery in a reverse polarity position? |  |  |  |  |  |  |  |  |  |
|  | Non-rechargeable batteries |  |  | Rechargeable batteries |  |  |  |  |  |
|  | Discharging |  | Unintentional charging | Charging |  | Discharging |  | Reversed charging |  |
|  | Meas. current | Manuf. Specs. |  | Meas. current | Manuf. Specs. | Meas. current | Manuf. Specs. | Meas. current | Manuf. Specs. |
| Max. current during normal condition |  |  |  |  |  |  |  |  |  |
| Max. current during fault condition |  |  |  |  |  |  |  |  |  |
| Test resu |  |  |  |  |  |  |  |  | Verdict |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| - Chemical leaks |  |  |
| :--- | :--- | :--- |
| - Explosion of the battery |  |  |
| - Emission of flame or expulsion of molten metal |  |  |
| - Electric strength tests of equipment after completion of tests |  |  |
| Supplementary information: |  |  |


| 4.3.8 | TABLE: Batteries |  | N/A |
| :---: | :---: | :---: | :---: |
| Battery category ....................................: (Lithium, NiMh, NiCad, Lithium Ion ...) |  |  |  |
| Manufacturer ............................................: |  |  |  |
| Type / model...........................................: |  |  |  |
| Voltage ...................................................: |  |  |  |
| Capacity ................................................: mAh |  |  |  |
| Tested and Certified by (incl. Ref. No.) ........: |  |  |  |
| Circuit protection diagram: |  |  |  |


| MARKINGS AND INSTRUCTIONS (1.7.13) |  |
| :---: | :---: |
| Location of replaceable battery |  |
| Language(s) .....................................: |  |
| Close to the battery ............................: |  |
| In the servicing instructions ....................: |  |
| In the operating instructions ..................: |  |


| 4.5 | TABLE: Thermal requirements |  |  |  |  |  | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Supply voltage (V) | $\begin{aligned} & 90 \mathrm{~V} / \\ & 60 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 264 \mathrm{~V} / \\ & 60 \mathrm{~Hz} \end{aligned}$ | -- | -- | -- | - |
|  | Ambient $\mathrm{T}_{\text {min }}\left({ }^{\circ} \mathrm{C}\right)$ | See below | See below | -- | -- | -- | - |
|  | Ambient $\mathrm{T}_{\max }\left({ }^{\circ} \mathrm{C}\right)$ | See below | See below | -- | -- | -- | - |
| Maximum measured temperature T of part/at......: |  | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ |  |  |  |  | Allowed $\mathrm{T}_{\max }\left({ }^{\circ} \mathrm{C}\right)$ |
| Test on HDMI mode |  | Horizontal |  | -- | -- | -- | -- |
| AC Inlet CN9102 (on power board) |  | 48.6 | 43.2 | -- | -- | -- | 56.4 |
| C9916 body (on power board) |  | 56.4 | 47.6 | -- | -- | -- | 71.4 |
| PCB near TH9903 (on power board) |  | 72.9 | 53.4 | -- | -- | -- | 91.4 |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| C9918 body (on power board) | 66.4 | 52.5 | -- | -- | -- | 71.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L9901 coil (on power board) | 65.4 | 51.8 | -- | -- | -- | 91.4 |
| L9902 coil (on power board) | 67.1 | 53.0 | -- | -- | -- | 91.4 |
| PCB near BD9901 (on power board) | 70.5 | 54.6 | -- | -- | -- | 91.4 |
| C9815 body (on power board) | 51.3 | 48.8 | -- | -- | -- | 86.4 |
| L9801 coil (on power board) | 69.3 | 58.9 | -- | -- | -- | 106.4 |
| L9801 core (on power board) | 78.5 | 61.5 | -- | -- | -- | 106.4 |
| T9102 coil (on power board) | 87.2 | 82.0 | -- | -- | -- | 96.4 |
| T9102 core (on power board) | 83.3 | 78.3 | -- | -- | -- | 96.4 |
| C9911 body (on power board) | 51.1 | 48.0 | -- | -- | -- | 71.4 |
| U9401 body (on power board) | 60.9 | 59.3 | -- | -- | -- | 86.4 |
| U9102 body (on power board) | 59.3 | 58.7 | -- | -- | -- | 86.4 |
| PCB near D9105 (on power board) | 86.5 | 81.3 | -- | -- | -- | 91.4 |
| PCB near Q9101 (on power board) | 81.9 | 73.0 | -- | -- | -- | 91.4 |
| L801 coil (on power board) | 84.9 | 81.6 | -- | -- | -- | 91.4 |
| Main IC (on main board) | 59.9 | 60.0 | -- | -- | -- | 91.4 |
| Plastic enclosure outside near T9101 | 41.2 | 39.6 | -- | -- | -- | 81.4 |
| Metal enclosure | 51.7 | 46.5 | -- | -- | -- | 56.4 |
| Panel surface | 36.5 | 37.0 | -- | -- | -- | 81.4 |
| Ambient | 26.4 | 26.4 | -- | -- | -- | -- |
|  | $(40)$ | $40)$ |  |  |  |  |
|  |  |  |  |  |  |  |
| Suppementary |  | - | - | - | - | - |

## Supplementary information:

| Temperature T of winding: | $\mathrm{t}_{1}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{R}_{1}(\Omega)$ | $\mathrm{t}_{2}\left({ }^{\circ} \mathrm{C}\right)$ | $\mathrm{R}_{2}(\Omega)$ | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | Allowed <br> $\mathrm{T}_{\max }\left({ }^{\circ} \mathrm{C}\right)$ | Insulation <br> class |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

## Supplementary information:

1. The temperatures were measured under the worst case normal mode defined in 1.2.2.1 and as described in sub-clause 1.6.2 at voltages as described above.
2. All source of each transformer considered with maximum value recorded.
3. With a specified ambient temperature of $40^{\circ} \mathrm{C}$. Temperature limits are calculated as follows:

Winding components providing safety isolation:

- Class $\mathrm{B} \rightarrow \mathrm{T}_{\max }=120^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}+\mathrm{Tamb}$

Components with maximum absolute temperature of others:

- Tmax $=$ Tmax of component $-40^{\circ} \mathrm{C}+$ Tamb

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 4.5.5 | TABLE: Ball pressure test of thermoplastic parts |  |  | P |
| :---: | :---: | :---: | :---: | :---: |
|  | Allowed impression diameter (mm) ...................: | $\leq 2 \mathrm{~mm}$ |  | - |
| Part |  | Test temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Impression (mm) | neter |
| Plastic enclosure, Kingfa: HIPS-5197, 2.5mm |  | 90 | 1.59 |  |
| Plastic enclosure, Kingfa: GAR-011(L85), 2.5 mm |  | 85 | 1.31 |  |
| Plastic enclosure, Kingfa: GAR-011(L65), 2.5 mm |  | 85 | 1.29 |  |
| Plastic enclosure, Kingfa: HIPS-510(H), 2.5mm |  | 80 | 1.29 |  |
| Plastic enclosure, Kingfa: FRHIPS-960, 2.5mm |  | 85 | 1.88 |  |
| Plastic enclosure, Cheil: GC-0750(+), 2.5 mm |  | 80 | 1.61 |  |
| Plastic enclosure, Cheil: GC-0700(+), 2.5 mm |  | 80 | 1.94 |  |
| Plastic enclosure, Cheil: HG-0760(+), 2.5 mm |  | 85 | 1.73 |  |
| Plastic enclosure, Cheil: LX-0951(+), 2.5mm |  | 85 | 1.83 |  |
| Plastic enclosure, Cheil: SD-0150, 2.5 mm |  | 85 | 1.48 |  |
| Plastic enclosure, Cheil: HR-1360, 2.5 mm |  | 85 | 1.71 |  |
| Plastic enclosure, Cheil: BF-0670F, 2.5mm |  | 80 | 1.59 |  |
| Plastic enclosure, LG: HF380, 2.5 mm |  | 85 | 1.48 |  |
| Plastic enclosure, LG: SE885, 2.5 mm |  | 80 | 1.42 |  |
| Plastic enclosure, LG: LUPOY GP-1000(\#), 2.5mm |  | 95 | 1.21 |  |
| Plastic enclosure, LG: XG568, 2.5 mm |  | 80 | 1.81 |  |
| Plastic enclosure, LG: XG569C, 2.5 mm |  | 80 | 1.85 |  |
| Plastic enclosure, LG: HF388H, 2.5 mm |  | 85 | 1.39 |  |
| Plastic enclosure, LG: SE750, 2.5 mm |  | 80 | 1.5 |  |
| Plastic enclosure, Teijin: TN-7500, 2.5 mm |  | 85 | 1.57 |  |
| Plastic enclosure, ORINKO: HIPS-2000, 2.5 mm |  | 85 | 1.48 |  |
| Plastic enclosure, Kingfa: GAR-011C, 2.5 mm |  | 90 | 1.91 |  |

Supplementary information: Above mentioned plastic enclosure material was tested by client's request.

| 5.1 | TABLE: touch current measurement | P |  |  |
| :--- | :---: | :---: | :--- | :---: |
| Measured between: | Measured <br> $(\mathrm{mA})$ | Limit <br> $(\mathrm{mA})$ | Comments/conditions |  |
| L - metal enclosure | 0.16 | 3.5 | Switch "e" open |  |
| N - metal enclosure | 0.16 | 3.5 | Switch "e" open |  |
| L - signal connector | 0.01 | 0.25 | Switch "e" close * |  |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| $N$ - signal connector | 0.01 | 0.25 | Switch "e" close * |
| :--- | :--- | :--- | :--- |
| L - plastic enclosure | 0.01 | 0.25 | Switch "e" close |
| N - plastic enclosure | 0.01 | 0.25 | Switch "e" close |
| Supplementary information: Input Voltage is 264Vac, 60 Hz. |  |  |  |


| 5.2 | TABLE: Electric strength tests, impulse tests and voltage surge tests |  |  | P |
| :---: | :---: | :---: | :---: | :---: |
|  | applied between: | Voltage shape (AC, DC, impulse, surge) | Test voltage (V) | Breakdown Yes / No |
| Basic/supplementary: |  |  |  |  |
|  | to earthed metal part | AC | 1864 | No |
| Reinforced: |  |  |  |  |
|  | sible plastic enclosure with metal foil | AC | 3000 | No |
|  | fixed between power board trace side and panel | AC | 3000 | No |
|  | to secondary (output) | DC | 4242 | No |
|  | mary to secondary | AC | 3000 | No |
|  | condary to core | AC | 3000 | No |
|  | e layer of insulation tape | AC | 3000 | No |
| Supplementary information: <br> 1. Each source of transformer has been tested and passed; <br> 2. For all source of mylar sheet; <br> 3. The tests mentioned above were performed after humidity test. |  |  |  |  |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 5.3 | TABLE: Fault condition tests |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ambient temperature ( ${ }^{\circ} \mathrm{C}$ ) |  | ........ | ..... | See below |  |  |
|  | Power source for EUT: Manufacturer, model/type, output rating $\qquad$ |  |  |  | See appended table 1.5.1 |  |  |
| Component No. | Fault | Supply voltage (V) | Test time | Fuse \# | Fuse current (A) | Observation |  |
| Ventilation openings | blocked | 264 | 4h | F9901 | 0.365 | Max. measured temperature: <br> T9102 coil $=88.3^{\circ} \mathrm{C}$, <br> T9102 core $=84.9^{\circ} \mathrm{C}$, <br> U9102 $=80.3^{\circ} \mathrm{C}$, <br> AC inlet $=49.5^{\circ} \mathrm{C}$, <br> Metal enclosure $=53.0^{\circ} \mathrm{C}$, <br> Plastic enclosure outside near <br> T9102 $=40.5^{\circ} \mathrm{C}$, <br> Panel $=45.9^{\circ} \mathrm{C}$, <br> Button $=35.8^{\circ} \mathrm{C}$, <br> Ambient $=25.6^{\circ} \mathrm{C}$ <br> Unit operated normally, no hazards, no damage. |  |
| +19V output | overload | 264 | 4h | F9901 | 0.435 | Max. measured temperature: <br> T9102 coil $=93.8^{\circ} \mathrm{C}$, <br> T9102 core $=89.2^{\circ} \mathrm{C}$, <br> U9102 $=83.4^{\circ} \mathrm{C}$, <br> AC inlet $=45.6^{\circ} \mathrm{C}$, <br> Metal enclosure $=50.6^{\circ} \mathrm{C}$, <br> Plastic enclosure outside near <br> $\mathrm{T} 9102=35.6^{\circ} \mathrm{C}$, <br> Panel $=36.5^{\circ} \mathrm{C}$, <br> Button $=33.8^{\circ} \mathrm{C}$, <br> Ambient $=27.0^{\circ} \mathrm{C}$ <br> Before shutdown winding is loaded to additional 1.60A. No damage, no hazards. |  |
| $\begin{array}{\|l} \hline \text { USB } 3.0 \\ \text { Port } \end{array}$ | overload | 264 | 4h | F9901 | 0.372 | $\begin{aligned} & \hline \text { Max. measured temperature: } \\ & \mathrm{T} 9102 \text { coil }=85.0^{\circ} \mathrm{C}, \\ & \mathrm{~T} 9102 \text { core }=81.5^{\circ} \mathrm{C}, \\ & \mathrm{U} 9102=76.8^{\circ} \mathrm{C}, \\ & \text { AC inlet }=43.6^{\circ} \mathrm{C}, \\ & \text { Metal enclosure }=47.1^{\circ} \mathrm{C}, \\ & \text { Plastic enclosure outside near } \\ & \mathrm{T} 9102=35.0^{\circ} \mathrm{C}, \\ & \text { Panel }=36.9^{\circ} \mathrm{C}, \\ & \text { Button }=33.6^{\circ} \mathrm{C}, \\ & \text { Ambient }=25.9^{\circ} \mathrm{C} \\ & \text { Before shutdown winding is } \\ & \text { loaded to additional } 1.91 \mathrm{~A} / 7.68 \mathrm{~W} . \\ & \text { No damage, no hazards. } \\ & \hline \end{aligned}$ |  |
| $\begin{aligned} & \text { BD9901 Pin } \\ & 1-2 \end{aligned}$ | S-C | 264 | $<1 \mathrm{sec}$. | F9901 | -- | Fuse open instantly, no hazards. |  |

Page 58 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| C9813 | s-c | 264 | $<1$ sec. | F9901 | -- | Fuse open instantly, no hazards. |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| U9801 Pin <br> $5-6$ | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| U9801 Pin <br> 6-7 | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| U9801 Pin <br> $5-8$ | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| U9801 Pin <br> 3-4 | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| U9104 Pin <br> 8-1 | s-c | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no <br> hazards. |
| U9104 Pin <br> 8-2 | s-c | 264 | $<1$ sec. | F9901 | -- | Fuse open instantly, R9165 <br> damaged, no hazards. |
| U9104 Pin <br> 3-4 | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| D9101 | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| Q9101 Pin <br> G-S | s-c | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no <br> hazards. |
| Q9101 Pin <br> G-D | s-c | 264 | $<1$ sec. | F9901 | -- | Fuse open instantly, R9111, <br> R9105, U9104, D9102 damaged, <br> no hazards. |
| Q9101 Pin <br> D-S | s-c | 264 | 1 min | F9901 | -- | Fuse open instantly, R9111, <br> R9105, U9104, D9102 damaged, <br> no hazards. |
| Q9801 Pin <br> G-S | s-c | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no <br> hazards. |
| Q9801 Pin <br> G-D | s-c | 264 | $<1$ sec. | F9901 | -- | Fuse open instantly, R9808 <br> damaged, no hazards. |
| Q9801 Pin <br> D-S | s-c | 264 | $<1$ sec. | F9901 | -- | Fuse open instantly, R9808 <br> damaged, no hazards. |
| D9106 | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| R9145 | s-c | 264 | 1 min | F9901 | 0.260 | Unit operated normally, no <br> damage, no hazards. |
| R9111 | s-c | 264 | 1 min | F9901 | 0.229 | Unit operated normally, no <br> damage, no hazards. |
| T9102 Pin <br> 1-2 | s-c | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no <br> hazards. |
| T9102 Pin <br> 3-5 | s-c | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no <br> hazards. |

TRF No. IEC60950_1G

Page 59 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| $\begin{aligned} & \text { T9102 Pin } \\ & 6,7,8- \\ & 10,11,12 \end{aligned}$ | s-c | 264 | 1 min | F9901 | 0.092 | Unit shutdown, no damage, no hazards. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C9136 | S-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no hazards. |
| U9102 Pin 1 | O-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage,main borad U701 damage, no hazards. Repeated the test with three times and same result come out. No hazards. |
| U9102 Pin 3 | O-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage,main borad U701 damage, no hazards. Repeated the test with three times and same result come out. No hazards. |
| $\begin{aligned} & \text { U9102 Pin } \\ & 1-2 \end{aligned}$ | S-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage,main borad U701 damage, no hazards. Repeated the test with three times and same result come out. No hazards. |
| $\begin{aligned} & \text { U9102 Pin } \\ & 3-4 \end{aligned}$ | S-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage,main borad U701 damage, no hazards. Repeated the test with three times and same result come out. No hazards. |
| U9102 Pin 1 | O-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no hazards. |
| U9102 Pin 3 | O-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no hazards. |
| $\begin{aligned} & \text { U9102 Pin } \\ & 1-2 \end{aligned}$ | S-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no hazards. |
| $\begin{aligned} & \text { U9102 Pin } \\ & 3-4 \end{aligned}$ | S-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no hazards. |
| U9401 Pin 1 | O-C | 264 | 1 min | F9901 | 0.333 | Unit operated normally, no damage, no hazards. |
| U9401 Pin 3 | O-C | 264 | 1 min | F9901 | 0.333 | Unit operated normally, no damage, no hazards. |
| $\begin{aligned} & \text { U9401 Pin } \\ & 1-2 \end{aligned}$ | S-C | 264 | 1 min | F9901 | 0.379 | Unit operated normally, no damage, no hazards. |
| $\begin{aligned} & \text { U9401 Pin } \\ & 3-4 \end{aligned}$ | S-C | 264 | 1 min | F9901 | 0.229 | Unit operated normally, no damage, no hazards. |
| U9103 A-K | S-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no hazards. |
| L9103 | S-C | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no hazards. |

TRF No. IEC60950_1G

| IEC 60950-1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| R9129 | s-c | 264 | 1 min | F9901 | 0.075 | Unit shutdown, no damage, no <br> hazards. |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| D801 | s-c | 264 | 1 min | F9901 | 0.117 | Unit shutdown, no damage, no <br> hazards. |
| C9403 | s-c | 264 | 1 min | F9901 | 0.078 | Unit shutdown, no damage, no <br> hazards. |
| R9351 | s-c | 264 | 1 min | F9901 | 0.365 | Unit operated normally, no <br> damage, no hazards. |
| +19V/19V- <br> Earth | s-c | 264 | 1 min | F9901 | 0.078 | Unit shutdown, no damage, no <br> hazards. |
| Sun |  |  |  |  |  |  |

## Supplementary information:

1. The unit passed 3000 V hi-pot test between primary and accessible output connector after single fault test above.
2. In fault column, where $\mathrm{s}-\mathrm{c}=$ short-circuited, $\mathrm{o}-\mathrm{c}=$ open-circuited, $\mathrm{o}-\mathrm{I}=$ overload.
3. For fuse opened conditions were tested with each source of fuse.
4. For component damaged conditions have been repeated twice (three tests total) with same result.
5. For heating test mentioned above was tested under HDMI mode.
6. All source of each transformer considered with maximum value recorded.
7. Temp. limit of transformer according to table C. 1 is $175^{\circ} \mathrm{C}-10-\left(40^{\circ} \mathrm{C}-\mathrm{Tamb}\right)$ (worst case) for Class A.

Page 61 of 63
Report No. 50298194001

| IEC 60950-1 |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| C. 2 | TABLE: transformers |  |  |  |  |  | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Loc. | Tested insulation | Working voltage peak / V $(2.10 .2)$ | Working voltage rms / V (2.10.2) | Required electric strength (5.2) | Required clearance / mm (2.10.3) | Required creepage distance / mm (2.10.4) | Required distance thr. insul. $(2.10 .5)$ |
| T9102 | Input terminal to output winding (RI) | 575 | 330 | $\begin{gathered} \mathrm{AC} \\ 4000 \mathrm{~V} \end{gathered}$ | 6.9 | 6.9 | Min. 2 layers tape |
| T9102 | Input terminal to output terminal (RI) | 575 | 330 | $\begin{gathered} \mathrm{AC} \\ 4000 \mathrm{~V} \end{gathered}$ | 6.9 | 6.9 | Min. 2 layers tape |
| T9102 | Input winding to output winding (RI) | 575 | 330 | $\begin{gathered} \text { AC } \\ 4000 \mathrm{~V} \end{gathered}$ | 6.9 | 6.9 | Min. 2 layers tape |
| T9102 | Input winding to output terminal (RI) | 575 | 330 | $\begin{gathered} \text { AC } \\ 4000 \mathrm{~V} \end{gathered}$ | 6.9 | 6.9 | Min. 2 layers tape |
| T9102 | Output winding to Core (RI) | 575 | 330 | $\begin{gathered} \text { AC } \\ 4000 \mathrm{~V} \end{gathered}$ | 6.9 | 6.9 | Min. 2 layers tape |
| T9102 | Output terminal to Core (RI) | 575 | 330 | $\begin{gathered} \mathrm{AC} \\ 4000 \mathrm{~V} \end{gathered}$ | 6.9 | 6.9 | Min. 2 layers tape |
| Loc. | Tested insulation |  |  | Test voltage/ V | Measured clearance / mm | Measured creepage dist./ mm | Measured distance thr. insul. / mm; number of layers |
| T9102 | Input terminal to output winding (RI) |  |  | $\begin{gathered} \mathrm{AC} \\ 4000 \mathrm{~V} \end{gathered}$ | Triple insulation wire used on secondary windings | Triple insulation wire used on secondary windings | -- |
| T9102 | Input terminal to output terminal (RI) |  |  | $\begin{gathered} \text { AC } \\ 4000 \mathrm{~V} \end{gathered}$ | 54.7 | 54.7 | -- |
| T9102 | Input winding to output winding (RI) |  |  | $\begin{gathered} \text { AC } \\ 4000 \mathrm{~V} \end{gathered}$ | Triple insulation wire used on secondary windings | Triple insulation wire used on secondary windings | -- |
| T9102 | Input winding to output terminal (RI) |  |  | $\begin{gathered} \text { AC } \\ 4000 \mathrm{~V} \end{gathered}$ | 8.4 | 8.4 | -- |


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| T9102 | Output winding to <br> Core (RI) | AC <br> 4000 V | Triple <br> insulation <br> wire used <br> on <br> secondary <br> windings | Triple <br> insulation <br> wire used <br> on <br> secondary <br> windings | -- |
| :--- | :--- | :---: | :--- | :--- | :--- |
| T9102 | Output terminal to <br> Core (RI) | AC <br> 4000 V | 9.3 | 9.3 | -- |

Supplementary information: All sources of transformer were checked with same construction.


| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |



Concentric windings on bobbin (horizontal type core). Two layers of insulation tape around the outer winding and the outer winding is secondary. Triple insulated wire used for secondary. The core is considered as primary part.

TEQE

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| ATTACHMENT TO TEST REPORT IEC 60950-1 |  |  |
| :--- | :---: | :---: |
| EUROPEAN GROUP DIFFERENCES AND NATIONAL DIFFERENCES |  |  |
| Information technology equipment - Safety - |  |  |
|  |  |  |
|  |  |  |
| Part 1: General requirements |  |  |

EN 60950-1:2006/A11:2009/A1:2010/A12:2011/A2:2013 - CENELEC COMMON MODIFICATIONS

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN)} <br>
\hline \& \multicolumn{4}{|l|}{Clauses, subclauses, notes, tables and figures which are additional to those in IEC60950-1 and it's amendmets are prefixed "Z"} \& P <br>
\hline Contents

(A2:2013) \& \multicolumn{4}{|l|}{Add the following annexes:} \& P <br>
\hline General \& \multicolumn{4}{|l|}{Delete all the "country" notes in the reference document (IEC 60950-1:2005) according to the following list:} \& P <br>

\hline General (A1:2010) \& \multicolumn{4}{|l|}{| Delete all the "country" notes in the reference document (IEC 609501:2005/A1:2010) according to the following list: |
| :--- |
| 1.5.7.1 |
| Note |
| 6.1.2.1 |
| Note 2 |} \& P <br>

\hline
\end{tabular}

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN) |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 6.2.2.1 Note 2 EE. 3 Note |  |  |
| General <br> (A2:2013) | Delete all the "country" notes in the reference document (IEC 609501:2005/A2:2013) according to the following list: <br> 2.7.1 <br> Note * <br> 2.10.3.1 <br> Note 2 <br> 6.2.2. Note <br> * Note of secretary: Text of Common Modification remains unchanged. |  | P |
| $\begin{array}{\|l} \text { 1.1.1 } \\ \text { (A1:2010) } \end{array}$ | Replace the text of NOTE 3 by the following. <br> NOTE 3 The requirements of EN 60065 may also be used to meet safety requirements for multimedia equipment. See IEC Guide 112, Guide on the safety of multimedia equipment. For television sets EN 60065 applies. |  | N/A |
| 1.3.Z1 | Add the following subclause: <br> 1.3.Z1 Exposure to excessive sound pressure <br> The apparatus shall be so designed and constructed as to present no danger when used for its intended purpose, either in normal operating conditions or under fault conditions, particularly providing protection against exposure to excessive sound pressures from headphones or earphones. <br> NOTE Z1 A new method of measurement is described in EN 50332-1, Sound system equipment: <br> Headphones and earphones associated with portable audio equipment - Maximum sound pressure level measurement methodology and limit considerations Part 1: General method for "one package equipment", and in EN 50332-2, Sound system equipment: Headphones and earphones associated with portable audio equipment - Maximum sound pressure level measurement methodology and limit considerations Part 2: Guidelines to associate sets with headphones coming from different manufacturers. | Added. | N/A |
| (A12:2011) | In EN 60950-1:2006/A12:2011 <br> Delete the addition of 1.3.Z1 / EN 60950-1:2006 Delete the definition 1.2.3.Z1 / EN 60950-1:2006 /A1:2010 | Deleted. | N/A |
| 1.5.1 <br> (Added info*) | Add the following NOTE: <br> NOTE Z1 The use of certain substances in electrical and electronic equipment is restricted within the EU: see Directive 2002/95/EC. New Directive 2011/65/11 * | Added. | P |
| $\begin{aligned} & 1.7 .2 .1 \\ & \text { (A1:2010) } \end{aligned}$ | In addition, for a PORTABLE SOUND SYSTEM, the instructions shall include a warning that excessive sound pressure from earphones and headphones can cause hearing loss. | Added. | N/A |
| 1.7.2.1 | In EN 60950-1:2006/A12:2011 | Not portable Sound System. | N/A |


| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN) |  |  |  |
| :---: | :---: | :---: | :---: |
| (A12.2011) | Delete NOTE Z1 and the addition for Portable Sound System. <br> Add the following clause and annex to the existing standard and amendments. |  |  |
|  | Zx Protection against excessive sound pressur players | re from personal music | N/A |
|  | Zx. 1 General <br> This sub-clause specifies requirements for protection against excessive sound pressure from personal music players that are closely coupled to the ear. It also specifies requirements for earphones and headphones intended for use with personal music players. <br> A personal music player is a portable equipment $\square$ for personal use, that: <br> - is designed to allow the user to listen to recorded or broadcast sound or video; and <br> - primarily uses headphones or earphones that can be worn in or on or around the ears; and <br> - allows the user to walk around while in use. <br> NOTE 1 Examples are hand-held or body-worn portable CD players, MP3 audio players, mobile phones with MP3 type features, PDA's or similar equipment. <br> A personal music player and earphones or headphones intended to be used with personal music players shall comply with the requirements of this sub-clause. <br> The requirements in this sub-clause are valid for music or video mode only. <br> The requirements do not apply: <br> - while the personal music player is connected to an external amplifier; or <br> - while the headphones or earphones are not used. <br> NOTE 2 An external amplifier is an amplifier which is not part of the personal music player or the listening device, but which is intended to play the music as a standalone music player. <br> The requirements do not apply to: <br> - hearing aid equipment and professional | Not portable Sound System. | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |



Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |

IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN)
c) provide a means to actively inform the user of the increased sound pressure when the equipment is operated with an acoustic output exceeding those mentioned above. Any means used shall be acknowledged by the user before activating a mode of operation which allows for an acoustic output exceeding those mentioned above. The acknowledgement does not need to be repeated more than once every 20 h of cumulative listening time; and
NOTE 2 Examples of means include visual or audible signals. Action from the user is always required.
NOTE 3 The 20 h listening time is the accumulative listening time, independent how often and how long the personal music player has been switched off.
d) have a warning as specified in Zx .3 ; and
e) not exceed the following:

1) equipment provided as a package (player with Its listening device), the acoustic output shall be $\leq 100 \mathrm{dBA}$ measured while playing the fixed "programme simulation noise" described in EN 50332-1; and
2) a personal music player provided with an analogue electrical output socket for a listening device, the electrical output shall be $\leq 150 \mathrm{mV}$ measured as described in EN 50332-2, while playing the fixed "programme simulation noise" described in EN 50332-1.

For music where the average sound pressure (long term LAeq,T) measured over the duration of the song is lower than the average produced by the programme simulation noise, the warning does not need to be given as long as the average sound pressure of the song is below the basic limit of 85 dBA. In this case $T$ becomes the duration of the song.
NOTE 4 Classical music typically has an average sound pressure (long term Laeq,T) which is much lower than the average programme simulation noise. Therefore, if the player is capable to analyse the song and compare it with the programme simulation noise, the warning does not need to be given as long as the average sound pressure of the song is below the basic limit of 85 dBA .
For example, if the player is set with the programme simulation noise to 85 dBA , but the average music level of the song is only 65 dBA , there is no need to give a warning or ask an acknowledgement as long as the average sound level of the song is not above the basic limit of 85 dBA .

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN) |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Zx. 3 Warning <br> The warning shall be placed on the equipment, or on the packaging, or in the instruction manual and shall consist of the following: <br> - the symbol of Figure 1 with a minimum height of 5 mm ; and <br> - the following wording, or similar: <br> "To prevent possible hearing damage, do not listen at high volume levels for long periods." <br> Figure 1 - Warning label (IEC 60417-6044) <br> Alternatively, the entire warning may be given through the equipment display during use, when the user is asked to acknowledge activation of the higher level. | Not portable Sound System. | N/A |
|  | Zx. 4 Requirements for listening devices (headphones and earphones) |  | N/A |
|  | Zx.4.1 Wired listening devices with analogue input <br> With 94 dBA sound pressure output LAeq,T, the input voltage of the fixed "programme simulation noise" described in EN 50332-2 shall be $\geq 75 \mathrm{mV}$. <br> This requirement is applicable in any mode where the headphones can operate (active or passive), including any available setting (for example built-in volume level control). <br> NOTE The values of $94 \mathrm{dBA}-75 \mathrm{mV}$ correspond with $85 \mathrm{dBA}-$ 27 mV and $100 \mathrm{dBA}-150 \mathrm{mV}$. | No listening devices. | N/A |
|  | Zx.4.2 Wired listening devices with digital input With any playing device playing the fixed "programme simulation noise" described in EN | No listening devices. | N/A |


| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN) |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 50332-1 (and respecting the digital interface standards, where a digital interface standard exists that specifies the equivalent acoustic level), the acoustic output LAeq, $^{T}$ of the listening device shall be $\leq 100 \mathrm{dBA}$. <br> This requirement is applicable in any mode where the headphones can operate, including any available setting (for example built-in volume level control, additional sound feature like equalization, etc.). <br> NOTE An example of a wired listening device with digital input is a USB headphone. |  |  |
|  | Zx.4.3 Wireless listening devices <br> In wireless mode: <br> - with any playing and transmitting device playing the fixed programme simulation noise described in EN 50332-1; and <br> - respecting the wireless transmission standards, where an air interface standard exists that specifies the equivalent acoustic level; and <br> - with volume and sound settings in the listening device (for example built-in volume level control, additional sound feature like equalization, etc.) set to the combination of positions that maximize the measured acoustic output for the abovementioned programme simulation noise, the acoustic output LAeq, T of the listening device shall be $\leq 100 \mathrm{dBA}$. <br> NOTE An example of a wireless listening device is a Bluetooth headphone. | No listening devices. | N/A |
|  | Zx. 5 Measurement methods <br> Measurements shall be made in accordance with EN 50332-1 or EN 50332-2 as applicable. Unless stated otherwise, the time interval $T$ shall be 30 s . <br> NOTE Test method for wireless equipment provided without listening device should be defined. | No listening devices. | N/A |
| 2.7.1 | Replace the subclause as follows: <br> Basic requirements <br> To protect against excessive current, short-circuits and earth faults in PRIMARY CIRCUITS, protective devices shall be included either as integral parts of | Replaced. | P |


| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN) |  |  |  |
| :---: | :---: | :---: | :---: |
|  | the equipment or as parts of the building installation, subject to the following, a), b) and c): <br> a) except as detailed in b) and c), protective devices necessary to comply with the requirements of 5.3 shall be included as parts of the equipment; <br> b) for components in series with the mains input to the equipment such as the supply cord, appliance coupler, r.f.i. filter and switch, short-circuit and earth fault protection may be provided by protective devices in the building installation; |  |  |
|  | c) it is permitted for PLUGGABLE EQUIPMENT TYPE B or PERMANENTLY CONNECTED EQUIPMENT, to rely on dedicated overcurrent and short-circuit protection in the building installation, provided that the means of protection, e.g. fuses or circuit breakers, is fully specified in the installation instructions. <br> If reliance is placed on protection in the building installation, the installation instructions shall so state, except that for PLUGGABLE EQUIPMENT TYPE A the building installation shall be regarded as providing protection in accordance with the rating of the wall socket outlet. | No PLUGGABLE EQUIPMENT TYPE B or PERMANENTLY CONNECTED EQUIPMENT. | N/A |
| 2.7.2 | This subclause has been declared 'void'. | Declared. | N/A |
| 3.2.3 | Delete the NOTE in Table 3A, and delete also in this table the conduit sizes in parentheses. | Deleted. | N/A |
| 3.2.5.1 | Replace "60245 IEC 53" by "H05 RR-F"; <br>  "60227 IEC 52" by "H03 VV-F or <br> "60227 IEC 53" by "H05 VV-F or  <br> H05 VVH2-F2".  <br> In Table 3B, replace the first four lines by the  <br> following:  <br> Up to and including 6 \|  | No power cord provided. | N/A |
| $\begin{aligned} & \text { 3.2.5.1 } \\ & \text { (A2:2013) } \end{aligned}$ | NOTE Z1 The harmonised code designations corresponding to the IEC cord types are given in Annex ZD |  | N/A |
| 3.3.4 | In Table 3D, delete the fourth line: conductor sizes for 10 to 13 A , and replace with the following: |  | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| IEC 60950-1, GROUP DIFFERENCES (CENELEC common modifications EN) |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Over 10 up to and including $16 \mid 1,5$ to $2,5 \mid 1,5$ to 4 I <br> Delete the fifth line: conductor sizes for 13 to 16 A |  |  |
| 4.3.13.6 (A1:2010) | Replace the existing NOTE by the following: <br> NOTE Z1 Attention is drawn to: <br> 1999/519/EC: Council Recommendation on the limitation of exposure of the general public to electromagnetic fields 0 Hz to 300 GHz , and <br> 2006/25/EC: Directive on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artifical optical radiation). | Replaced. | N/A |
|  | Standards taking into account mentioned Recommendation and Directive which demonstrate compliance with the applicable EU Directive are indicated in the OJEC. | Replaced. | N/A |
| Annex H | Replace the last paragraph of this annex by: At any point 10 cm from the surface of the OPERATOR ACCESS AREA, the dose rate shall not exceed $1 \mu \mathrm{~Sv} / \mathrm{h}(0,1 \mathrm{mR} / \mathrm{h})$ (see NOTE). Account is taken of the background level. <br> Replace the notes as follows: <br> NOTE These values appear in Directive 96/29/Euratom. Delete NOTE 2. | No X-ray radiation. | N/A |
| Bibliograph <br> y | Additional EN standards. |  | - |


| $Z A$ | NORMATIVE REFERENCES TO INTERNATIONAL PUBLICATIONS WITH <br> THEIR CORRESPONDING EUROPEAN PUBLICATIONS | - |
| :--- | :--- | :--- |


| ZB ANNEX (normative) <br> SPECIAL NATIONAL CONDITIONS (EN) |  |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| 1.2.4.1 | In Denmark, certain types of Class I appliances <br> (see 3.2.1.1) may be provided with a plug not <br> establishing earthing conditions when inserted into <br> Danish socket-outlets. | Equipment is for building-in <br> and shall be evaluated in end <br> product. | N/A |  |
| 1.2 .13 .14 <br> (A11:2009) | In Norway and Sweden, for requirements see <br> 1.7 .2 .1 and 7.3 of this annex. | No cable distribution systems. | N/A |  |
| 1.5.7.1 <br> (A11:2009) | In Finland, Norway and Sweden, resistors <br> bridging BASIC INSULATION in CLASS I PLUGGABLE <br> EQUIPMENT TYPE A must comply with the <br> requirements in 1.5.7.1. In addition when a single <br> resistor is used, the resistor must withstand the | No such resistors. | N/A |  |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version
$\overline{\mathrm{IT}} \mathrm{CE}$

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | resistor test in 1.5.7.2. |  | P |
| :--- | :--- | :--- | :--- |
| 1.5 .8 | In Norway, due to the IT power system used (see <br> annex V, Figure V.7), capacitors are required to be <br> rated for the applicable line-to-line voltage (230 V). |  | $\mathrm{N} / \mathrm{A}$ |
| 1.5 .9 .4 | In Finland, Norway and Sweden, the third dashed <br> sentence is applicable only to equipment as <br> defined in 6.1.2.2 of this annex. | No TNV circuits. |  |
| 1.7 .2 .1 | In Finland, Norway and Sweden, CLASS I <br> PLUGGABLE EQUIPMENT TYPE A intended for <br> connection to other equipment or a network shall, if <br> safety relies on connection to protective earth or if <br> surge suppressors are connected between the <br> network terminals and accessible parts, have a <br> marking stating that the equipment must be <br> connected to an earthed mains socket-outlet. <br> The marking text in the applicable countries shall <br> be as follows: <br> In Finland: "Laite on liitettävä suojakoskettimilla <br> varustettuun pistorasiaan" <br> In Norway: "Apparatet må tilkoples jordet <br> stikkontakt" <br> In Sweden: "Apparaten skall anslutas till jordat <br> uttag" | Class II equipment. |  |
| In Norway and Sweden, the screen of the cable <br> distribution system is normally not earthed at the <br> entrance of the building and there is normally no <br> equipotential bonding system within the building. <br> Therefore the protective earthing of the building <br> installation need to be isolated from the screen of a <br> cable distribution system. <br> It is however accepted to provide the insulation <br> external to the equipment by an adapter or an <br> interconnection cable with galvanic isolator, which <br> may be provided by e.g. a retailer. <br> The user manual shall then have the following or <br> similar information in Norwegian and Swedish <br> language respectively, depending on in what <br> country the equipment is intended to be used in: <br> "Equipment connected to the protective earthing of <br> the building installation through the mains <br> connection or through other equipment with a <br> connection to protective earthing - and to a cable <br> distribution system using coaxial cable, may in <br> some circumstances create a fire hazard. <br> Connection to a cable distribution system has |  |  |  |
| 1.7 .2 .1 |  |  |  |
| (A1:2009) |  |  |  |$\quad$|  |
| :--- |

Page 11 of 68

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | therefore to be provided through a device providing <br> electrical isolation below a certain frequency range <br> (galvanic isolator, see EN 60728-11)." |  |  |
| :--- | :--- | :--- | :--- |
|  | NOTE In Norway, due to regulation for installations of cable <br> distribution systens, and in Sweden, a galvanic isolator shall <br> provide electrical insulation below 5 MHz. The insulation shall <br> withstand a dielectric strength of 1,5 kV r.m.s., 50 Hz or 60 Hz, <br> for 1 min. <br> Translation to Norwegian (the Swedish text will <br> also be accepted in Norway): <br> "Utstyr som er koplet til beskyttelsesjord via <br> nettplugg og/eller via annet jordtilkoplet <br> utstyr - og er tilkoplet et kabel-TV nett, kan <br> forårsake brannfare. For å unngå dette skal det <br> ved tilkopling av utstyret til kabel-TV nettet <br> installeres en galvanisk isolator mellom utstyret og <br> kabel- TV nettet." <br> Translation to Swedish: <br> "Utrustning som är kopplad till skyddsjord via jordat <br> vägguttag och/eller via annan <br> utrustning och samtidigt är kopplad till kabel-TV nät <br> kan i vissa fall medföra risk för <br> brand. Főr att undvika detta skall vid anslutning av <br> utrustningen till kabel-TV nät <br> galvanisk isolator finnas mellan utrustningen och <br> kabel-TV nätet." | N/A |  |
| In Denmark, CLASS I PLUGGABLE EQUIPMENT <br> TYPE A intended for connection to other <br> equipment or a network shall, if safety relies on <br> connection to protective earth or if surge <br> suppressors are connected between the network <br> terminals and accessible parts, have a marking <br> stating that the equipment must be connected to an <br> earthed mains socket-outlet. <br> The marking text in Denmark shall be as follows: <br> In Denmark: "Apparatets stikprop skal tilsluttes en <br> stikkontakt med jord, som giver forbindelse til <br> stikproppens jord." | Class II equipment. |  |  |
| In Denmark, socket-outlets for providing power to <br> other equipment shall be in accordance with the <br> Heavy Current Regulations, Section 107-2-D1, <br> Standard Sheet DK 1-3a, DK 1-5a or DK 1-7a, <br> when used on Class I equipment. For <br> STATIONARY EQUIPMENT the socket-outlet shall <br> be in accordance with Standard Sheet DK 1-1b or | No socket-outlet provided. |  |  |
| 1.7.2.1 <br> (A2:2013) | N/A |  |  |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| $\begin{array}{\|l\|} \hline 1.7 .5 \\ \text { (A11:2009) } \end{array}$ | DK 1-5a. <br> For CLASS II EQUIPMENT the socket outlet shall be in accordance with Standard Sheet DKA 1-4a. |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1.7 .5 \\ & \text { (A2:2013) } \end{aligned}$ | In Denmark, socket-outlets for providing power to other equipment shall be in accordance with the DS 60884-2-D1:2011. <br> For class I equipment the following Standard Sheets are applicable: DK 1-3a, DK 1-1c, DK 1-1d, DK 1-5a or DK 1-7a, with the exception for STATIONARY EQUIPMENT where the socketoutlets shall be in accordance with Standard Sheet DK 1-1b, DK 1-1c, DK 1-1d or DK 1-5a. <br> Socket outlets intended for providing power to Class II apparatus with a rated current of 2,5 A shall be in accordance with DS 60884-2-D1 standard sheet DKA 1-4a. Other current rating socket outlets shall be in compliance with by DS 60884-2-D1 Standard Sheet DKA 1-3a or DKA 1-3b. <br> Justification the Heavy Current Regulations, 6c | No socket-outlet provided. | N/A |
| 2.2.4 | In Norway, for requirements see 1.7.2.1, 6.1.2.1 and 6.1.2.2 of this annex. | No TNV circuits. | N/A |
| 2.3.2 | In Finland, Norway and Sweden there are additional requirements for the insulation. See 6.1.2.1 and 6.1.2.2 of this annex. | No TNV circuits. | N/A |
| 2.3.4 | In Norway, for requirements see 1.7.2.1, 6.1.2.1 and 6.1.2.2 of this annex. | No TNV circuits. | N/A |
| 2.6.3.3 | In the United Kingdom, the current rating of the circuit shall be taken as 13 A , not 16 A . |  | P |
| 2.7.1 | In the United Kingdom, to protect against excessive currents and short-circuits in the PRIMARY CIRCUIT of DIRECT PLUG-IN EQUIPMENT, tests according to 5.3 shall be conducted, using an external protective device rated 30 A or 32 A . If these tests fail, suitable protective devices shall be included as integral parts of the DIRECT PLUG-IN EQUIPMENT, so that the requirements of 5.3 are met. | Not direct plug-in equipment. | N/A |
| 2.10.5.13 | In Finland, Norway and Sweden, there are additional requirements for the insulation, see 6.1.2.1 and 6.1.2.2 of this annex. | No TNV circuits. | N/A |
| 3.2.1.1 | In Switzerland, supply cords of equipment having a RATED CURRENT not exceeding 10 A shall be | No power cord provided. | N/A |

Tical
Page 13 of 68
Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | provided with a plug complying with SEV 1011 or IEC 60884-1 and one of the following dimension sheets: $\begin{array}{\|rll} \text { SEV 6532-2.1991 Plug Type } 15 & 3 P+N+P E \\ 250 / 400 \mathrm{~V}, 10 \mathrm{~A} & \\ \text { SEV 6533-2.1991 Plug Type } 11 & \mathrm{~L}+\mathrm{N} \\ 250 \mathrm{~V}, 10 \mathrm{~A} & & \\ \text { SEV } 6534-2.1991 & \text { Plug Type } 12 & \mathrm{~L}+\mathrm{N}+\mathrm{PE} \\ 250 \mathrm{~V}, 10 \mathrm{~A} & & \end{array}$ <br> In general, EN 60309 applies for plugs for currents exceeding 10 A . However, a 16 A plug and socketoutlet system is being introduced in Switzerland, the plugs of which are according to the following dimension sheets, published in February 1998: SEV 5932-2.1998: Plug Type 25, 3L+N+PE $230 / 400 \mathrm{~V}, 16 \mathrm{~A}$ <br> SEV 5933-2.1998:Plug Type 21, L+N, 250 V, 16A <br> SEV 5934-2.1998: Plug Type 23, L+N+PE 250 V, 16 A |  |  |
| :---: | :---: | :---: | :---: |
| 3.2.1.1 | In Denmark, supply cords of single-phase equipment having a rated current not exceeding13 A shall be provided with a plug according to the Heavy Current Regulations, Section 107-2-D1. <br> CLASS I EQUIPMENT provided with socket-outlets with earth contacts or which are intended to be used in locations where protection against indirect contact is required according to the wiring rules shall be provided with a plug in accordance with standard sheet DK 2-1a or DK 2-5a. <br> If poly-phase equipment and single-phase equipment having a RATED CURRENT exceeding 13 A is provided with a supply cord with a plug, this plug shall be in accordance with the Heavy Current Regulations, Section 107-2-D1 or EN 60309-2. | No power cord provided. | N/A |
| $\begin{array}{\|l} \text { 3.2.1.1 } \\ \text { (A2:2013) } \end{array}$ | In Denmark, supply cords of single-phase equipment having a rated current not exceeding 13 A shall be provided with a plug according to DS 60884-2-D1. <br> CLASS I EQUIPMENT provided with socket-outlets with earth contacts or which are intended to be used in locations where protection against indirect contact is required according to the wiring rules shall be provided with a plug in accordance with standard sheet DK 2-1a or DK 2-5a. | No power cord provided. | N/A |

Page 14 of 68
Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | If a single-phase equipment having a RATED <br> CURRENT exceeding 13 A or if a poly-phase <br> equipment is provided with a supply cord with a <br> plug, this plug shall be in accordance with the <br> standard sheets DK 6-1a in DS 60884-2-D1 or <br> EN 60309-2. <br> Justification <br> the Heavy Current Regulations, 6c |  |  |
| :--- | :--- | :--- | :--- |
| 3.2 .1 .1 | In Spain, supply cords of single-phase equipment <br> having a rated current not exceeding 10 A shall be <br> provided with a plug according to UNE <br> 20315:1994. <br> Supply cords of single-phase equipment having a <br> rated current not exceeding 2,5 A shall be provided <br> with a plug according to UNE-EN 50075:1993. <br> CLASS I EQUIPMENT provided with socket-outlets <br> with earth contacts or which are intended to be <br> used in locations where protection against indirect <br> contact is required according to the wiring rules, <br> shall be provided with a plug in accordance with <br> standard UNE 20315:1994. <br> If poly-phase equipment is provided with a supply <br> cord with a plug, this plug shall be in accordance <br> with UNE-EN 60309-2. |  |  |
|  | In the United Kingdom, apparatus which is fitted <br> with a flexible cable or cord and is designed to be <br> connected to a mains socket conforming to BS <br> 1363 by means of that flexible cable or cord and <br> plug, shall be fitted with a 'standard plug' in <br> accordance with Statutory Instrument 1768:1994 - <br> The Plugs and Sockets etc. (Safety) Regulations <br> 1994, unless exempted by those regulations. <br> NOTE ‘Standard plug' is defined in SI 1768:1994 and <br> essentially means an approved plug conforming to BS <br> 1363 or an approved conversion plug. | No power cord provided. | N/A |
| In Ireland, apparatus which is fitted with a flexible <br> cable or cord and is designed to be connected to a <br> mains socket conforming to I.S. 411 by means of <br> that flexible cable or cord and plug, shall be fitted <br> with a 13 A plug in accordance with Statutory <br> Instrument 525:1997 - National Standards <br> Authority of Ireland (section 28) (13 A Plugs and <br> Conversion Adaptors for Domestic Use) <br> Regulations 1997. | No power cord provided. |  |  |
| In Switzerland, for requirements see 3.2.1.1 of this <br> annex. | No power cord provided. | N/A |  |
| 3.2 .1 .1 | N/A |  |  |

TEQE

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 3.2.5.1 | In the United Kingdom, a power supply cord with conductor of $1,25 \mathrm{~mm}^{2}$ is allowed for equipment with a rated current over 10 A and up to and including 13 A . | No power cord provided. | N/A |
| :---: | :---: | :---: | :---: |
| 3.3.4 | In the United Kingdom, the range of conductor sizes of flexible cords to be accepted by terminals for equipment with a RATED CURRENT of over 10 A up to and including 13 A is: <br> - $1,25 \mathrm{~mm}^{2}$ to $1,5 \mathrm{~mm}^{2}$ nominal cross-sectional area. | No power cord provided. | N/A |
| 4.3.6 | In the United Kingdom, the torque test is performed using a socket outlet complying with BS 1363 part 1:1995, including Amendment 1:1997 and Amendment 2:2003 and the plug part of DIRECT PLUG-IN EQUIPMENT shall be assessed to BS 1363: Part 1, 12.1, 12.2, 12.3, 12.9, 12.11, $12.12,12.13,12.16$ and 12.17 , except that the test of 12.17 is performed at not less than $125^{\circ} \mathrm{C}$. Where the metal earth pin is replaced by an Insulated Shutter Opening Device (ISOD), the requirements of clauses 22.2 and 23 also apply. <br> UK Application Note: BS 1363-1:1995+A4:2012 has now superseded the previous version (incorporating Amendments 1:1997, 2:2003 and $3: 2007$ ) which has been withdrawn. Our recommendation is for users to always identify and follow the latest version of a standard to which a dated reference is made. This is also applicable in the case of BS EN 60950-1 and users would need to refer to the latest version of BS 13631:1995+A4:2012 when applying BS EN 60950-1. | Not direct plug-in equipment | N/A |
| 4.3.6 | In Ireland, DIRECT PLUG-IN EQUIPMENT is known as plug similar devices. Such devices shall comply with Statutory Instrument 526:1997 National Standards Authority of Ireland (Section 28) (Electrical plugs, plug similar devices and sockets for domestic use) Regulations, 1997. | Not direct plug-in equipment | N/A |
| 5.1.7.1 | In Finland, Norway and Sweden TOUCH CURRENT measurement results exceeding 3,5 mA r.m.s. are permitted only for the following equipment: <br> - STATIONARY PLUGGABLE EQUIPMENT TYPE A that <br> is intended to be used in a RESTRICTED ACCESS LOCATION where equipotential bonding has been applied, for example, in a telecommunication centre; and | Measured touch current not exceeding 3,5 mA r.m.s. | N/A |

TIEGE

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | has provision for a permanently connected PROTECTIVE EARTHING CONDUCTOR; and is provided with instructions for the installation of that conductor by a SERVICE PERSON; <br> - STATIONARY PLUGGABLE EQUIPMENT TYPE B; <br> - STATIONARY PERMANENTLY CONNECTED EQUIPMENT. |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline 6.1 .2 .1 \\ & \text { (A1:2010) } \end{aligned}$ | In Finland, Norway and Sweden, add the following text between the first and second paragraph of the compliance clause: <br> If this insulation is solid, including insulation forming part of a component, it shall at least consist of either <br> two layers of thin sheet material, each of which shall pass the electric strength test below, or one layer having a distance through insulation of at least $0,4 \mathrm{~mm}$, which shall pass the electric strength test below. <br> Alternatively for components, there is no distance through insulation requirements for the insulation consisting of an insulating compound completely filling the casing, so that CLEARANCES and CREEPAGE DISTANCES do not exist, if the component passes the electric strength test in accordance with the compliance clause below and in addition <br> passes the tests and inspection criteria of 2.10.11 with an electric strength test of $1,5 \mathrm{kV}$ multiplied by 1,6 (the electric strength test of <br> 2.10.10 shall be performed using $1,5 \mathrm{kV}$ ), and <br> is subject to ROUTINE TESTING for electric strength during manufacturing, using a test voltage of $1,5 \mathrm{kV}$. | No connection to telecommunication networks. | N/A |
|  | It is permitted to bridge this insulation with an optocoupler complying with 2.10.5.4 b). <br> It is permitted to bridge this insulation with a capacitor complying with EN 60384-14:2005, subclass Y2. <br> A capacitor classified Y3 according to EN 60384-14:2005, may bridge this insulation under the following conditions: <br> - $\quad$ the insulation requirements are satisfied by having a capacitor classified Y3 as defined by EN | No TNV circuits. | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | 60384-14, which in addition to the Y3 testing, is <br> tested with an impulse test of 2,5 kV defined in EN <br> $60950-1: 2006,6.2 .2 .1 ;$ |  |  |
| :--- | :--- | :--- | :--- |
| the additional testing shall be performed on <br> all the test specimens as described in <br> $60384-14:$ <br> $-\quad$ the impulse test of 2,5 kV is to be performed <br> before the endurance test in EN 60384-14, in the <br> sequence of tests as described in EN 60384-14. |  |  |  |
| 6.1 .2 .2 | In Finland, Norway and Sweden, the exclusions <br> are applicable for PERMANENTLY CONNECTED <br> EQUIPMENT, PLUGGABLE EQUIPMENT TYPE B <br> and equipment intended to be used in a <br> RESTRICTED ACCESS LOCATION where <br> equipotential bonding has been applied, e.g. in a <br> telecommunication centre, and which has provision <br> for a permanently connected PROTECTIVE <br> EARTHING CONDUCTOR and is provided with <br> instructions for the installation of that conductor by <br> a SERVICE PERSON. | No TNV circuits. |  |$\quad$ N/A |  |
| :--- |
| 7.2 |
| In Finland, Norway and Sweden, for requirements <br> see 6.1.2.1 and 6.1.2.2 of this annex. <br> The term TELECOMMUNICATION NETWORK in <br> 6.1.2 being replaced by the term CABLE <br> DISTRIBUTION SYSTEM. |


| Annex ZD (informative) <br> IEC and CENELEC code designations for flexible cords |  |  |
| :---: | :---: | :---: |
| Type of flexible cord | Code designations |  |
|  | IEC | CENELEC |
| PVC insulated cords |  |  |
| Flat twin tinsel cord | 60227 IEC 41 | H03VH-Y |
| Light polyvinyl chloride sheathed flexible cord | 60227 IEC 52 | $\begin{aligned} & \text { H03VV-F } \\ & \text { H03VVH2-F } \end{aligned}$ |
| Ordinary polyvinyl chloride sheathed flexible cord | 60277 IEC 53 | H05VV-F H05VVH2-F |
| Rubber insulated cords |  |  |
| Braided cord | 60245 IEC 51 | H03RT-F |


| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Ordinary tough rubber sheathed flexible cord | 60245 IEC 53 | H05RR-F |
| :--- | :--- | :--- |
| Ordinary polychloroprene sheathed flexible cord | 60245 IEC 57 | H05RN-F |
| Heavy polychloroprene sheathed flexible cord | 60245 IEC 66 | H07RN-F |
| Cords having high flexibility |  |  |
| Rubber insulated and sheathed cord | 60245 IEC 86 | H03RR-H |
| Rubber insulated, crosslinked PVC sheathed cord | 60245 IEC 87 | H03RV4-H |
| Crosslinked PVC insulated and sheathed cord | 60245 IEC 88 | H03V4V4-H |

TIOE

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| ATTACHMENT TO TEST REPORT IEC 60950-1 CANADA NATIONAL DIFFERENCES Information technology equipment - Safety Part 1: General requirements |  |
| :---: | :---: |
| Differences according to............... | CAN/CSA-C22.2 No. 60950-1-07, Amd 1:2011, Amd 2:2014 |
| Attachment Form No....................: | CA_ND_IEC60950_1F |
| Attachment Originator .................. : | CSA |
| Master Attachment .......................: | Date (2015-05) |
| Copyright © 2015 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved. |  |


|  | Special national conditions |  | P |
| :--- | :--- | :--- | :--- |
| 1.1 .1 | All equipment is to be designed to allow installation <br> in accordance with the National Electrical Code <br> (NEC), ANSI/NFPA 70, the Canadian Electrical <br> Code (CEC), Part I, CAN/CSA C22.1, and when <br> applicable, the National Electrical Safety Code, <br> IEEE C2. Also, unless marked or otherwise <br> identified, installation is allowed per the Standard <br> for the Protection of Electronic Computer/Data- <br> Processing Equipment, ANSI/NFPA 75. | In accordance with the <br> National Electrical Code <br> (NEC) and the Canadian <br> Electrical Code (CEC) part 1 <br> CAN/CSA C22.1, ANSI/NFPA <br> 70, and unless marked or <br> otherwise identified, the <br> Standard for Electronic <br> Computer/Data-Processing <br> Equipment, ANSI/NFPA 75. | P |
| $1 .$Baby monitors are required to additionally comply <br> with ASTM F2951, Consumer Safety Specification <br> for Baby Monitors. | N/A |  |  |
| 1.4 .14 | For Pluggable Equipment Type A, the protection in <br> the installation is assumed to be 20A: | Considered. | P |
| 1.5 .5 | For lengths exceeding 3.05 m, external <br> interconnecting flexible cord and cable assemblies <br> are required to be a suitable cable type (e.g., DP, <br> CL2) specified in the CEC/NEC. | No external cable provided. | N/A |
|  | For lengths 3.05 m or less, external interconnecting <br> flexible cord and cable assemblies that are not <br> types specified in the CEC/NEC are required to <br> have special construction features and <br> identification markings. | N/A |  |

Disclaimer: This document is controlled and has been released electronically.

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | cap rating is only permitted if it does not exceed the extreme operating conditions in Table 2 of CAN/CSA C22.2 No. 235, and if it is part of a range that extends into the Table 2 "Normal Operating Conditions." Likewise, a voltage rating shall not be lower than the specified "Normal Operating Conditions," unless it is part of a range that extends into the "Normal Operating Conditions." |  |  |
| :---: | :---: | :---: | :---: |
| 1.7.7 | Wiring terminals intended to supply Class 2 outputs in accordance with CEC Part 1 or NEC shall be marked with the voltage rating and "Class 2" or equivalent. Marking shall be located adjacent to the terminals and shall be visible during wiring. | No wiring terminals. | N/A |
| 2.5 | Where a fuse is used to provide Class 2, Limited Power Source, or TNV current limiting, it shall not be operator-accessible unless it is not interchangeable. | Not such fuse used. | N/A |
| 2.6 | Equipment with isolated ground (earthing) receptacles are required to comply with NEC 250.146(D) and CEC 10-112 and 10-906(8). |  | N/A |
| 2.7.1 | Suitable NEC/CEC branch circuit protection rated at the maximum circuit rating is required for all standard supply outlets and receptacles (such as supplied in power distribution units) if the supply branch circuit protection is not suitable. | No such components provided. | N/A |
|  | Power distribution transformers distributing power at 100 volts or more, and rated 10 kVA or more, require special transformer overcurrent protection. |  | N/A |
| 3.2 | Wiring methods (terminals, leads, etc.) used for the connection of the equipment to the mains shall be in accordance with the NEC/CEC. |  | N/A |
| 3.2.1 | Power supply cords are required to have attachment plugs rated not less than 125 percent of the rated current of the equipment. |  | N/A |
| 3.2.1.2 | Equipment connected to a centralized d.c. power system, and having one pole of the DC mains input terminal connected to the main protective earthing terminal in the equipment, is required to comply with special earthing, wiring, marking and installation instruction requirements. | No power supply cord provided. | N/A |
| 3.2.3 | Permanent connection of equipment to the mains supply by a power supply cord is not permitted, except for certain equipment, such as ATMs. | The equipment is not permanently connected equipment. | N/A |
| 3.2.5 | Power supply cords are required to be no longer | Pluggable equipment type A. | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | than 4.5 m in length. |  |  |
| :---: | :---: | :---: | :---: |
|  | Minimum cord length is required to be 1.5 m , with certain constructions such as external power supplies allowed to consider both input and output cord lengths into the requirement. |  | N/A |
|  | Flexible power supply cords are required to be compatible with Article 400 of the NEC, and Tables 11 and 12 of the CEC. |  | N/A |
| 3.2 .9 | Permanently connected equipment is required to have a suitable wiring compartment and wire bending space. | Pluggable equipment type A. | N/A |
| 3.3 | Wiring terminals and associated spacings for field wiring connections shall comply with CSA C22.2 No. 0 | No wiring terminals. | N/A |
| 3.3.3 | Wire binding screws are not permitted to attach conductors larger than 10 AWG ( 5.3 mm 2 ). | No wire binding screws. | N/A |
| 3.3.4 | Terminals for permanent wiring, including protective earthing terminals, are required to be suitable for US/Canadian wire gauge sizes, rated 125 percent of the equipment rating, and be specially marked when specified (1.7.7). | Plugable equipment type A. | N/A |
| 3.3 .5 | First column of Table 3E revised to require "Smaller of the RATED CURRENT of the equipment or the PROTECTIVE CURRENT RATING of the circuit under consideration." |  | N/A |
| 3.4.2 | Motor control devices are required for cord-connected equipment with a motor if the equipment is rated more than 12 A , or if the motor has a nominal voltage rating greater than 120 V , or is rated more than $1 / 3 \mathrm{hp}$ (locked rotor current over 43 A). | Equipment is not such a device. | N/A |
| 3.4.8 | Vertically-mounted disconnect switches and circuit breakers are required to have the "on" position indicated by the handle in the up position. | No such devices incorporated. | N/A |
| 3.4.11 | For computer room applications, equipment with battery systems capable of supplying 750 VA for five minutes are required to have a battery disconnect means that may be connected to the computer room remote power-off circuit. | Not such an application. | N/A |
| 4.3.12 | The maximum quantity of flammable liquid stored in equipment is required to comply with NFPA 30. | No flammable liquid. | N/A |
| 4.3.13.5.1 | Equipment with lasers is required to meet the U.S. Code of Federal Regulations 21 CFR 1040 (and | No Laser. | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | the Canadian Radiation Emitting Devices Act, REDR C1370). |  |  |
| :---: | :---: | :---: | :---: |
| 4.7 | For computer room applications, automated information storage systems with combustible media greater than 0.76 m 3 ( 27 cu ft ) are required to have a provision for connection of either automatic sprinklers or a gaseous agent extinguishing system with an extended discharge. | No such equipment. | N/A |
| 4.7.3.1 | For computer room applications, enclosures with combustible material measuring greater than 0.9 $\mathrm{m} 2(10 \mathrm{sq} \mathrm{ft})$ or a single dimension greater than 1.8 $\mathrm{m}(6 \mathrm{ft})$ are required to have a flame spread rating of 50 or less. For other applications, enclosures with the same dimensions require a flame spread rating of 200 or less. | No such equipment. | N/A |
|  | Non-metallic enclosures of equipment for use in spaces used for environmental air (plenums) are required to comply <br> with UL 2043. |  | N/A |
| Annex H | Equipment that produces ionizing radiation is required to comply with the U.S. Code of Federal Regulations, 21 CFR 1020 (and the Canadian Radiation Emitting Devices Act, REDR C1370). | No ionizing radiation. | N/A |
| OTHER DIFFERENCES |  |  |  |
| The following key national differences are based on requirements other than national regulatory requirements. |  |  |  |
| 1.5.1 | Some components and materials associated with the risk of fire, electric shock, or personal injury are required to have component or material ratings in accordance with the applicable national (Canadian and/or U.S.) component or material standard requirements. These components include: <br> attachment plugs, battery packs (rechargeable type, used with transportable equipment), cathode ray tubes, circuit breakers, communication circuit accessories, connectors (used for current interruption of non-LPS circuits), cord sets and power supply cords, direct plug-in equipment, enclosures (outdoor), flexible cords and cables, fuses (branch circuit), fuseholders, ground-fault current interrupters, industrial control equipment, insulating tape, interconnecting cables, lampholders, limit controls, printed wiring, protectors for communications circuits, receptacles, | Complied. See table 1.5.1 | P |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | solid state controls, supplementary protectors, switches (including interlock switches), thermal cutoffs, thermostats, (multi-layer) transformer winding wire, transient voltage surge suppressors, tubing, wire connectors, and wire and cables. |  |  |
| :---: | :---: | :---: | :---: |
| 1.6.1.2 | A circuit for connection to the DC Mains Supply is classified as either a SELV Circuit, TNV-2 Circuit or Hazardous Voltage Circuit depending on the maximum operating voltage of the supply. This maximum operating voltage shall include consideration of the battery charging "float voltage" associated with the intended supply system, regardless of the marked power rating of the equipment. | No connection to the DC Mains Supply. | N/A |
| 2.3.1 | For TNV-2 and TNV-3 circuits with other than ringing signals and with voltages exceeding 42.4 Vpeak or 60 Vd.c., the maximum acceptable current through a 2000 ohm resistor (or greater) connected across the voltage source with other loads disconnected is 7.1 mA peak or 30 mA d.c. under normal operating conditions. | No TNV circuits. | N/A |
| 2.3.2.1 | In the event of a single fault between TNV and SELV circuits, the limits of 2.2.3 apply to SELV Circuits and accessible conductive parts. | No TNV circuits. | N/A |
| 2.6.2 | Equipment with functional earthing is required to be marked with the functional earthing symbol (IEC 60417-6092). |  | N/A |
| 2.6.3.4 | Protective bonding conductors of non-standard protective bonding constructions (e.g., printed circuit traces) may be subjected to the additional limited short circuit test conditions specified. |  | N/A |
| 4.2.8.1 | Enclosures around CRTs with a face diameter of 160 mm or more are required to reduce the risk of injury due to the implosion of the CRT. | No CRTs. | N/A |
| 4.3.2 | Equipment with handles is required to comply with special loading tests. |  | N/A |
| 4.3.8 | Battery packs for both portable and stationary applications are required to comply with special component requirements. |  | N/A |
| 5.1.8.3 | Equipment intended to receive telecommunication ringing signals is required to comply with a special touch current measurement tests. | No TNV circuits within the equipment. | N/A |
| 5.3.7 | Internal (e.g., card cage) SELV circuit connectors and printed wiring board connectors that are |  | P |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | accessible to the operator and that deliver power <br> are to be overloaded. |  | P |
| :--- | :--- | :--- | :---: |
|  | During abnormal operating testing, if a circuit is <br> interrupted by the opening of a component, the test <br> shall be repeated twice (three tests total) using <br> new components as necessary. | N/A <br> 6.4Equipment intended for connection to <br> telecommunication network outside plant cable is <br> required to be protected against overvoltage from <br> power line crosses in accordance with 6.4 and <br> Annex NAC. | No TNV circuits within the <br> equipment. |
| Annex EE | UL articulated accessibility probe (Fig EE.3) <br> required for assessing accessibility to <br> document/media shredders instead of the Figure <br> 2A test finger. | The equipment is not such <br> equipment. | $\mathrm{N} / \mathrm{A}$ |
| M.2 | Continuous ringing signals up to 16 mA only are <br> permitted if the equipment is subjected to special <br> installation and performance restrictions. | No TNV circuits within the <br> equipment. | N/A |
| Annex <br> NAD | Equipment connected to a telecommunication and <br> cable distribution networks and supplied with an <br> earphone intended to be held against, or in the ear <br> is required to comply with special acoustic <br> pressure requirements. | No TNV circuits within the <br> equipment. | N/A |

TIEGE

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |

ATTACHMENT TO TEST REPORT IEC 60950-1 with A1: 2009 and A2:2013 U.S.A. NATIONAL DIFFERENCES

Information technology equipment - Safety - Part 1: General requirements

| Differences according to.................: | UL 60950-1-07(Second Edition) + A1: $2011+$ A2: 2014 |
| :--- | :--- |
| Attachment Form No. ......................: | US_ND_IEC60950_1F |
| Attachment Originator.....................: | UL |
| Master Attachment...........................: | Date 2014-07 |
| Copyright © 2014 IEC System for Conformity Testing and Certification of Electrical Equipment <br> (IECEE), Geneva, Switzerland. All rights reserved. |  |


|  | Special national conditions |  | P |
| :--- | :--- | :--- | :--- |
| 1.1 .1 | All equipment is designed as to allow installation in <br> accordance with the National Electrical Code (NEC), <br> ANSI/NFPA 70, Canadian Electrical Code (CEC), <br> Part I, CAN/CSA C22.1, and if applicable, the <br> National Electrical Safety Code, IEEE C2 | In accordance with the <br> National Electrical Code <br> (NEC), ANSI/NFPA 70, and <br> unless marked or otherwise <br> identified, the Standard for <br> Electronic Computer/Data- <br> Processing Equipment, <br> ANSI/NFPA 75. | P |
|  | Also, unless marked or otherwise identified, <br> installation is allowed per the Standard for the <br> Protection of Electronic Computer/Data-Processing <br> Equipment, ANSI/NFPA 75 |  | P |
| 1.1 .2 | Baby monitors are required to additionally comply <br> with ASTM F2951, Consumer Safety Specification <br> for Baby Monitors. | Not such equipment. | $\mathrm{N} / \mathrm{A}$ |
| 1.4 .14 | For Pluggable Equipment Type A, the protection in <br> the installation is assumed to be 20A. | Considered. | P |
| 1.5 .5 | For lengths exceeding 3.05 m, external <br> interconnecting flexible cord and cable assemblies <br> are required to be a suitable cable type (e.g., DP, <br> CL2) specified in the NEC. <br> For lengths 3.05 m or less, external interconnecting <br> flexible cord and cable assemblies that are not types <br> specified in the NEC are required to have special <br> construction features and identification markings. | No external cable provided. | $\mathrm{N} / \mathrm{A}$ |
| 1Equipment for use on a.c. mains supply systems <br> with a neutral and more than one phase conductor <br> (e.g. 120/240 V, 3-wire) require a special marking <br> format for electrical ratings | Single-phase equipment. | N/A |  |
|  | A voltage rating that exceeds an attachment plug | N/A |  |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

ITEE

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | cap rating is only permitted if it does not exceed the extreme operating conditions in Table 2 of CAN/CSA C22.2 No. 235, and |  |  |
| :---: | :---: | :---: | :---: |
|  | - if it is part of a range that extends into the Table 2 "Normal Operating Conditions" |  | N/A |
|  | Likewise, a voltage rating is not to be lower than the specified "Normal Operating Conditions," unless it is part of a range that extends into the "Normal Operating Conditions" |  | N/A |
| 1.7.7 | Wiring terminals intended to supply Class 2 outputs in accordance with NEC or CEC Part 1 or NEC are marked with the voltage rating and "Class 2" or equivalent | No wiring terminals. | N/A |
|  | - Marking is located adjacent to the terminals |  | N/A |
|  | - Marking is visible during wiring |  | N/A |
| 2.5 | Fuse providing Class 2, Limited Power Source, or TNV current limiting is not operator-accessible unless it is not interchangeable | No such fuse. | N/A |
| 2.6 | Equipment with isolated ground (earthing) receptacles are required to comply with NEC 250.146(D) and CEC 10-112 and 10-906(8). |  | N/A |
| 2.7.1 | Suitable NEC/CEC branch circuit protection rated at the maximum circuit rating is provided for all standard supply outlets and receptacles (such as supplied in power distribution units) if the supply branch circuit protection is not suitable. | No such components provided. | N/A |
|  | Power distribution transformers distributing power at 100 volts or more, and rated 10 kVA or more, provided with special transformer overcurrent protection |  | N/A |
| 3.2 | Wiring methods (terminals, leads, etc.) used for the connection of the equipment to the mains shall be in accordance with the NEC/CEC. |  | N/A |
| 3.2.1 | Power supply cords are required to have attachment plugs rated not less than 125 percent of the rated current of the equipment. |  | N/A |
| 3.2.1.2 | Equipment connected to a centralized d.c. power system, and having one pole of the DC mains input terminal connected to the main protective earthing terminal in the equipment comply with special earthing, wiring, marking and installation instruction requirements | No power supply cord provided. | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 3.2.3 | Permanent connection of equipment to the mains supply by a power supply cord is not permitted, except for certain equipment, such as ATMs. | The equipment is not permanently connected equipment. | N/A |
| :---: | :---: | :---: | :---: |
| 3.2 .5 | Power supply cords are no longer than 4.5 m in length | Pluggable equipment type A. | N/A |
|  | Minimum cord length is 1.5 m , with certain constructions such as external power supplies allowed to consider both input and output cord lengths into the requirement |  | N/A |
|  | Flexible power supply cords are compatible with Article 400 of the NEC, and Tables 11 and 12 of the CEC |  | N/A |
| 3.2.9 | Permanently connected equipment has a suitable wiring compartment and wire bending space | Pluggable equipment type A. | N/A |
| 3.3 | Wiring terminals and associated spacings for field wiring connections shall comply with CSA C22.2 No. 0. | No wiring terminals. | N/A |
| 3.3.3 | Wire binding screws are not permitted to attach conductors larger than 10 AWG ( $5.3 \mathrm{~mm}^{2}$ ). | No wire binding screws. | N/A |
| 3.3.4 | Terminals for permanent wiring, including protective earthing terminals, are suitable for Canadian/US wire gauge sizes, are | Plugable equipment type A. | N/A |
|  | - rated 125 per cent of the equipment rating, and |  | N/A |
|  | - are specially marked when specified (1.7.7) |  | N/A |
| 3.3 .5 | Revise first column of Table 3E to "Smaller of the RATED CURRENT of the equipment or the PROTECTIVE CURRENT RATING of the circuit under consideration" |  | N/A |
| 3.4.2 | Motor control devices are provided for cord-connected equipment with a motor if the equipment is rated more than 12 A , | Equipment is not such a device. | N/A |
|  | - or if the motor has a nominal voltage rating greater than 120 V |  | N/A |
|  | - or is rated more than $1 / 3 \mathrm{hp}$ (locked rotor current over 43 A) |  | N/A |
| 3.4 .8 | Vertically-mounted disconnect switches and circuit breakers are required to have the "on" position indicated by the handle in the up position. | No such devices incorporated. | N/A |
| 3.4.11 | For computer room applications, equipment with battery systems capable of supplying 750 VA for five minutes have a battery disconnect means that may be connected to the computer room remote power- | Not such an application. | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | off circuit |  |  |
| :---: | :---: | :---: | :---: |
| 4.3.12 | The maximum quantity of flammable liquid stored in equipment is required to comply with NFPA 30. | No flammable liquid. | N/A |
| 4.3.13.5.1 | Equipment with lasers is required to meet the U.S. Code of Federal Regulations 21 CFR 1040 (and the Canadian Radiation Emitting Devices Act, REDR C1370). | No Laser. | N/A |
| 4.7 | For computer room applications, automated information storage systems with combustible media greater than $0.76 \mathrm{~m}^{3}(27 \mathrm{cu} \mathrm{ft})$ have a provision for connection of either automatic sprinklers or a gaseous agent extinguishing system with an extended discharge | No such equipment. | N/A |
| 4.7.3.1 | For computer room applications, enclosures with combustible material measuring greater than $0.9 \mathrm{~m}^{2}$ ( 10 sq ft ) or a single dimension greater than 1.8 m ( 6 ft ) are required to have a flame spread rating of 50 or less. | No such equipment. | N/A |
|  | For other applications, enclosures with the same dimensions require a flame spread rating of 200 or less. |  | N/A |
| 4.7.3.1 | Non-metallic enclosures of equipment for use in spaces used for environmental air (plenums) are required to comply with UL 2043. |  | N/A |
| Annex H | Equipment that produces ionizing radiation is required to comply with the U.S. Code of Federal Regulations, 21 CFR 1020 (and the Canadian Radiation Emitting Devices Act, REDR C1370). | Equipment is not such a device. | N/A |
|  | OTHER NATIONAL DIFFERENCES |  | P |
| 1.5.1 | Some components and materials associated with the risk of fire, electric shock, or personal injury have component or material ratings in accordance with the applicable national (Canadian and/or U.S.) component or material standard requirements. <br> These components include: <br> attachment plugs, battery backup systems, battery packs, cathode ray tubes, circuit breakers, communication circuit accessories, connectors (used for current interruption of non-LPS circuits), cord sets and power supply cords, direct plug-in equipment, electrochemical capacitor modules (energy storage modules with ultracapacitors), enclosures (outdoor), flexible cords and cables, fuses (branch circuit), fuseholders, ground-fault current interrupters, industrial control equipment, | Complied. See table 1.5.1. | P |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | insulating tape, interconnecting cables, lampholders, limit controls, printed wiring, protectors for communications circuits, receptacles, solid state controls, supplementary protectors, switches (including interlock switches), thermal cut-offs, thermostats, (multi-layer) transformer winding wire, surge protective devices, tubing, vehicle battery adapters, wire connectors, and wire and cables |  |  |
| :---: | :---: | :---: | :---: |
| 1.6.1.2 | A circuit for connection to the DC Mains Supply is classified as a SELV Circuit, TNV-2 Circuit or Hazardous Voltage Circuit depending on the maximum operating voltage of the supply | No connection to DC mains supply. | N/A |
|  | This maximum operating voltage includes consideration of the battery charging "float voltage" associated with the intended supply system, regardless of the marked power rating of the equipment |  | N/A |
| 2.3.1 | For TNV-2 and TNV-3 circuits with other than ringing signals and with voltages exceeding 42.4 Vpeak or 60 Vd.c., the maximum acceptable current through a 2000 ohm resistor (or greater) connected across the voltage source with other loads disconnected is 7.1 mA peak or 30 mA d.c. under normal operating conditions. | No TNV circuits. | N/A |
| 2.3.2.1 | In the event of a single fault between TNV and SELV circuits, the limits of 2.2.3 apply to SELV Circuits and accessible conductive parts. | No TNV circuits. | N/A |
| 2.6.2 | Equipment with functional earthing marked with the functional earthing symbol (IEC 60417-6092) |  | N/A |
| 2.6.3.4 | Protective bonding conductors of non-standard protective bonding constructions (e.g., printed circuit traces) may be subjected to the additional limited short circuit test conditions specified. |  | N/A |
| 4.2.8.1 | Enclosures around CRTs with a face diameter of 160 mm or more are required to reduce the risk of injury due to the implosion of the CRT. | No CRTs. | N/A |
| 4.3.2 | Equipment with handles is required to comply with special loading tests. |  | N/A |
| 4.3.8 | Battery packs for both portable and stationary applications comply with special component requirements | No battery packs used. | N/A |
| 5.1.8.3 | Equipment intended to receive telecommunication ringing signals is required to comply with a special touch current measurement tests. | No TNV circuits within the equipment. | N/A |


| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| 5.3 .7 | Internal (e.g., card cage) SELV circuit connectors <br> and printed wiring board connectors that are <br> accessible to the operator and that deliver power are <br> overloaded | P |  |
| :--- | :--- | :--- | :---: |
|  | During abnormal operating testing, if a circuit is <br> interrupted by the opening of a component, the test <br> is repeated twice (three tests total) using new <br> components as necessary | P |  |
| 6.4 | Equipment intended for connection to <br> telecommunication network outside plant cable is <br> protected against overvoltage from power line <br> crosses in accordance with 6.4 and Annex NAC | No TNV circuits within the <br> equipment. | $\mathrm{N} / \mathrm{A}$ |
| Annex EE | Articulated accessibility probe (Fig EE.3) is used for <br> assessing accessibility to document/media <br> shredders instead of the Figure 2A test finger | The equipment is not such <br> equipment. | $\mathrm{N} / \mathrm{A}$ |
| Annex M.2 | Continuous ringing signals up to 16 mA only are <br> permitted if the equipment is subjected to special <br> installation and performance restrictions. | No TNV circuits within the <br> equipment. | $\mathrm{N} / \mathrm{A}$ |
| Annex NAD | Equipment connected to a telecommunication and <br> cable distribution networks and supplied with an <br> earphone intended to be held against, or in the ear <br> comply with special acoustic pressure requirements | No TNV circuits within the <br> equipment. | N/A |


| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| ATTACHMENT TO TEST REPORT IEC 60950-1 <br> (AUSTRALIA/NEW ZEALAND) NATIONAL DIFFERENCES <br> (Information technology equipment-safety)  <br> Differences according to..............: AS/NZS 60950.1:2015 <br> Attachment Form No.....................: AU_NZ_ND_IEC60950_1F <br> Attachment Originator ................... : JAS-ANZ <br> Master Attachment ........................: $2017-06$ <br> Copyright © 2017 IEC System for Conformity Testing and Certification of Electrical Equipment <br> (IECEE), Geneva, Switzerland. All rights reserved.  |  |
| :--- | :--- |


|  | National Differences |  | P |
| :---: | :---: | :---: | :---: |
| Appendix ZZ | Variations to IEC 60950-1, Ed 2.2 (2013) for Australia and New Zealand |  | P |
| 1.2 | DEFINITIONS |  | P |
|  | After definition 'PERSON, SERVICE', insert the following new definition: <br> POTENTIAL IGNITION SOURCE.......1.2.12.201 | Inserted. | N/A |
| 1.5 | COMPONENTS |  | P |
| 1.5.1 | 1. <br> First paragraph, insert the following text after the words 'IEC component standard: or the relevant Australian/New Zealand Standard <br> 2. <br> In the Note, insert the following text after the word standard: or the relevant Australian/New Zealand Standard <br> 3. <br> Second paragraph, delete the words 'without further evaluation' | Inserted. | P |
| 1.5.2 | 1 <br> First paragraph, insert the following text after the word 'standard' or an Australian/New Zealand Standard <br> 2 <br> First paragraph, second dash item, second line, insert the following text after the word 'standard' or an Australian/New Zealand Standard | Inserted. | P |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | 3. <br> First paragraph, second dash item, last line, insert the following text after the word 'standard': or an Australian/New Zealand Standard |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.7 | MARKINGS AND INSTRUCTIONS |  |  |  | P |
| 1.7.1.3 | Delete existing text and replace with the following: Graphical symbols placed on the equipment as a requirement of this standard, shall be in accordance with IEC 60417 or ISO 3864-2 or ISO 7000, if available. In the absence of suitable symbols, the manufacturer may design specific graphical symbols. <br> Symbols as required by this standard placed on the equipment shall be explained in the user manual |  |  | Deleted and replaced. | P |
| 2.9 | ELECTRICAL INSULATION |  |  |  | P |
| 2.9.2 | Variation <br> Second paragraph, delete the word 'designated' |  |  |  | P |
| 3.2.5 | POWER SUPPLY CORDS |  |  |  | N/A |
| Table 3B | Variation <br> 1. ................................................ <br> Delete the first four rows <br> following: | 0.5........... ${ }^{\mathrm{a}}$0.75$(0.75)^{\mathrm{b}}$ <br> 1.00 <br> $(1.0)^{\mathrm{c}}$ <br> 1.5 | with the <br> 18 <br> $[0.8]$ <br> 16 <br> $[1.3]$ <br> 16 <br> $[1.3]$ <br> 14 <br> $[2]$ | Deleted. | N/A |
|  | 2. Delete NOTE 1 and renumber existing NOTE 2 as 'NOTE' |  |  | Deleted. | N/A |
|  | 3. <br> Delete Footnote ${ }^{\text {a }}$ and replace with the following: <br> ${ }^{\text {a }}$ This nominal cross-sectional area is only allowed for Class II appliances if the length of the power supply cord, measured between the point where the cord, or cord guard, enters the appliance, and the to the plug does not exceed $2 \mathrm{~m}(0,5 \mathrm{~mm} 2$ three-core supply flexible |  |  | Deleted. | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | cords are not permitted; see AS/NZS 3191) |  |  |
| :---: | :---: | :---: | :---: |
| 4.3 | DESIGN AND CONSTRUCTION |  | P |
| 4.3.6 | Variation <br> Delete the third paragraph and replace with the following: | Deleted | N/A |
|  | Equipment with a plug portion, suitable for insertion into a 10 A 3-pin flat-pin socket-outlet complying with AS/NZS 3112 shall comply with the requirements in AS/NZS 3112 for equipment with integral pins for insertion into socket-outlets | Not direct plug-in type. | N/A |
| 4.3.8 | Addition <br> Eighth paragraph, insert the following new note after the first dash item: | Added. <br> No batteries. | N/A |
|  | NOTE 6.201 In cases where the voltage source is provided by power from an unassociated power source, consideration should be given to the effects of possible single fault conditions in the unassociated equipment. If the power source is unknown then it should be assumed that the maximum limit of SELV may be applied to the source input under assumed single fault conditions in the source when assessing the charging circuit in the equipment under test. |  | N/A |
| 4.3.13.5.1 | Variation <br> Delete the first paragraph and replace with the following: <br> Except as permitted below, equipment shall be classified and labelled according to IEC 60825-1 or AS/NZS 60825.1, IEC 60825-2 or AS/NZS 60825.2 and IEC 60825-12, as applicable | Deleted. | N/A |
|  | Third paragraph, first sentence, after 'IEC 60825-1', insert the following text: or AS/NZS 60825.1 | Inserted. | N/A |
|  | Fourth paragraph, after 'IEC 60825-1', insert the following text: or AS/NZS 60825.1 | Inserted. | N/A |
| 4.7 | RESISTANCE TO FIRE |  | P |
| 4.7 | Addition <br> At the end of Clause 4.7, insert the following text: For alternate tests refer to Clause 4.7.201 | Added. The alternative method is not considered. | N/A |
| 6 | CONNECTION TO TELECOMMUNICATIONS NETWORKS |  | N/A |
| 6.2.2 | Variation <br> For Australia only, delete the first paragraph and | Deleted. | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | Note, and replace with the following: <br> In Australia only, compliance with 6.2 .2 shall be checked by the tests of both 6.2.2.1 and 6.2.2.2 |  |  |
| :---: | :---: | :---: | :---: |
| 6.2.2.1 | Variation <br> For Australia only, delete the first paragraph including the Notes, and replace with the following: <br> In Australia only, the electrical separation is subjected to 10 impulses of alternating polarity, using the impulse test generator Reference 1 of Table N. 1. <br> The interval between successive impulses is 60 s and the initial voltage, Uc, is: <br> (i) $\qquad$ <br> for 6.2 .1 a ): 7.0 kV for hand-held telephones and for headsets and 2.5 kV for other equipment; and <br> (ii) $\qquad$ For 6.2 .1 b ) and 6.2 .1 c$): 1.5 \mathrm{kV}$ | Deleted. | N/A |
|  | NOTE 201 The 7 kV impulse simulates lightning surges on typical rural and semi-rural network lines |  | N/A |
|  | NOTE 202 The value of 2.5 kV for 6.2.1 a) was chosen to ensure the adequacy of the insulation concerned and does not necessarily simulate likely overvoltages |  | N/A |
| 6.2.2.2 | Variation <br> For Australia only, delete the second paragraph including the Note, and replace with the following: In Australia only, the a.c. test voltage is <br> (i). $\qquad$ for 6.2.1 a): <br> $3 k V$; and <br> (ii) for 6.2.1b) and 6.2.1c): $\quad 1.5 \mathrm{kV}$ | Deleted. | N/A |
|  | NOTE 201 Where there are capacitors across the insulation under test, it is recommended that d.c. test voltages are used. |  | N/A |
|  | NOTE 202 The 3 kV and 1.5 kV values have been determined considering the low frequency induced voltages from the power supply distribution system. |  | N/A |
| 7 | CONNECTION TO CABLE DISTRIBUTION NETWO | RK | N/A |
| 7.3 | Addition <br> Add the following before the first paragraph: Equipment providing functions that fall only within the scope of AS/NZS 60065 and that incorporate a PSTN interface, are not required to comply with this Clause where the only ports provided on the equipment, in addition to a coaxial cable connection and a PSTN interface, are audio or video ports and | Added. | N/A |

[^0]Only the version on the IECEE Website is the current document version

TEQE
$\xlongequal{=}$

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | analogue or data ports not intended to be used for <br> telecommunications purposes |  |  |
| :--- | :--- | :--- | :--- |
| Annex P | Addition <br> Add the following Normative References: <br> AS/NZS 3191, Electric flexible cords <br> AS/NZS 3112, Approval and test specification- <br> Plugs and socket-outlets | Added. | N/A |


|  | Special national conditions (if any) |  | P |
| :---: | :---: | :---: | :---: |
| 1.2.12 | FLAMMABILITY |  | N/A |
| 1.2.12.15 | Addition <br> After Clause 1.2.12.15, insert the following new clause: | Added. | N/A |
| 1.2.12.201 | POTENTIAL IGNITION SOURCE <br> Possible fault which can start a fire if the open-circuit voltage measured across an interruption or faulty contact exceeds a value of 50 V (peak) a.c. or d.c. and the product of the peak value of this voltage and the measured r.m.s. current under normal operating conditions exceeds 15 VA |  | N/A |
|  | Such a faulty contact or interruption in an electrical connection includes those which may occur in CONDUCTIVE PATTERNS on PRINTED BOARDS |  | N/A |
|  | NOTE 1 An electronic protection circuit may be used to prevent such a fault from becoming a POTENTIAL IGNITION SOURCE |  | N/A |
|  | NOTE 2 This definition is from AS/NZS 60065:2012, Clause 2.8.11. |  | N/A |
| 4 | PHYSICAL REQUIREMENTS |  | P |
| 4.1 | Addition <br> After Clause 4.1, insert new Clause 4.1.201 as follows: | Added. | N/A |
| 4.1.201 | Display devices used for television purposes Display devices which may be used for television purposes, with a mass of 7 kg or more, shall comply with the requirements for stability and mechanical hazards, including the additional stability requirements for television receivers, specified in AS/NZS 60065 |  | N/A |
| 4.3 | DESIGN AND CONSTRUCTION |  | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| 4.3.8 | Addition <br> After Clause 4.3.8, add the following new clause as follows | Added. <br> No batteries. | N/A |
| :---: | :---: | :---: | :---: |
| 4.3.8.201 | Products containing coin/button cell batteries and batteries designated R1 <br> The requirements of AS/NZS 60065:2012 <br> Amendment 1:2015, Clause 14.10.201 apply for this Clause. |  | N/A |
| 4.7 | RESISTANCE TO FIRE |  | P |
| 4.7.3.6 | Addition <br> After Clause 4.7.3.6, add new clauses as follows: | Added. | N/A |
| 4.7.201 | Resistance to fire—Alternative tests | Added. The alternative method is not considered. | N/A |
| 4.7.201.1 | General <br> Parts of non-metallic material shall be resistant to ignition and spread of fire. This requirement does not apply to decorative trims, knobs and other parts unlikely to be ignited or to propagate flames from inside the apparatus, or the following: <br> a) Components that are contained in an enclosure having a flammability category of V-0 according to AS/NZS 60695.11.10 and having openings only for the connecting wires filling the openings completely, and for ventilation not exceeding 1 mm in width regardless of length. |  | N/A |
|  | b) The following parts which would contribute negligible fuel to a fire: <br> - small mechanical parts, the mass of which does not exceed 4 g , such as mounting parts, gears, cams, belts and bearings; <br> - small electrical components, such as capacitors with a volume not exceeding $1,750 \mathrm{~mm} 3$, integrated circuits, transistors and optocoupler packages, if these components are mounted on material of flammability category V-1, or better, according to AS/NZS 60695.11.10 |  | N/A |
|  | NOTE In considering how to minimize propagation of fire and what 'small parts are, account should be taken of the cumulative effect of small parts adjacent to each other for the possible effect of propagating the fire from one part to another |  | N/A |
|  | Compliance shall be checked by the tests of 4.7.201.2, 4.7.201.3, 4.7.201.4 and 4.7.201.5 |  | N/A |
|  | For the base material of printed boards, compliance shall be checked by the test of 4.7.201.5 |  | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | The tests shall be carried out on parts of nonmetallic material which have been removed from the apparatus. When the glow-wire test is carried out, the parts shall be placed in the same orientation as they would be in normal use. <br> These tests are not carried out on internal wiring |  |  | N/A |
| :---: | :---: | :---: | :---: | :---: |
| 4.7.201.2 | Testing of non-meta <br> Parts of non-metallic glow-wire test of AS/N carried out at $550^{\circ} \mathrm{C}$ <br> Parts for which the glow out, such as those mad shall meet the require for category FH-3 ma be not carried out on least FH-3 according sample tested was no | materials <br> rial shall be subject to the 60695.2.11 which shall be <br> wire test cannot be carried of soft or foamy material, ts specified in ISO 9772 <br> I. The glow-wire test shall s material classified at O 9772 provided that the cker than the relevant part. |  | N/A |
| 4.7.201.3 | Testing of insulating Parts of insulating ma IGNITION SOURCES wire test of AS/NZS 6 carried out at $750^{\circ} \mathrm{C}$. <br> The test shall be also insulating material whi within a distance of 3 <br> NOTE Contacts in compon considered to be connectio <br> For parts which withs produce a flame, othe within the envelope of diameter of 20 mm and subjected to the need shielded by a barrier test shall not be teste The needle-flame tes with AS/NZS 60695.11 modifications: | terials <br> al supporting POTENTIAL all be subject to the glow5.2.11 which shall be <br> ied out on other parts of are of the connection. <br> such as switch contacts are <br> the glow-wire test but rts above the connection vertical cylinder having a height of 50 mm shall be ame test. However, parts h meets the needle-flame <br> ll be made in accordance with the following |  | N/A |
|  | Clause of AS/NZS 60695.11.5 <br> 9 Test procedure <br> 9.2 Application of Needle-flame | Change <br> Delete the first and second paragraphs and replace with the |  | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version
$\underline{\square}$

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | 9.3 Number of test specimens <br> 11 Evaluation of test results | following: <br> The specimen shall be arranged so that the flame can be applied to a vertical or horizontal edge as shown in the examples of Figure 1. If possible the flame shall be applied at least 10 mm from a corner. <br> The duration of application of the test flame shall be $30 \mathrm{~s} \pm 1$ s <br> Delete existing text and replace with the following: <br> The test shall be made on one specimen. If the specimen does not withstand the test, the test may be repeated on two further specimens, both of which shall withstand the test. <br> Delete existing text and replace with the following: <br> The duration of burning (tb) shall not exceed 30 s. However, for printed circuit boards, it shall not exceed 15 s |  |
| :---: | :---: | :---: | :---: |
|  | The needle-flame test sh parts of material classifie to AS/NZS 60695.11.10 tested was not thicker th | ll not be carried out on as $\mathrm{V}-0$ or $\mathrm{V}-1$ according provided that the sample the relevant part | N/A |
| 4.7.201.4 | Testing in the event of material <br> If parts, other than enclo glow wire tests of 4.7.20 within 30 s after the rem needle-flame test detaile made on all parts of non material which are within | on-extinguishing <br> ures, do not withstand the 3 by failure to extinguish val of the glow-wire tip, the in 4.7.201.3 shall be netallic distance of 50 mm or | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version
$\overline{\mathrm{IT}} \mathrm{CE}$

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |



Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | against overvoltages, is of flammability category V-0 <br> according to AS/NZS 60695.11.10 or the printed <br> boards are contained in a metal enclosure, having <br> openings only for connecting wires which fill the <br> openings completely |  |  |
| :--- | :--- | :--- | :--- |
|  | Compliance shall be determined using the smallest <br> thickness of the material. | NOTE Available apparent power is the maximum apparent power <br> which can be drawn from the supplying circuit through a resistive <br> load whose value is chosen to maximise the <br> apparent power for more than 2 m when the circuit supplied is <br> disconnected. | N/A |


| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| ATTACHMENT TO TEST REPORT <br> IEC 60950-1 with A1: 2009 and A2:2013 <br> JAPAN NATIONAL DIFFERENCES <br> Information technology equipment - Safety - Part 1: General requirements |  |  |  |
| :---: | :---: | :---: | :---: |
| Differences according to..............: J60950-1 (H29) |  |  |  |
| Attachment Form No....................: JP_ND_IEC60950_1F |  |  |  |
| Attachment Originator ..................: JQA |  |  |  |
| Master Attachment ......................: 2017-11 |  |  |  |
| Copyright © 2017 IEC System for Conformity Testing and Certification of Electrical Equipment (IECEE), Geneva, Switzerland. All rights reserved. |  |  |  |
| 1.2.4.1 | Add the following new notes. <br> Note: Even if the equipment is designed as Class I, the equipment is regarded as CLASS OI EQUIPMENT (see 1.2.4.3A) when 2-pin adaptor with earthing lead wire or cord set having 2-pin plug with earthing lead wire is provided or recommended. | Added. <br> Class II equipment. | N/A |
| 1.2.4.3A | Add the following new clause. <br> 1.2.4.3A CLASS OI EQUIPMENT <br> Equipment having attachment plug without earthing blade, where protection against electric shock is achieved by: <br> - using BASIC INSULATION, and <br> - providing either of the following a) or b) in order to connect those conductive parts that might assume a HAZARDOUS VOLTAGES in the event of BASIC INSULATION fault to the PROTECTIVE EARTHING CONDUCTOR in the building wiring. <br> a) Provision of 2-pin plug with earthing lead including the condition of that 2-pin adaptor with earthing lead wire is provided or recommended. <br> b) Provision of an independent earthing terminal, when 2-core mains cord (without earthing conductor) is used. <br> Note - CLASS OI EQUIPMENT may have a part constructed with Double Insulation or Reinforced Insulation. | Added. <br> Class II equipment. | N/A |
| 1.3.2 | Add the following notes after the first paragraph: <br> Note 1 Transportable or similar equipment that are relocated frequently for intended usage should not | Added. | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | be designed as Class I or CLASS OI EQUIPMENT <br> unless it is intended to be installed by service <br> personnel. |  |  |
| :--- | :--- | :--- | :--- |
|  | Note 2 Considering wiring circumstance in Japan, <br> equipment intended to be installed where the <br> provision for earthing connection is unlikely should <br> not be designed as Class I or CLASS 0I <br> EQUIPMENT unless it is intended to be installed <br> by service personnel. |  |  |
| 1.5 .1 | Replace the first paragraph with the follows: <br> Where safety is involved, components shall comply <br> either with the requirements of this standard, with <br> the safety aspects of the relevant JIS component <br> standard, or IEC component standards, or <br> components shall have equivalent to or better <br> properties than these. <br> Replace Note 1 with the following: <br> Note 1 Components complying with the <br> interpretation of Ministerial Ordinance on <br> stipulating technical requirements for the Electrical <br> Appliance is regarded to have equivalent to or <br> better performance. <br> Note 2 JIS or an IEC component standard is <br> considered relevant only if the component in <br> question clearly falls within its scope. <br> Add the following after the last paragraph: <br> For an appliance connector that is able to fit with <br> appliance inlet compatible with the standard sheet <br> of IEC 60320-1 or JIS C 8283-1, the size of the <br> connector shall comply with relevant standard <br> sheet of IEC 60320-1 or JIS C 8283-1. A power <br> supply cord set complying with JIS C 8286 is <br> regarded to comply with this requirement. <br> Note 3 A power supply cord set provided with <br> appliance connector that is able to fit with <br> appliance inlet compatible with the standard sheet <br> of IEC 60320-1 or JIS C 8283-1 should comply <br> with JIS C 8286. |  | P |

Report No．： 50298194001

| IEC60950＿1F－ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement＋Test | Result－Remark | Verdict |


|  | NOTE An interconnection cord sets provided with interconnecting coupler for mains supply complying with JIS C 8283－2－2 should comply with JIS C 8286. |  |  |
| :---: | :---: | :---: | :---: |
| 1．5．9．1 | Add the following in the last of NOTE 1. <br> Gas discharge tube connected in series with VDR may be used． | Added． <br> No gas discharge tube． | N／A |
| 1.7 | Replace EE． 2 and EE． 4 with the following： <br> JA． 1 Shredder warning <br> JA． 3 Shredder power disconnection | Replaced． | P |
| 1．7．1．2 | Replace first and second dashed paragraphs with the followings： <br> －manufacturer＇s or responsible company＇s name or trade－mark or identification mark； <br> －manufacturer＇s or responsible company＇s model identification or type reference； | Replaced． | P |
| 1．7．2．1 | Add the following after the second paragraph． Instruction or equipment marking regarding safety shall be written in Japanese unless otherwise permitted in this standard． | Added． | P |
| 1．7．2．5 | Replace the last sentence with the following： An acceptable marking for an electric shock hazard is （6．2．4 of JIS S 0101）． | Replaced． <br> No operator access area with a tool． | N／A |
| 1．7．5 | Replace the second paragraph with the following． Socket－outlets conforming to JISC8282－1 are examples of standard power supply outlets． | Replaced． | N／A |
| 1．7．5A | Add the following new clause after 1．7．5． <br> 1．7．5A Power supply cord set <br> If appliance coupler according to IEC60320－1， C．14（rated current：10A）is used in equipment whose rated voltage is less than 125 V and rated current is over 10A，the following instruction or equivalent shall be described in the operating instruction． <br> ＂Use only designated cord set attached in this equipment＂ <br> Example in Japanese： <br> ＂この機器に同こん（柩した指定の電源コードせットだけを゙な伐用して下さい。＂ <br> If appliance coupler is used for connection to the | Added． <br> The rated current of appliance coupler is less than 10A． | N／A |


| IEC60950＿1F－ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement＋Test | Result－Remark | Verdict |  |


|  | mains and if the cord set is not provided within the package for the equipment，suitable information regarding to the cord set shall be described in the operating instruction <br> Note Since the combination of appliance inlet with earthing pin and two－core cord set（without earthing conductor）is special，the cord set should be attached in the equipment and the operating instruction should provide the information that the cord set is exclusively used with the equipment and not allowed to use with other equipment． |  |  |
| :---: | :---: | :---: | :---: |
| 1．7．14A | Add the following new clause after 1．7．14． <br> 1．7．14A Marking for CLASS OI EQUIPMENT <br> For CLASS OI EQUIPMENT，the following or equivalent instructions shall be marked． <br> －the following instruction shall be marked on the mains plug or on the visible place of the main body <br> ＂Provide an earthing connection＂ <br> Example in Japanese： <br> ＂必ず接地接続を行ってください。＂ <br> －the following instruction shall be marked on the visible place of the main body or written in the operating instructions： <br> ＂Provide an earthing connection before the mains plug is connected to the mains．And，when disconnecting the earthing connection，be sure to disconnect after pulling out the mains plug from the mains．＂ <br> Example in Japanese： <br>  <br>  | Added． <br> Class II equipment． | N／A |
| 1．7．14B | Add the following new clause after 1．7．14A <br> 1．7．14B Protective earthing conductor used for CLASS OI EQUIPMENT <br> For CLASS OI EQUIPMENT provided with independent main protective earthing terminal， where the cord for the protective earthing connection is not provided within the package for the equipment，the suitable information for the protective earthing connection shall be provided in the operating instruction．（See 2．6．3．2） | Added． <br> Class II equipment． | N／A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| 2.1.1.1 | Replace item b) of 2.1.1.1 with the following. <br> b) A test with the test finger, Figure 2A, which shall not contact parts described above when applied to openings in the ENCLOSURES after removal of parts that can be detached by an OPERATOR, including fuseholders, and with OPERATOR access doors and covers open. It is permitted to leave lamps in place for this test. Connectors that can be separated by an OPERATOR, other than those complying with JIS C 8303 or JIS C 8285 or IEC 60309 series or JIS C 8283 series or IEC 60320 series, shall also be tested during disconnection. But even if the connector does not comply with these standards, the one having equivalent to or better performance need not be tested during disconnection. <br> Note 4 Connectors complying with Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or better performance. | Replaced. | P |
| :---: | :---: | :---: | :---: |
| 2.5 | Replace "IEC 60730-1" with "JIS C 9730-1" (in item b)). | Replaced. | P |
| 2.6 .2 | Delete the following line. <br> - the symbol ,IEC 60417-5018 (2011-07); | Deleted. | N/A |
| 2.6.3.2 | Add the following after the first paragraph. <br> However where the single core conductor is used for protective earthing lead or earthing cord for CLASS OI EQUIPMENT, either of the following condition shall be met. <br> - Use of annealed copper wire with 1.6 mm diameter or corrosion-inhibiting metal wire having equivalent to or more strength and thickness. <br> - Single core cord or single core cab tire cable with $1.25 \mathrm{~mm}^{2}$ or more cross-sectional area | Added. <br> Class II equipment. | N/A |
| 2.6.3.5 | Add the following after the first paragraph. <br> However this requirement does not apply to internal conductor of the cord set that is covered by the sheath of mains cord and is formed together with mains plug and appliance connector. | Added. | N/A |
| 2.6.4.2 | Replace the first paragraph with the following. Equipment required to have protective earthing | Added. | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | shall have a main protective earthing terminal. <br> For equipment with a DETACHABLE POWER SUPPLY CORD, the earthing terminal in the appliance inlet is regarded as the main protective earthing terminal. However, for CLASS 01 EQUIPMENT provided with the separate main protective earthing terminal other than appliance inlet, the separate main protective earthing terminal may be treated as mains protective earthing terminal. |  |  |
| :---: | :---: | :---: | :---: |
| 2.6.5.4 | Replace the first sentence with the following. <br> Protective earthing connections of CLASS I EQUIPMENT shall make earlier and break later than the supply connections in each of the following: <br> Add the following after last paragraph: <br> Note For CLASS OI EQUIPMENT, 1.7.14A is applied instead of this requirement. | Replaced. | N/A |
| 2.6.5.8A | Add the following new clause after 2.6.5.8 2.6.5.8A Earthing of CLASS OI EQUIPMENT <br> Plugs with a lead wire for earthing shall not be used for equipment having a rated voltage exceeding 150V. <br> For plugs with a lead wire for earthing, the lead wire shall not be earthed by a clip. <br> CLASS OI EQUIPMENT shall be provided with an earthing terminal or lead wire for earthing in the external location where easily visible. | Added. | N/A |
| 2.7 .6 | Replace "ISO 3864, No. 5036" with "6.2.4 of JIS S 0101". | Replaced. No service work considered. | N/A |
| 2.10.3.1 | Replace the 8th paragraph with the following <br> The above minimum CLEARANCE for connectors do not apply to connectors that comply with JIS C 8285, IEC60309 series of standards, JIS C 8283 series of standards, IEC60320 series of standards, JIS C 8303, or even if it does not comply with the above standards but the one having equivalent to or better performance and dimension which comply with JIS C 8283 series of standards, JIS C 8303 or IEC 60309-2. <br> Note Connectors complying with Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or | Replaced. | P |

ITEEF

Page 47 of 68
Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | better performance. |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { 2.10.3.2 } \\ & \text { Table } 2 \mathrm{~J} \end{aligned}$ | In Japan, the value of the main power supply transient voltage for the nominal ac main power supply voltage of 100 V is determined by applying the row of AC main power supply voltage 150 V . | Added. | P |
| 2.10.4.3 | Replace the 6th paragraph with the following <br> The above minimum CREEPAGE DISTANCE for connectors do not apply to connectors that comply with JIS C 8285, IEC60309 series of standards, JIS C 8283 series of standards, IEC60320 series of standards, JIS C 8303, or even if it does not comply with the above standards but the one having equivalent to or better performance and dimension which comply with JIS C 8283 series of standards, JIS C 8303 or IEC 60309-2. <br> Note Connectors complying with Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or better performance. | Replaced. | P |
| 2.10 .9 | Replace "1.4.5" in the third paragraph with "1.4.12". | Replaced. | N/A |
| 3.2.3 | Add the following after the third paragraph. <br> Table 3A applies when cables complying JIS C 3662 series of standards or JIS C 3663 series of standards are used. In case of other cables, cable entries shall be so designed that the cable could be fitted in a conduit. | Added. <br> Not permanently connected equipment. | N/A |
| 3.2.4 | Add the following as 4th dashed paragraph. <br> - be so constructed that mechanical stress shall not transmit to the soldering part of inlet terminal during insertion or removal of the connector except that the body of the inlet is secured and is secured not only soldering. | Inlet is fixed by adequate mechanical construction, not rely on soldering only. | P |
| 3.2.5.1 | Add the following after Note 3: <br> Note 4 In Japan, mains cords having equivalent to or better electro-mechanical and fire safety performance as above and complying with Appendix 1 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance can be used. <br> Replace the paragraph after Note 3 with the following. <br> For equipment required to have protective | Added. <br> Approved power supply cord provided. | P |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  | earthing, a PROTECTIVE EARTHING <br> CONDUCTOR shall be included in the MAINS SUPPLY cord except for CLASS OI EQUIPMENT having separate protective earthing conductor from mains cord. <br> Add the following after the second paragraph after Note 3: <br> Note 5 For the cross-sectional area of mains cord described in Note 4, relevant Japanese wiring regulation can be applied. |  |  |
| :---: | :---: | :---: | :---: |
| 3.2.5A | Add the following new clause after 3.2.5 <br> 3.2.5A AC mains plug <br> Mains plug for PLUGGABLE EQUIPMENT TYPE A shall comply with JIS C 8282-1 or equivalent to or better performance. Power supply cord set complying with JIS C 8286 is regarded to meet the requirements. Mains plug with fuse link for PLUGGABLE EQUIPMENT TYPE A shall comply with JIS C 8282-2-1 or equivalent to or better performance. <br> Note Mains plug complying with Appendix 4 of the interpretation of Ministerial Ordinance on stipulating technical requirements for the Electrical Appliance is regarded to have equivalent to or better performance. | Added. <br> Approved power supply cord provided. | P |
| $3.3 .4$ <br> Table 3D | Add the following note to Table 3D: <br> Note For cables other than those complying with JIS C 3662 series of standards or JIS C 3663 series of standards, the terminals shall be suitable for the size of the intended cables. | Added. <br> AC inlet used. No such wiring terminal on EUT. | N/A |
| 3.3.7 | Add the following after the first sentence: <br> This requirement is not applicable to the external earthing terminal of CLASS OI EQUIPMENT. | Added. <br> AC inlet used. No such wiring terminal on EUT. | N/A |
| 4.2.8 | Add the following after the first paragraph: <br> Note Intrinsically protected picture tube is required to comply with JIS C 6965 in clause 18 of JIS C 6065. No intrinsically protected picture tube which is out of scope of JIS C 6965 is required to test according to sub-clause 18.2 of JIS C 6065. | Added. No CRT. | N/A |
| 4.3.4 | Add the following after the first sentence: <br> This requirement also applies to those connections in CLASS OI EQUIPMENT, where CLEARANCE or CREEPAGE DISTANCES over BASIC <br> INSULATION would be reduced to less than the | Added. | N/A |

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | values specified in 2.10. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.3.5 | Replace the first dashed paragraph with the following. <br> Within a manufacturer's unit or system, plugs and sockets likely to be used by the OPERATOR or by a SERVICE PERSON shall not be employed in a manner likely to create a hazard due to misconnection. In particular, connectors complying with IEC 60320/JIS C 8283 series of standards or JIS C 8303 or JIS C 8358 shall not be used for SELV CIRCUITS or TNV CIRCUITS. Keying, location or, in the case of connectors accessible only to a SERVICE PERSON, clear markings are permitted to meet the requirement. |  |  |  | Replaced. AC inlet used. | N/A |
| 4.3.6 | Replace the 1st paragraph with the following: DIRECT PLUG-IN EQUIPMENT shall not impose undue stress on the socket-outlet. The mains plug part shall comply with the standard for the relevant mains plug. (see 3.2.5A) |  |  |  | Replaced. <br> No direct plug-in equipment. | N/A |
| 4.4.2 | Replace the paragraph with the following: <br> HOUSEHOLD AND HOME/OFFICE DOCUMENT/MEDIA SHREDDERS shall also comply with Annex JA. |  |  |  | Replaced. <br> No such equipment. | N/A |
| 4.5.3 | Add the following note to footnote b) of Table 4B: NOTE In case no data for the material is available, Appendix 4, 1. (1). b. 3 of the Interpretation on the Ministerial Ordinance stipulating Technical Specifications for Electrical Appliances is regarded as maximum temperature limit of the material. |  |  |  | Replaced. | P |
| 5.1.3 | Add a note after the first paragraph as follows: Note - Attention should be drawn to that majority of three-phase power system in Japan is of delta connection, and therefore, in that case, test is conducted using the test circuit from IEC 60990, figure 13. |  |  |  | Added. | P |
| 5.1.6 | Replace Table 5A. as follows |  |  |  | Replaced. | P |
|  | Type of equipment | Terminal A of measuring instrument connected to: | Maximum TOUCH CURRENT mA r.m.s. ${ }^{\text {a }}$ | Maximum PROTECTI VE CONDUCT OR CURRENT |  |  |
|  | ALL equipment | Accessible parts and circuits not connected to protective earth | 0,25 | - |  |  |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


|  |  | b |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HAND-HELD | Main protective earthing terminal of CLASS । EQUIPMENT | 0,75 | - |  |  |
|  |  | Main protective earthing terminal of CLASS 01 EQUIPMENT | 0,5 | - |  |  |
|  | MOVABLE (other than HAND_HELD, but including | Main protective earthing terminal of CLASS I EQUIPMENT | 3,5 | - |  |  |
|  | TRANSPORTAB LE <br> EQUIPMENT) | Main protective earthing terminal of CLASS 01 EQUIPMENT | 1.0 | - |  |  |
|  | STATIONARY, <br> PLUGGABLE <br> TYPE A | Main protective earthing terminal of CLASS I EQUIPMENT | 3,5 | - |  |  |
|  |  | Main protective earthing terminal of CLASS 0 I EQUIPMENT | 1,0 | - |  |  |
|  | ALL other STATIONARY EQUIPMENT - not subject to | Main protective earthing terminal of CLASS I <br> EQUIPMENT | $3.5$ |  |  |  |
|  | the coll 5.1.7 <br> - subject to the conditions of 5.1.7 | Main protective earthing terminal of CLASS 01 EQUIPMENT | $1.0$ |  |  |  |
|  | a lf peak values of values are obtai 1,414. <br> b Some unearthed and the requiren those in 5.1.6. | OUCH CURRENT ed by multiplying th <br> ccessible parts are ents of 2.4 apply. T |  | maximum table by <br> d 1.5 .7 <br> nt from |  |  |
| Annex G | Replace the pa following <br> The above min do not apply to 8285, IEC6030 series of stand JIS C 8303, an dimension is co 8303 or IEC 6030 | ragraph befor <br> mum CLEARA connectors th 9 series of sta ards, IEC6032 1.5.1 of this mply with JIS 309-2. | able <br> E fo omply rds, eries dard 283 | with the <br> nectors <br> JIS C <br> 8283 <br> andards, hich <br> , JIS C | Replaced. | N/A |
| $\begin{aligned} & \text { Annex V } \\ & \text { V. } 1 \end{aligned}$ | Replace "3.1.2 the first line. | in the first line | $\text { V. } 1 \mathrm{v}$ | $312 " \text { in }$ | Replaced. | P |
| Annex W W. 1 | Replace the th with the followi Floating circuit EQUIPMENT, earthed circuits EQUIPMENT. | rd sentence in g: <br> can exist in CLASS OI EQ can exist in | first <br> SS I <br> MEN <br> SS II | graph | Replaced. | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

| IEC60950_1F - ATTACHMENT |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Annex BB | This annex is not applicable. |  | - |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Annex CC } \\ & \text { CC. } 2 \end{aligned}$ | Replace the third dashed paragraph with the following: <br> - 10000 cycles of turning enable on and off with the input connected to a capacitor rated <br> $425 u F \pm 10 u F$ and shorting the output; | Replaced. | N/A |
| CC. 3 | Add note at end of CC.3: <br> Note: The fast blow fuse should be the one complying with JIS C 6575-2. | Added. | N/A |
| CC. 4 | Replace the 2nd dashed paragraph with the following: <br> - 10000 cycles of turning enable on and off with a $100 \Omega \pm 5 \Omega \square$ resistor and a <br> $425 \mathrm{uF} \pm 10 \mathrm{uF}$ capacitor in parallel with the output; <br> Replace the 4th dashed paragraph with the following: <br> - 10000 cycles of turning enable on and off with the input connected to a capacitor rated <br> $425 \mathrm{uF} \pm 10 \mathrm{uF}$ and shorting the output; <br> Replace the 5th dashed paragraph with the following: <br> -10 000 cycles of turning the input pin on and off with a capacitor rated $425 \mathrm{uF} \pm 10 \mathrm{uF}$ <br> connected to the input supply while keeping enable active and shorting the output; <br> Replace the 6th dashed paragraph with the following: <br> -10 000 cycles of turning the input pin on and off with an ferrite-core inductor having <br> $350 \mathrm{mH} \pm 10 \mathrm{mH}$ inductance at 1 kHz and less than $1 \Omega$ d.c. resistance connected to the input supply and return while keeping enable active and shorting the output; <br> Replace the 10th dashed paragraph with the following: <br> -3 cycles of exposing the device (not energized) to $70^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$ for 24 h ; followed by at <br> least 1 h at room ambient; followed by at least 3 h at $-30^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$; followed by 3 h at room ambient; <br> Replace the 11th dashed paragraph with the following: | Replaced. | N/A |


| IEC60950＿1F－ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement＋Test | Result－Remark | Verdict |  |


|  | -10 cycles of exposing the device（while energized）to $50^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$ for 10 min ；followed by 10 min at $0^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ with a 5 min period of transition from one state to the other； |  |  |
| :---: | :---: | :---: | :---: |
| Annex EE | Replace Annex EE with the following Annex JA． <br> Annex JA （normative） <br> Document shredding machines <br> HOUSEHOLD AND HOME／OFFICE DOCUMENT／MEDIA SHREDDERS shall additionally comply with the requirements of this annex． <br> JA． 1 Markings and instructions <br> The symbol （JIS S 0101：2000，6．2．1）and the following precautions for use shall be marked on readily visible part adjacent to document feed opening．The marking shall be clearly legible， permanent，and easily discernible； <br> 子供が使用することにようて，傷害などの危害が発生するおそれれがある。； <br> （that use by infants／children may cause a hazard of injury etc．） <br>  <br> （that a hand can be drawn into the mechanical section for shredding when touching the document－slot） <br>  <br> （that clothing can be drawn into the mechanical section for shredding when touching the document－slot） <br>  <br> （that hairs can be drawn into the mechanical section for shredding when touching the document－slot） <br> －in case of equipment incorporating a commutator motor， <br>  <br> （that equipment may catch fire or explode by spraying of flammable gas．） | Replaced． | N／A |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

TIEGE

Report No.: 50298194001

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| JA. 2 Inadvertent reactivation <br> Any safety interlock that can be operated by means of the test finger, Figure JA.1, is considered to be likely to cause inadvertent reactivation of the hazard. <br> Compliance is checked by inspection and, where necessary, by a test with the test finger, Figure JA. 1. <br> JA. 3 Disconnection from the mains supply <br> Document shredding machines shall incorporate an isolating switch complying with sub-clause 3.4.2 as the device disconnecting the power of hazardous moving parts. For this switch, twoposition (single-use) switch or multi-position (multifunction) switch (e.g., slide switch) may be used. <br> If two-position switch, the positions for "ON" and "OFF" shall be indicated in accordance with subclause 1.7.8. If multi-position switch, the position for "OFF" shall be indicated in accordance with sub-clause 1.7.8 and other positions shall be indicated with proper terms or symbols. <br> Compliance is checked by inspection. |  |  |
| :---: | :---: | :---: |
| JA. 4 Protection against hazardous moving parts <br> Any warning shall not be used instead of the structure for preventing access to hazardous moving parts. <br> Document shredding machines shall comply with the following requirements. <br> Insert the test finger, Figure JA.1, into all openings in MECHANICAL ENCLOSURES without applying appreciable force. It shall not be possible to touch hazardous moving parts with the test finger. This consideration applies to all sides of MECHANICAL ENCLOSURES when the equipment is mounted as intended. Before testing with the test finger, remove the parts detachable without a tool. <br> Insert the wedge-probe, Figure JA.2, into the document-slot. And, against all directions of openings, if straight-cutting type, a force of 45 N shall apply to the probe, and 90 N if cross-cutting type. In this case, the weight of the probe is to be factored into the overall applied force. Before testing with the wedge-probe, remove the parts detachable without a tool. It shall not be possible to touch any hazardous moving parts, including the |  | N/A |

Disclaimer: This document is controlled and has been released electronically.

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |



Disclaimer: This document is controlled and has been released electronically. Only the version on the IECEE Website is the current document version

| IEC60950_1F - ATTACHMENT |  |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
| Clause | Requirement + Test | Result - Remark | Verdict |  |


| 0 | 2 |
| :---: | :---: |
| 12 | 4 |
| 180 | 24 |

Note 1 - The thickness of the probe varies linearly, with slope changes at the respective points shown in the table.
Note 2 -The allowable dimensional tolerance of the probe is;
for $\leq 25 \mathrm{~mm}:+/-0.13 \mathrm{~mm}$
for $>25 \mathrm{~mm}$ : +/- 0.3 mm .

Figure JA. 2 Wedge-probe

Report No.: 50298194001

| National Differences to IEC 60950-1:2005 + A1:2009 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| ATTACHMENT TO TEST REPORT IEC 60950-1 GERMANY NATIONAL DIFFERENCES Information technology equipment - Safety Part 1: General requirements |  |  |  |
| :---: | :---: | :---: | :---: |
| Differences according to..............: VDE 0805-1:2011-01: EK1-557-13 (2013-07) |  |  |  |
| 1.5 | Bei Steckernetzteilen wird der angeformte Stecker als Komponente betrachtet und in Deutschland generell nach DIN VDE 0620-1:2010 bzw. DIN VDE 0620-1:2013 und DIN VDE 0620-2-1:2013 beurteilt. <br> Nach der Prüfung gemäß DIN VDE 0620-2-1:2013, Abschnitt 24.2 muss der Stecker noch die Prüfung entsprechend DIN VDE 0620-101:1992 Abschnitt 7 Bild 2 „ Lehre für die Auswechselbarkeit" bestehen. Es muss möglich sein, die Stecker in die Lehre ohne übermäßige Kraft so einzuführen, dass ihre Stirnfläche die Oberfläche der Lehre berührt. <br> The moulded plug of plug-in power supplies will be considered as component and will be generally evaluated in Germany according to DIN VDE 06201:2010 respectively DIN VDE 0620-1:2013 and DIN VDE 0620-2-1:2013 <br> After the test according to DIN VDE 0620-2$1: 2013$, sub-clause 24.2 , the plug be shall still pass the test according to DIN VDE 0620-101:1992 clause 7, figure 2 "Gauge for interchangeability" <br> It should be possible to insert the plug without applying an excessive force such that the end surface touches the surface of the gauge | Not direct plug-in equipment. | N/A |
| $\begin{aligned} & \text { Annex ZC, } \\ & \text { 1.7.2.1 } \end{aligned}$ | According to GPSG, section 2, clause 4: <br> If certain rules on the use, supplementation or maintenance of an item of technical work equipment or ready-to-use commodity must be observed in order to guarantee safety and health, instructions for use in German must be supplied when it is brought into circulation. | The requirements have to be checked during the national approval. | N/A |


| National Differences to IEC 60950-1:2005 + A1:2009 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| ATTACHMENT TO TEST REPORT IEC 60950-1 |
| :---: |
| ISRAEL NATIONAL DIFFERENCES |
| Information technology equipment - Safety - |
| Part 1: General requirements |
| Differences according to ..............: $\quad$ SI 60950 Part 1 |


| 1.1 .1 | Replace the the text of Note 3 as follows: <br> The requirements of Israel Standard SI 60065 may <br> also be used to meet safety requirements for <br> multimedia equipment. See IEC Guide 112, Guide <br> on the safety of multimedia equipment. | Replaced. | $\mathrm{N} / \mathrm{A}$ |
| :--- | :--- | :--- | :--- |
| 1.6 | The clause is applicable with the following addition: |  | $\mathrm{N} / \mathrm{A}$ |
| 1.6 .1 | Add following note: <br> In Israel, this clause is applicable subject to the <br> Electricity Law, 1954, its regulations and revisions. | Added. | $\mathrm{N} / \mathrm{A}$ |
| 1.7 | The clause is applicable with the following <br> additions: <br> Subclause 1.7.201 shall be added at the beginning <br> of the clause as follows: | Added. | $\mathrm{N} / \mathrm{A}$ |
| 1.7 .201 | Marking in the Hebrew language <br> The marking in the Hebrew language shall be in <br> accordance with the Consumer Protection Order <br> (Marking of goods), 1983. <br> In addition to the marking required by clause 1.7.1, <br> the following details shall be marked in the Hebrew <br> language. <br> The details shall be marked on the apparatus or on <br> its package, or on a label properly attached to the <br> apparatus or on the package, by bonding or <br> sewing, in a manner that the label cannot be easily <br> removed. <br> 1. Name of the apparatus and it commercial <br> designation; <br> 2. Manufacturer's name and address. If the <br> apparatus is imported, the importer's name and <br> address; <br> 3. Manufacturer's registered trademark, if any; <br> $4 . ~ N a m e ~ o f ~ t h e ~ m o d e l ~ a n d ~ s e r i a l ~ n u m b e r, ~ i f ~ a n y ; ~$ <br> $5 . ~ C o u n t r y ~ o f ~ m a n u f a c t u r e . ~$ | N |  |
| The following shall be added to the clause: <br> All the instructions and warnings related to safety <br> shall also be written in the Hebrew language. | Added. |  |  |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

Report No.: 50298194001

| National Differences to IEC 60950-1:2005 + A1:2009 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 2 | The clause is applicable with the following <br> additions: | Added. | P |
| :--- | :--- | :--- | :--- |
| 2.9 .4 | The following shall be added at the beginning of <br> the clause: <br> In Israel, according to the Electricity Law, 1954, <br> and the Electricity Regulations (Earthing <br> and means of protection against electricity of <br> voltages up to 1,000V) 1991, seven means of <br> protection against electrocution are permitted, as <br> follows: <br> 1) TN-S - Network system earthing; TN-C-S - <br> Network system earthing; <br> 2) TT - Network system earthing; <br> 3) IT - Network Insulation Terre; <br> 4) Isolated transformer; <br> 5) Safety extra low voltage (SELV or ELV); <br> 6) Residual current circuit breaker (30 mA = IS); <br> 7) Reinforced insulation; Double insulation (class <br> II) |  |  |
| Prevention of electromagnetic interference <br> -Prior to carrying out the tests in accordance with <br> the clauses of this Standard, the compliance of the <br> apparatus with the relevant requirements specified <br> in the appropriate part of the Standard series, SI <br> 961, shall be checked. <br> The apparatus shall meet the requirements in the <br> appropriate part of the Standard series, SI 961. <br> -If there are components in the apparatus for the <br> prevention of electromagnetic interference, these <br> components shall not reduce the safety level of the <br> apparatus as required by this Standard. | Added. |  |  |
| The clause is applicable with the following <br> additions: | N/A |  |  |
| Connection to an a.c. mains supply <br> After the note, the following note shall be added: <br> Note: <br> In Israel, the feed plug shall comply with the <br> requirements of Israel Standard SI 32 Part 1.1. | Added. |  |  |
| Connection to a d.c. mains supply <br> At the end of the first paragraph, the following note <br> shall be added: <br> Note: <br> At the time of issue of this Standard, there is no | Added. |  |  |
| 3.201 | N/A |  |  |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

| National Differences to IEC 60950-1:2005 + A1:2009 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | Israel Standard for connection accessories to d.c. |  |  |
| :--- | :--- | :--- | :---: |
| Annex P | Normative references <br> (List of relevant Israel Standards that have been <br> inserted in place of some of the International <br> Standards) | Added. | N/A |


| National Differences to IEC 60950-1:2005 + A1:2009 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |

## ATTACHMENT TO TEST REPORT IEC 60950-1

 KOREA NATIONAL DIFFERENCESInformation technology equipment - Safety Part 1: General requirements

Differences according to $\qquad$ K 60950-1

| 1.5 .101 | Plugs for the connection of the apparatus to the <br> supply mains shall comply with the Korean <br> requirement (KSC 8305) | No plug provided. | N/A |
| :--- | :--- | :--- | :---: |
| 8 | EMC <br> The apparatus shall comply with the relevant <br> CISPR standards. | The requirements have to be <br> checked during the national <br> approval. | N/A |

Report No.: 50298194001

| National Differences to IEC 60950-1:2005 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


| ATTACHMENT TO TEST REPORT IEC 60950-1 CHINA NATIONAL DIFFERENCES <br> Information technology equipment - Safety - <br> Part 1: General requirements |  |  |  |
| :---: | :---: | :---: | :---: |
| Differences according to...............: GB4943.1-2011 |  |  |  |
| 1.5. 2 | Add a note behind the first dashed paragraph. <br> Note: A component used shall comply with related requirements corresponding altitude of 5000 m . | Added. | P |
| 1.7 | Add a paragraph before the last paragraph: <br> The required marking and instruction should be given in normative Chinese unless otherwise specified. | The marking text and instruction must be provided when marketed in China. | N/A |
| 1.7.1 | Amend dashed paragraph at the fifth paragraph : The RATED VOLTAGE should be 220 V (single phase) or 380V (three-phases) for single rated voltage, for RATED VOLTAGE RANGE, it should cover 220 V or 380 V (three-phases), for multiple RATED VOLTAGES, one of them should be 220 V or 380 V (three-phases) and set on 220 V or 380 V (three-phases) when manufactured. <br> And the RATED FREQUENCY or RATED FREQUENCY RANGE should be 50 Hz or include 50 Hz . |  | P |
| 1.7.2.1 | Add requirements of warning for equipment intended to be used at altitude not exceeding 2000 m or at non-tropical climate regions: <br> For equipment intended to be used at altitude not exceeding 2000 m , a warning label containing the following or a similar appropriate wording, or a symbol as in annex DD shall fixed to the equipment at readily visible place. <br> "Only used at altitude not exceeding 2000m." <br> For equipment intended to be used in not-tropical climate regions, a warning label containing the following or a similar appropriate wording, or a symbol as in annex DD shall fixed to the equipment at readily visible place. <br> "Only used in not-tropical climate regions." | Added. The requirements of warning must be checked when marketed in China. | N/A |

TIEGE

Report No.: 50298194001

| National Differences to IEC 60950-1:2005 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | If only the symbol used, the explanation of the symbol shall be contained in the instruction manual. <br> The above statements shall be given in a language acceptable to the regions where the apparatus is intended to be used. |  |  |
| :---: | :---: | :---: | :---: |
| 2.7.1 | Amended the first paragraph as: <br> Protection in PRIMARY CIRCUITS against overcurrent short-circuits and earth faults shall be provided as an integral part of the equipment except special provisions. And the protective device shall meet the requirement of Clause 5.3. Delete note of Clause 2.7.1. |  | P |
| 2.9 | Humidity conditioning <br> This section applies for equipment to be operated at tropical climatic conditions, humidity conditioning dealt with tropical climatic conditions. For equipment not to be operated at tropical climatic conditions, its humidity conditioning complies with rules of CTL 624/07. | Considered. | P |
| 2.9.2 | First section of Clause 2.9.2 amended as two sections: <br> Where required by 2.9.1, 2.10.8.3, 2.10.10 or 2.10.11, humidity conditioning is conducted for 120 h in a cabinet or room containing air with ambient temperature $40 \pm 2^{\circ} \mathrm{C}$ and a relative humidity of $(93 \pm 3) \%$. During this conditioning the component or subassembly is not energized. <br> For equipment not to be operated at tropical climatic conditions, Where required by 2.9.1, 2.10.8.3, 2.10.10 or 2.10.11, humidity conditioning is conducted for 48 h in a cabinet or room containing air with a relative humidity of $(93 \pm 3) \%$. The temperature of the air, at all places where samples can be located, is maintained within $2^{\circ} \mathrm{C}$ of any convenient value between $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ such that condensation does not occur. <br> Due to pretreatment of equipment operated at high altitude area is humidity conditioning withstand hot shock, specific requirements are to be considered. | Amended. Shall be evaluated during the national approval. | N/A |
|  | Add note: For equipment to be operated at 2000 m - 5000m above sea level, assessment and | Added. | N/A |

Disclaimer: This document is controlled and has been released electronically.
Only the version on the IECEE Website is the current document version

ITEEF
Page 63 of 68
Report No.: 50298194001

| National Differences to IEC 60950-1:2005 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | requirement of humidity conditioning for Insulation material properties are considered. |  |  |
| :---: | :---: | :---: | :---: |
| 2.10.3.1 | Amend the third paragraph of Clause 2.10.3.1 to be: <br> These requirements apply for equipment to be operated up to 2000 m above sea level. For equipment to be operated at more than 2000 m above sea level and up to 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor 1.48 corresponding altitude of 5000 m given in Table A. 2 of IEC 60664-1. For equipment to be operated at more than 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor given in Table A. 2 of IEC 60664-1. Linear interpolation is permitted between the nearest two points in Table A.2. The calculated minimum CLEARANCE using this multiplication factor shall be rounded up to the next higher 0,1 mm increment. | Changed. Shall be evaluated during the national approval. | N/A |
| $\begin{aligned} & 2.10 .3 .3 \& \\ & 2.10 .3 .4 \end{aligned}$ | Add "(applicable for altitude up to 2000m)" in header of Table $2 \mathrm{~K}, ~ 2 \mathrm{~L}$ and 2 M . | Added | N/A |
| 2.10.3.4 | Add a new section above Table 2K and in Clause 2.10.3.4: <br> Minimum CLEARANCES determined by above rules apply for equipment to be operated up to 2000m above sea level. For equipment operated at $2000 \mathrm{~m}-5000 \mathrm{~m}$ above sea level, the minimum CLEARANCE shall be multiplied by the factor 1.48 corresponding altitude of 5000 m given in Table A. 2 of GB/T16935.1 ( IEC 60664-1). For equipment to be operated at more than 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor given in Table A. 2 of GB/T16935.1. | Added. Shall be evaluated during the national approval. | N/A |
| 3.2.1.1 | Add a paragraph before the last paragraph: <br> Plugs connected to AC mains supply shall comply with GB 1002 or GB 1003 or GB/T 11918 as applicable. |  | N/A |
| 4.2.8 | Clause 4.2 .8 cathode ray tubes quoted Clause 18 of GB8898-2011. <br> Delete note of Clause 4.2.8. | Deleted. No cathode ray tubes provided. | N/A |
| Annex E | Amend last section: <br> For comparison of winding temperatures determined by the resistance method of this annex | Amended. | N/A |

TIEGE Page 64 of 68

Report No.: 50298194001

| National Differences to IEC 60950-1:2005 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | with the temperature limits of Table 4B, $35^{\circ} \mathrm{C}$ shall be added to the calculated temperature rise. <br> Add note: for equipment not to be operated at tropical climatic conditions, $25^{\circ} \mathrm{C}$ shall be added to the calculated temperature rise to compare with the temperature of Table 4B. | Added. |  |
| :---: | :---: | :---: | :---: |
| Annex G. 6 | Change the second section of Clause G. 6 to be: For equipment to be operated at $2000 \mathrm{~m}-5000 \mathrm{~m}$ above sea level, the minimum CLEARANCE shall be multiplied by the factor 1.48 corresponding altitude of 5000 m given in Table A. 2 of GB/T16935.1. For equipment to be operated at more than 5000 m above sea level, the minimum CLEARANCE shall be multiplied by the factor given in Table A. 2 of IEC 60664-1. Linear interpolation is permitted between the nearest two points in Table A.2. The calculated minimum CLEARANCE using this multiplication factor shall be rounded up to the next higher $0,1 \mathrm{~mm}$ increment. | Changed. Shall be evaluated during the national approval. | N/A |
| Annex BB | Amended as: <br> The differences between Chinese national standards GB 4943.1-2011 and GB 4943-2001. | Amended. | P |
| Annex DD (normative) | Added annex DD: Instructions for the new safety warning labels. <br> DD. 1 Altitude warning label <br> Meaning of the label: Evaluation for apparatus only based on altitude not exceeding 2000m, therefor it's the only operating condition applied for the equipment .There may be some potential safety hazard if the equipment is used at altitude above 2000m. <br> DD. 2 Climate warning label <br> Meaning of the label: Evaluation for apparatus only based on temperate climate condition, therefor it's the only operating condition applied for the equipment .There may be some potential safety hazard if the equipment is used in tropical climate region. | Added. The requirements of warning must be checked when marketed in China. | N/A |
| Annex EE (informativ e) | Added annex EE: <br> Illustration relative to safety explanation in normative Chinese, Tibetan, Mongolian, Zhuang |  | N/A |

TIE CE Page 65 of 68

Report No.: 50298194001

| National Differences to IEC 60950-1:2005 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | Language and Uighur. |  |  |
| :---: | :---: | :---: | :---: |
| Other amendments | In accordance with the relevant CTL decisions and the amendments of IEC 60950-1, the specific requirements or mistakes in IEC standard are corrected or editorially modified in this part, Including clause 1.7, 2.1.1.7, 2.9.2, Table 2H, Figure 2H, F.8, F.9, M. 3 and Annex U. | Amended. | P |
| Quoting standards and reference documents | The principles of quoting and referring to other standards in Annex P and reference documents of IEC 60950-1 are as follows: <br> If the date of the reference document is given, only that edition applies, excluding any subsequent corrigenda and amendments. However, parties to agreements based on this part are encouraged to investigate the possibility of applying the most recent editions of the reference documents. For undated references, the latest edition of the referenced document applies, including any corrigenda and amendments. <br> For the usage of international standards in Chinese national standards and industry standards is various, in the aim of achieving easy operation and based on the requirements of GB/T 1.1 and GB/T 20000.2, when quoting an entire international standard in the normative quoting files and reference documents of Annex P of this part, the principles of quotation are as follows: <br> - If there is no national standard or industry standard corresponding to the international standard, then the international standard is quoted; <br> - If there is national standard or industry standard corresponding to the international standard, then either the national or industry standard is quoted; <br> - If the date of the national standard or industry standard is not given, the latest edition of the standard applies; <br> - The national standard or industry standard number, corresponding international standard number and the consistency level code should be identified in parentheses behind the listed national standard or industry standard. <br> When quoting several chapters or clauses of the international standard, the principles of quotation are as follows: <br> - If there is no national standard or industry standard corresponding to the international | Considered. | P |

TIEGE

Report No.: 50298194001

| National Differences to IEC 60950-1:2005 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement + Test | Result - Remark | Verdict |


|  | standard, then the international standard is quoted; <br> - If there is national standard or industry standard <br> corresponding to the international standard, then <br> either the national or industry standard is quoted. <br> Meanwhile, in order to retain the relevant <br> information on international standards, informative <br> annex CC is increased, which gives the table about <br> the comparison of the normative quoting files and <br> reference documents in IEC 60950-1: 2005. |  |  |
| :--- | :--- | :--- | :--- |


|  | Special national conditions |  |  |
| :--- | :--- | :--- | :--- |
| 1.1 .2 | GB4943.1-2011 applies to equipment used <br> at altitudes not exceeding 5000m above sea level, <br> primarily in regions with moderate or tropical <br> climates. <br> Revise the third dashed paragraph of 1.1.2 as: <br> equipment intended to be used in vehicles, on <br> board ships or aircraft, at altitudes greater than <br> $5000 \mathrm{~m} ;$ | Revised. Shall be evaluated <br> during the national approval. | N/A |
| 1.4 .5 | Amend the second paragraph by the following: <br> If the equipment is intended for direct connection <br> to an AC mains supply, the tolerances on RATED <br> VOLTAGE shall be taken as +10\% and -10\%. | N/A |  |
| 1.4 .12 .1 | Tma: The maximum ambient temperature <br> permitted by the manufacturer's specification, or <br> $35{ }^{\circ}$ C, whichever is greater. | Amended. Shall be evaluated <br> during the national approval. | N/A |
|  | Add note 1: For equipment not to be operated at <br> tropical climatic conditions, Tma is the maximum <br> ambient temperature permitted by the <br> manufacturer's specification, or 25 ${ }^{\circ} \mathrm{C}$, whichever is <br> greater. | Added. | N/A |
|  | Add note 2: For equipment to be operated at <br> $2000 m-5000 m$ <br> test conditions and temperature limits are under <br> consideration. | Added. | N/A |


| National Differences to IEC 60950－1：2005 |  |  |  |
| :--- | :--- | :--- | ---: |
| Clause | Requirement＋Test | Result－Remark | Verdict |


| Appendix | Appendix 12，J3000（H25） <br> Special National conditions，National deviation and other information according to MITI Ordinance No． 85. |  | － |
| :---: | :---: | :---: | :---: |
| 1 | General requirement <br> When equipment provides with appliance inlet complying with JIS C 8283－1（2008），soldered parts of appliance inlet is not applied by force during insert or removal of connector． <br> This is not applied when inlet body is fixed itself and not fixed by solder． | Inlet is fixed by adequate mechanical construction，not rely on soldering． | P |
| 2 | Requirement for equipment |  | － |
| 2.1 | Heater Appliances <br> When diode is used in parallel for adjustment of power，the equipment shall remain safe for operation under open condition of one diode． | Not electric stove． | N／A |
|  | The current rating of one diode shall be more than main current．The diodes connected in parallel are same type． |  | N／A |
|  | The heating test specified by clause 11 of JIS C 9335－2－30（2006）under open condition of one diode shall comply with the requirements． |  | N／A |
| 2.2 | Electric heater with glowing heating elements | Not electric stove． | N／A |
|  | Surface treatment by paint or adhesive on protective frame or protective mesh shall not be used． |  | N／A |
|  | Caution marking like below shall be on <br> －easily visible place of the equipment or <br> －Instruction manual <br> 「注意 当該機器から，使用初期段階で揮発性有機化合物及びカルボニル化合物が最も放散するおそれ があるため，その際には十分換気を行うこと。」 |  | N／A |
| 3 | Components used in equipment | No such equipment ／components． | N／A |


| National Differences to IEC 60950-1:2005 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 3.1 | Motor capacitors used in ventilating fan, electric fan, air conditioner, electric washing machine, refrigerator or electric freezer shall be comply with <br> - capacitors with protective elements or protective mechanism complying with JIS C 4908(2007) <br> - P2 capacitor complying with IEC 60252-1(2001) Capacitor complying with below is acceptable |  | N/A |
| :---: | :---: | :---: | :---: |
|  | Enclosed by metal or ceramic |  | N/A |
|  | No non-metallic materials within 50 mm from capacitor surface |  | N/A |
|  | Non-metallic material within 50 mm from capacitor surface comply with needle frame test of JIS C 9335-1(2003), Annex E |  | N/A |
|  | Non-metallic material within 50 mm from capacitor surface comply with V-1 test of JIS C 60965-1110(2006). |  | N/A |
| 3.2 | Plug directly inserted to outlet used refrigerator or electric freezer. <br> Shall comply with <br> - Face contact with outlet shall have CTI with more than 400 according to JIS C 2134(2007) or <br> - Supporting material of blades shall comply with glow wire test by temperature of $750^{\circ} \mathrm{C}$ according to JIS C 60695-2-11(2004) or JIS C 60695-2-12(2004). <br> Materials having glow wire frame temperature of $775^{\circ} \mathrm{C}$ are acceptable. |  | N/A |

Page 1 of 2
Report No.: 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| 2.1.1.7 | TABLE: discharge test |  |  |  | P |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Condition | $\tau$ calculated <br> $(\mathrm{s})$ | $\tau$ measured <br> $(\mathrm{s})$ | $\mathrm{t} \mathrm{u} \rightarrow 0 \mathrm{~V}$ <br> $(\mathrm{~s})$ | Comments |  |
| System on (with fuse <br> in, L-N) | -- | 0.20 | -- | Vo=375Vpk, 37\% of Vo=138V. <br> Input voltage: $264 \mathrm{~V} / 60 \mathrm{~Hz}$. |  |

## Supplementary information:

Overall capacity: C9901 $=0.47 \mu \mathrm{~F}$;
Discharge resistor: R9165=1k $\Omega$, Approved discharge IC U9104

| 2.4.2 | TABLE: limited current circuit measurement | P |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Location | Voltage <br> $(\mathrm{V})$ | Current <br> $(\mathrm{mA})$ | Freq. <br> $(\mathrm{kHz})$ | Limit <br> $(\mathrm{mA})$ | Comments |
| C913, C9818 | -- | 0.315 | -- | -- | -- |
| Supplementary information: <br> See table 1.5.1 for capacity. Input Voltage is $264 \mathrm{Vac}, 60 \mathrm{~Hz}$. |  |  |  |  |  |


| 2.6.3.4 | TABLE: ground continue test | P |  |  |
| :--- | :---: | :--- | :---: | :---: |
| Location | Resistance measured $(\mathrm{m} \Omega)$ | Comments |  |  |
| PE terminal of AC inlet to internal <br> metal enclosure | 6 | Test with 32A, 2 minutes |  |  |
| PE terminal of AC inlet to internal <br> metal enclosure | 6 | Test with 40A, 2 minutes |  |  |
| PE terminal of AC inlet to C9915/ <br> C9916 trace | 8 | Test with 32A, 2 minutes |  |  |
| PE terminal of AC inlet to C9915/ <br> C9916 trace | 8 | Test with 40A, 2 minutes |  |  |
| PE terminal of AC inlet to C9917/ <br> C9919 trace | 8 | Test with 40A, 2 minutes |  |  |
| PE terminal of AC inlet to C9917/ <br> C9919 trace | 8 |  |  |  |
| Supplementary information: |  |  |  |  |


| 4.6.1 and 4.6.2 | Table: enclosure openings |  | P |
| :--- | :--- | :--- | :---: |
| Location | Size $(\mathrm{mm})$ | Comments |  |
| External plastic enclosure | Numerous rectangle openings: <br> Max. $15.5 \mathrm{~mm} \times 1.8 \mathrm{~mm}$ | Openings are covered by internal metal <br> enclosure. |  |
| Top | No opening. | -- |  |
| Rear |  |  |  |

Page 2 of 2
Report No.: 50298194001

| IEC 60950-1 |  |  |  |
| :--- | :--- | :--- | :--- |
| Clause | Requirement + Test | Result - Remark | Verdict |


| Left | No opening. | -- |
| :---: | :---: | :---: |
| Right | No opening. | -- |
| Bottom | -- | -- |
| Internal metal enclosure |  |  |
| Top | 1. Numerous circle openings: $\varnothing 4.7 \mathrm{~mm}$; <br> 2. One rectangle openings above power board: Max. $55.0 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ | 1. Openings do not exceed 5 mm in any dimension. No hazards. <br> 2. Width of opening do not exceed 1.0 mm . No hazards. |
| Rear | -- | V-0 Mylar sheet was used for fire barrier around power board. All openings are covered by Mylar sheet inside. |
| Left | Numerous rectangle openings above power board: <br> Max.54.0mm x 23.4mm | The opening is covered by V-1 Mylar sheet. No hazards. |
| Right | 1. One rectangle openings above power board: Max.61.0mm x 18.8 mm ; <br> 2. Numerous circle openings: $\varnothing 4.7 \mathrm{~mm}$ | Main board is supplied by L.P.S. No hazards. |
| Bottom | 1. Numerous $\varnothing 1.7 \mathrm{~mm}$ holes; spacing of holes (centre to centre): 6.0 mm ; thickness of metal: min. 0.81 mm <br> 2. Numerous rectangle openings above power board: Max. $46.0 \mathrm{~mm} \times 4.0 \mathrm{~mm}$ | 1. Metal enclosure is considered to satisfy the requirement of fire enclosure opening. No hazards. <br> 2. V-0 Mylar sheet was used for fire barrier around power board. All openings are covered by Mylar sheet mentioned above. |
| Note(s): |  |  |

Type Designation: 34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, <br>, $I$, + or blank, represent different enclosure colour for marketing purpose)
Report Number: 50298194001


Figure 1. Front view


Figure 2. Rear view

Type Designation: 34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, <br>, $I$, + or blank, represent different enclosure colour for marketing purpose)
Report Number: 50298194001


Figure 3. Base stand


Figure 4. Metal enclosure

Type Designation:

Report Number:

34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, <br>, I, + or blank, represent different enclosure colour for marketing purpose)
50298194001


Figure 5. Metal enclosure


Figure 6. Metal enclosure

Type Designation: 34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, <br>, I, + or blank, represent different enclosure colour for marketing purpose)
Report Number:
50298194001


Figure 7. Internal view


Figure 8. Internal view

Type Designation: 34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, <br>, I, + or blank, represent different enclosure colour for marketing purpose)
Report Number: 50298194001


Figure 9. Internal view after remove power board


Figure 10. Power board 715GA649

Type Designation: 34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, <br>, $I$, + or blank, represent different enclosure colour for marketing purpose)
Report Number: 50298194001


Figure 11. Power board 715GA649


Figure 12. Main board 715GA732

Type Designation: 34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, <br>, $I$, + or blank, represent different enclosure colour for marketing purpose)
Report Number: 50298194001


Figure 13. Main board 715GA732


Figure 14. Extend USB board 715GA629

Type Designation: 34G2, 34G2X, **34G2******** (* can be 0-9, A-Z, a-z, -, I, $I$, + or blank, represent different enclosure colour for marketing purpose)
Report Number: 50298194001


Figure 15. Extend USB board 715GA629


[^0]:    Disclaimer: This document is controlled and has been released electronically.

