

CE EMC Test Report

:	1908C237
:	LCD Monitor
:	N/A
:	**32G2******** (*=A-Z,a-z,0-9,/, +,-,\ or blank)
:	N/A
:	TPV Electronics (Fujian) Co., Ltd.
:	Rongqiao Economic and Technological Development Zone, Fuqing City, Fujian Province, P.R. China
:	Sep. 02, 2019
:	Sep. 03, 2019 ~ Oct. 12, 2019
:	Oct. 21, 2019
:	R00
:	Engineering Sample No.: DG20190905213, DG20190905214
:	EN 55032:2012+AC:2013 EN 55032:2015 EN 55032:2015+AC:2016 IEC 61000-3-2:2014 / EN 61000-3-2:2014 IEC 61000-3-3:2013 / EN 61000-3-3:2013 EN 55024:2010 EN 55024:2010+A1:2015

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Frepared by : Simon Ling

kern li

Approved by : Kevin Li

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	7
1 . SUMMARY OF TEST RESULTS	8
1.1 TEST FACILITY	9
1.2 MEASUREMENT UNCERTAINTY	9
1.3 TEST ENVIRONMENT CONDITIONS	11
2 . GENERAL INFORMATION	12
2.1 GENERAL DESCRIPTION OF EUT	12
2.2 DESCRIPTION OF TEST MODES	13
2.3 EUT OPERATING CONDITIONS	15
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	15
2.5 DESCRIPTION OF SUPPORT UNITS	16
3 . EMC EMISSION TEST- EN55032:2012+AC:2013 & 2015	17
3.1 RADIATED EMISSION UP TO 1 GHZ	17
3.1.1 LIMITS	17
3.1.2 MEASUREMENT INSTRUMENTS LIST 3.1.3 TEST PROCEDURE	17 18
3.1.4 DEVIATION FROM TEST STANDARD	18
3.1.5 TEST SETUP	18
3.1.6 MEASUREMENT DISTANCE	19
3.1.7 TEST RESULTS (UP TO 1 GHZ)	20
3.2 RADIATED EMISSION ABOVE 1 GHZ	36
3.2.1 LIMITS 3.2.2 MEASUREMENT INSTRUMENTS LIST	36 37
3.2.3 TEST PROCEDURE	37
3.2.4 DEVIATION FROM TEST STANDARD	38
3.2.5 TEST SETUP	38
3.2.6 MEASUREMENT DISTANCE 3.2.7 TEST RESULTS (ABOVE 1 GHZ)	39 40
3.3 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS	40 56
3.3 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS 3.3.1 LIMITS	56 56
3.3.2 MEASUREMENT INSTRUMENTS LIST	56
3.3.3 TEST PROCEDURE	57
3.3.4 DEVIATION FROM TEST STANDARD	57
3.3.5 TEST SETUP 3.3.6 TEST RESULTS	57 58
4 . EMC EMISSION TEST- EN 55032:2015+AC:2016	74
	/

Table of Contents	Page
4.1 RADIATED EMISSIONS UP TO 1 GHZ 4.1.1 LIMITS	74 74
4.1.2 MEASUREMENT INSTRUMENTS LIST	74
4.1.3 TEST PROCEDURE	75
4.1.4 DEVIATION FROM TEST STANDARD	75
4.1.5 TEST SETUP	75
4.1.6 MEASUREMENT DISTANCE	76
4.1.7 TEST RESULTS (UP TO 1 GHZ)	77
4.2 RADIATED EMISSIONS ABOVE 1 GHZ	81
4.2.1 LIMITS	81
4.2.2 TEST PROCEDURE	82
4.2.3 DEVIATION FROM TEST STANDARD 4.2.4 TEST SETUP	82 82
4.2.4 TEST SETUP 4.2.5 MEASUREMENT DISTANCE	83 84
4.2.6 TEST RESULTS (ABOVE 1 GHZ)	85
4.3 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS	89
4.3.1 LIMITS	89
4.3.2 MEASUREMENT INSTRUMENTS LIST	89
4.3.3 TEST PROCEDURE	90
4.3.4 DEVIATION FROM TEST STANDARD	90
4.3.5 TEST SETUP	90
4.3.6 TEST RESULTS	91
5. HARMONIC AND FLICKER TEST	95
5.1 HARMONIC CURRENT EMISSIONS	95
5.1.1 LIMITS	95 05
5.1.2 MEASUREMENT INSTRUMENTS LIST 5.1.3 TEST PROCEDURE	95 95
5.1.4 DEVIATION FROM TEST STANDARD	95 95
5.1.5 TEST SETUP	95
5.1.6 TEST RESULTS	96
5.2 VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER TEST	102
5.2.1 LIMITS	102
5.2.2 MEASUREMENT INSTRUMENTS LIST	102
5.2.3 TEST PROCEDURE	102
5.2.4 DEVIATION FROM TEST STANDARD 5.2.5 TEST SETUP	102 103
5.2.6 TEST RESULTS	103
6 . EMC IMMUNITY TEST	106
6.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA	106
6.2 GENERAL PERFORMANCE CRITERIA	108

Table of Contents	Page
6.3 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD) 6.3.1 TEST SPECIFICATION 6.3.2 MEASUREMENT INSTRUMENTS 6.3.3 TEST PROCEDURE 6.3.4 DEVIATION FROM TEST STANDARD 6.3.5 TEST SETUP 6.3.6 TEST RESULTS	109 109 109 109 110 110 111
6.4 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS) 6.4.1 TEST SPECIFICATION 6.4.2 MEASUREMENT INSTRUMENTS 6.4.3 TEST PROCEDURE 6.4.4 DEVIATION FROM TEST STANDARD 6.4.5 TEST SETUP 6.4.6 TEST RESULTS	117 117 117 117 117 117 118 119
6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT/BURST) 6.5.1 TEST SPECIFICATION 6.5.2 MEASUREMENT INSTRUMENTS 6.5.3 TEST PROCEDURE 6.5.4 DEVIATION FROM TEST STANDARD 6.5.5 TEST SETUP 6.5.6 TEST RESULTS	121 121 121 121 121 121 122 123
6.6 SURGE IMMUNITY TEST 6.6.1 TEST SPECIFICATION 6.6.2 MEASUREMENT INSTRUMENTS 6.6.3 TEST PROCEDURE 6.6.4 DEVIATION FROM TEST STANDARD 6.6.5 TEST SETUP 6.6.6 TEST RESULTS	125 125 125 125 126 126 126 127
 6.7 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY RADIO-FREQUENCY FIELDS TEST (CS) 6.7.1 TEST SPECIFICATION 6.7.2 MEASUREMENT INSTRUMENTS 6.7.3 TEST PROCEDURE 6.7.4 DEVIATION FROM TEST STANDARD 6.7.5 TEST SETUP 6.7.6 TEST RESULTS 6.8 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF) 6.8.1 TEST SPECIFICATION 6.8.2 MEASUREMENT INSTRUMENTS 	129 129 129 129 129 130 131 133 133
6.8.2 MEASUREMENT INSTRUMENTS 6.8.3 TEST PROCEDURE	133 133

Table of Contents	Page
6.8.4 DEVIATION FROM TEST STANDARD	133
6.8.5 TEST SETUP	134
6.8.6 TEST RESULTS	135
6.9 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS	
IMMUNITY TEST	137
6.9.1 TEST SPECIFICATION	137
6.9.2 MEASUREMENT INSTRUMENTS	137
6.9.3 TEST PROCEDURE	137
6.9.4 DEVIATION FROM TEST STANDARD	137
6.9.5 TEST SETUP	138
6.9.6 TEST RESULTS	139
7 . EUT TEST PHOTO	141

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Oct. 21, 2019

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Emission				
Standard(s)	Test Ite	em	Result	
	Radiated emissions up to 1 GHz		PASS	
	Radiated emissions above 1 GHz		PASS	
	Radiated emissions from FM receivers		N/A	
EN 55032:2012+AC:2013 EN 55032:2015	Conducted emissions AC mains power port		PASS	
EN 55032:2015 EN 55032:2015+AC:2016	016 Asymmetric mode conducted emissions	AAN	N/A	
		Current Probe	N/A	
		CP+CVP	N/A	
	Conducted differential voltage emissions		N/A	

Standard(s)	Test Item	Result
IEC 61000-3-2:2014 EN 61000-3-2:2014	Harmonic current	PASS
IEC 61000-3-3:2013 EN 61000-3-3:2013	Voltage fluctuations (Flicker)	PASS

	Immunity		
Standard(s)	Ref Standard(s)	Test Item	Result
	EN 61000-4-2:2009 IEC 61000-4-2:2008	ESD	PASS
	EN 61000-4-3: 2006+A1:2008+A2:2010 IEC 61000-4-3: 2006+A1:2007+A2:2010	RS	PASS
EN 55024: 2010/	EN 61000-4-4:2012 IEC 61000-4-4:2012	EFT	PASS
EN 55024:2010+A1:2015	EN 61000-4-5:2014+A1:2017 IEC 61000-4-5:2014+A1:2017	Surge	PASS
	EN 61000-4-6:2014+AC:2015 IEC 61000-4-6:2013	CS	PASS
	EN 61000-4-8:2010 IEC 61000-4-8:2009	PFMF	PASS
	EN 61000-4-11:2004+A1:2017 IEC 61000-4-11:2004+A1:2017	Dip	PASS

NOTE:

(1) "N/A" denotes test is not applicable to this device.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

1.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2, The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

A. Radiated emissions up to 1 GHz measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)
DG-CB08 (10m)	CISPR	30MHz ~ 200MHz	V	4.54
		30MHz ~ 200MHz	Н	3.98
		200MHz ~ 1,000MHz	V	3.98
		200MHz ~ 1,000MHz	Н	3.76

B. Radiated emissions above 1 GHz measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-CB08 (3m)	CISPR	1GHz ~ 6GHz	4.02

C. Conducted emissions AC mains power port measurement:

Test Site	Method	Measurement Frequency Range	U,(dB)
DG-C02	CISPR	150 kHz ~ 30MHz	2.32

D. Harmonic current emissions / Voltage fluctuations (Flicker) measurement:

Test Site	Method	ltem	U(%)
DG-C01	EN 61000-3-2	Current	0.782
DG-C01	EN 61000-3-3	Voltage	0.774

E. Immunity Measurement:

3L|

Test Site	Method	Item	U
		Rise time tr	14.60 %
DG-SR02	IEC 61000-4-2	Peak current lp	1.72 %
DG-SRUZ	IEC 01000-4-2	Current at 30 ns	2.0 %
		Current at 60 ns	1.84 %
DG-CB05	IEC 61000-4-3	80 MHz~1 GHz	2.175 dB
DG-SR05	IEC 61000-4-4	Voltage rise time (tr)	10.40 %
		Voltage peak value(V _P)	8.20 %
		Voltage pulse width(tw)	6.0 %
		Voltage front time (T_{fv})	5.80 %
DG-SR01	IEC 61000-4-5	Voltage peak value(V _P)	3.90 %
		Voltage duration(t _d)	0.60 %
	IEC 61000-4-6	CDN	3.25 dB
DG-CB06		EM clamp	4.410 dB
DG-SR05	IEC 61000-4-8	Magnetic Field Level	3.787 %
DG-SR05	IEC 61000-4-11	voltage fall time (T _f)	2.0 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Tested By
Radiated emissions up to 1 GHz	25°C	60%	Lorry Lao
Radiated emissions above 1 GHz	25°C	60%	Lorry Lao
Conducted emissions AC mains power port	25°C	53%	Lea Lu
Harmonic current	25°C	55%	Lea Lu
Voltage fluctuations (Flicker)	25°C	55%	Lea Lu

Test Item	Temperature	Humidity	Pressure	Tested By
ESD	25°C	45%	1010hPa	Rich Ye
RS	25°C	50%	/	Hunter Xu
EFT	25°C	46%	/	Celina Lai
Surge	25°C	46%	/	Celina Lai
CS	24°C	50%	/	Daniel Li
PFMF	25°C	46%	/	Celina Lai
Dip	25°C	46%	/	Celina Lai

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	LCD Monitor
Brand Name	N/A
Test Model	**32G2******** (*=A-Z,a-z,0-9,/, +,-,\ or blank)
Series Model	N/A
Model Difference(s)	Please refer to Note 3.
Power Source	AC Mains.
Power Rating	100-240V~50-60Hz
Connecting I/O Port(s)	Please refer to Note 3.
Classification Of EUT	Class B
Highest Internal Frequency(Fx)	600 MHz

Cable Type	Shielded Type	Ferrite Core	Length(m)	Note
HDMI	Shielded	NO	1.8/1.5	/
Display	Shielded	NO	1.8/1.5	/
D-SUB	Shielded	YES	1.8/1.5	Bonded two Ferrite Cores
AC Power Cord	Non-shielded	NO	1.8/1.5	1.8m is worst case Detachable (3 Pin)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Power cable 1.8m, 1.5m length, worst case is Power cable 1.8m with HDMI+Display+D-SUB 1.8m length testing and recording in test report.

3.

Model	Sale Name	Mainboard	I/O Port(s)
32G2***** (*=A-Z,a-z,0-9,/, +,-,∖ or blank)	C32G2	715GA531	2* HDMI port 1* Display port 1* D-SUB port 1* Earphone port 1* AC port
	CQ32G2	715G9500	2* HDMI port 1* Display port 1* Earphone port 1* AC port

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

C32G2:	
00202.	

Pretest Mode	Description
Mode 1	HDMI1 1920*1080/165Hz
Mode 2	HDMI2 1920*1080/165Hz
Mode 3	DP 1920*1080/165Hz
Mode 4	D-SUB 1920*1080/60Hz
Mode 5	HDMI1 1080P
Mode 6	HDMI2 1080P
Mode 7	HDMI 1 1280*1024/75Hz
Mode 8	HDMI1 640*480/60Hz

Radiated emissions up to 1 GHz test		
Final Test Mode Description		
Mode 1	HDMI1 1920*1080/165Hz	
Mode 4	D-SUB 1920*1080/60Hz	
Mode 5	HDMI1 1080P	

Radiated emissions Above 1 GHz test		
Final Test Mode Description		
Mode 1	HDMI1 1920*1080/165Hz	
Mode 4	D-SUB 1920*1080/60Hz	
Mode 5	HDMI1 1080P	

Conducted emissions AC mains power port test		
Final Test Mode Description		
Mode 1	HDMI1 1920*1080/165Hz	
Mode 4	D-SUB 1920*1080/60Hz	
Mode 5	HDMI1 1080P	

Harmonic current & Voltage fluctuations (Flicker) Test			
Final Test Mode Description			
Mode 1 HDMI1 1920*1080/165Hz			

Immunity Test		
Final Test Mode Description		
Mode 1	HDMI1 1920*1080/165Hz	

Evaluation description:

- 1. The maximum resolution is evaluated Mode 1-6. The worst case is Mode 1 and evaluated the middle and low resolution Mode 7 and Mode 8.
- 2. According to the client's requirement, choose Mode 1, Mode 4, Mode 5 and recorded in test report.

CQ32G2:

Description				
HDMI1 2560*1440/144Hz				
HDMI2 2560*1440/144Hz				
DP 2560*1440/144Hz				
HDMI1 1080P				
HDMI2 1080P				
HDMI 1 1280*1024/75Hz				
HDMI1 640*480/60Hz				

Radiated emissions up to 1 GHz test			
Final Test Mode Description			
Mode 1	HDMI1 2560*1440/144Hz		
Mode 3	DP 2560*1440/144Hz		
Mode 5	HDMI2 1080P		

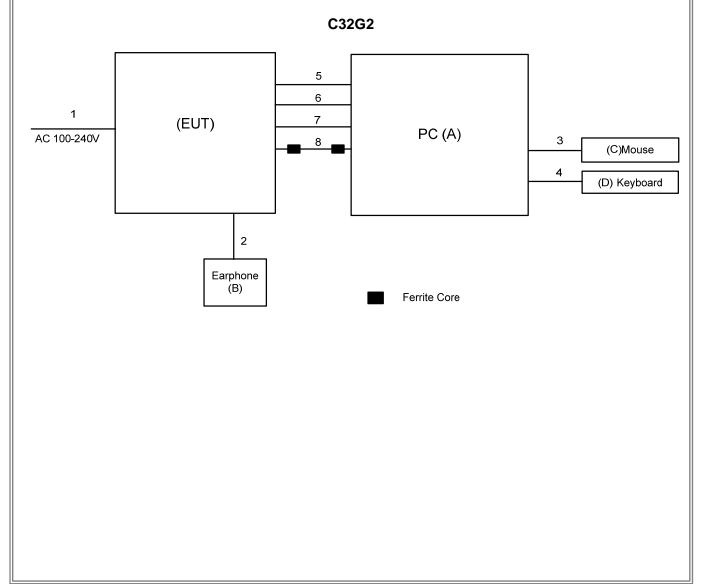
Radiated emissions Above 1 GHz test			
Final Test Mode Description			
Mode 1	HDMI1 2560*1440/144Hz		
Mode 3	DP 2560*1440/144Hz		
Mode 5	HDMI2 1080P		

Conducted emissions AC mains power port test			
Final Test Mode Description			
Mode 1	HDMI1 2560*1440/144Hz		
Mode 3	DP 2560*1440/144Hz		
Mode 5	HDMI2 1080P		

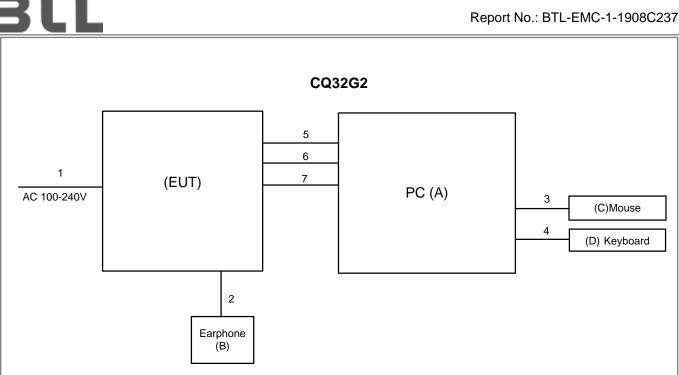
Harmonic current & Voltage fluctuations (Flicker) Test		
Final Test Mode Description		
Mode 1	HDMI1 2560*1440/144Hz	

Immunity Test		
Final Test Mode Description		
Mode 1	HDMI1 2560*1440/144Hz	

Evaluation description:


- 1. The maximum resolution is evaluated Mode 1-5. The worst case is Mode 1 and evaluated the middle and low resolution Mode 6 and Mode 7.
- 2. According to the client's requirement, choose Mode 1, Mode 3, Mode 5 and recorded in test report.

2.3 EUT OPERATING CONDITIONS


The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. EUT connected to PC via HDMI & Display &D-SUB(for C32G2) cable.
- 2. PC connected to Mouse and Keyboard via USB cable.
- 3. EUT connected to Earphone via Earphone cable.

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	
А	PC	DELL	Vostro 470	24454162837	
В	Earphone	Apple	N/A	N/A	
С	Mouse	DELL	MS111-P	CN011D3V71581279OLOT	
D	Keyboard	DELL	KB212-B	CN0HTXH97158125004DXA01	

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	AC Cable	NO	NO	1.8/1.5m
2	Earphone Cable	NO	NO	1.2m
3	USB Cable	YES	NO	1.8m
4	USB Cable	YES	NO	1.8m
5	DP Cable	YES	NO	1.8/1.5m
6	HDMI Cable	YES	NO	1.8/1.5m
7	HDMI Cable	YES	NO	1.8/1.5m
8	D-SUB Cable	YES	YES	1.8/1.5m

3. EMC EMISSION TEST- EN55032:2012+AC:2013 & 2015

3.1 RADIATED EMISSION UP TO 1 GHZ

3.1.1 LIMITS

Class B equipment up to 1000MHz

Frequency	Measurement		Class B limit dB(uV/m)	
MHz	Distance m	Detector type/bandwidth	SAC	
30-230	10	Quasi peak /	30	
230-1000	10	120 kHz	37	

Notes:

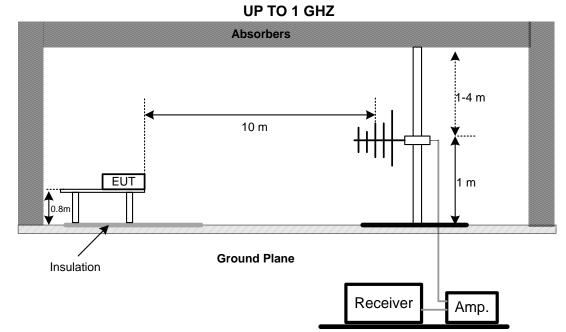
- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

3.1.2 MEASUREMENT INSTRUMENTS LIST

Up to 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Receiver	Keysight	N9038A	MY54450004	Aug. 03, 2020
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
3	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980284	Mar. 10, 2020
4	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980283	Mar. 10, 2020
5	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	946	Nov. 24, 2019
6	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	947	Nov. 24, 2019
7	Cable	emci	LMR-400(5m+ 11m+15m)	N/A	Aug. 06, 2020
8	Cable	emci	LMR-400(5m+ 8m+8m)	N/A	Aug. 06, 2020
9	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT- 1	N/A	N/A
10	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
11	Attenuator	EMCI	EMCI-N-6-06	N0670	Nov. 24, 2019
12	Attenuator	EMCI	EMCI-N-6-06	N0671	Nov. 24, 2019

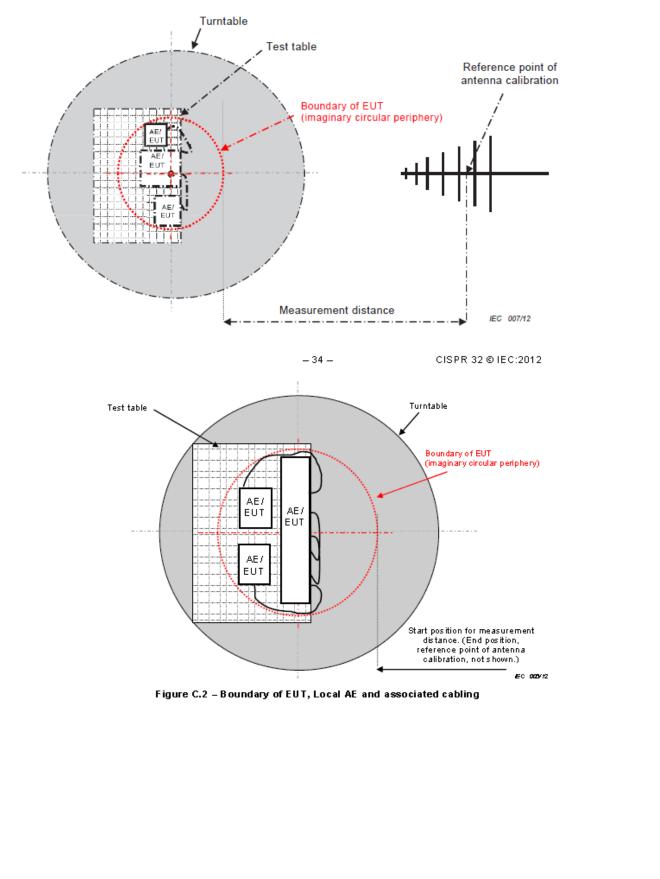
Remark: "N/A" denotes no model no., no serial no. or no calibration specified. All calibration period of equipment list is one year.


3.1.3 TEST PROCEDURE

- a. The measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz).
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- g. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation


3.1.5 TEST SETUP

Note: The antenna can be moved between 1 to 4 meters above the ground.

4

5

6

243. 4000 44. 24

445. 1600 39. 15 698. 3300 32. 70

863.2300 31.84

-17.20

-11.66

-7.09

-5**. 00**

27.04

27.49

25**. 6**1

26.84

3.1.7 TEST RESULTS (UP TO 1 GHZ)

EUT			LCD Monitor				e Name		C32G2		
ſest ∖	/oltage		AC 230\	//50Hz		Pola	arization	Vertical	ertical		
Fest N	Node		HDMI1 1	920*108	30/165Hz	2					
80 di	BuV <i>i</i> m										
40		2	Jan	www.allengewerth		Whytherefore	5 				
0	0 127.00	224.00	321.00	418.00	515.00) 612	00 7090	0 80)6.00	1000.00	
0 30.00	0 127.00	224.00) 612.	00 709.0	0 80)6.00	1000.00 (MHz)	
No.	Freq.	Readin Level	Fact	or me	nt	Limit	Margin				
	MHz 35.8200	dBuV/m 43.03	ı dB −18.			dBuV/m 30. 00	dB -5. 01	Detec QP	tor		
1 *											

37.00

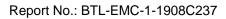
37.00

37.00

37.00

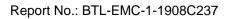
-9.96

-**9.** 51

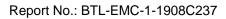

-11. 39

-10.16

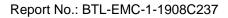
QP


QP

QP



EUT			LCD Mo	nitor		Sale	e Name		C32G2	C32G2		
Test	Voltage		AC 230\	//50Hz		Pola	Polarization Ho			lorizontal		
Test	Mode		HDMI1 1	920*108	30/165Hz	<u>.</u>						
80 0	lBuV/m											
40												
								5				
				2	3	4		<u>+ </u>	6			
			J		1 . and all	X	Human hardburg	mehundrasse	under withinke	ner man hand har the		
		1		h	UNIN MANY	WWWWWW	YN MMMMAR					
	Mun.	AMA I	Monish	or marker and and the	ľ							
	1 " When we want	Many My Marked										
	* W											
0												
30.0	0 127.00	224.00) 321.00	418.00	515.00	612.	.00 709.0	0 80	6.00	1000.00		
										(MHz)		
No.	Freq.	Readin Level			asure	Limit	Margin					
	MHz	Level dBuV/r	Fact n dB		nt uV/m	dBuV/m	dB	Detec	tor			
1		32.71	-15.			30. 00	-13.27	QP	.01			
1 2		99 38.93	-12.			37.00	-10.70	QP				
3		00 38.37	-10.			37.00	-9.05	QP				
4	551.860	00 37.37	-9.6			37.00	-9.27	QP				
5*		00 37.96	-6.3			37.00	-5.36	QP				
6	839.950	00 34.57	-5.3	7 29	. 20	37.00	-7.80	QP				



EUT			LCD Mo	nitor		Sale	e Name		C32G2	
Test	Voltage		AC 230	//50Hz		Pola	Polarization Ve			
Test	Mode		D-SUB	1920*10	80/60Hz					
80 0	dBuV/m									
40										
					4					e
	1	2	X		× u					had have a service of the service of
		Ϋ́	4		. Townshill	when it	walnut about det	mappenhru	in the construction of the second	KAN THAT AND A ALAD
	LA M	A. I	M. L.	where the marker	twww.					
	$\mathbb{M}^{\mathbb{N}}$	M. In	1 Mulur	here						
	- What	Vity								
_										
0 30.0	00 127.00	224.0) 321.00	418.0	0 515.0	00 612	.00 709.	00 80	06.00	1000.00
	00 121.00	221.0	021.00			JU UIZ				(MHz)
No.	Freq.	Readin			easure	Limit	Margin			
no.		Level	Fact		ent			D (
1 *	MHz 35.8200	dBuV/1 42.24	n dB -18.		BuV/m 4. 20	dBuV/m 30.00	dB -5.80	Detec QP	tor	
2	148. 3400		-16.		3.72	30.00	-6.28	QP		
3	243. 4000) 44.39	-17.	20 2	7.19	37.00	- 9. 81	QP		
4	445. 1600		-11.		7.89	37.00	-9.11	QP		
5	741.9800		-6.3		6.99	37.00	-10.01	QP		
6	962.1700	31.11	-3.3	8 Z	7.73	37.00	-9.27	QP		

EUT			LCD Mor	nitor		Sale	e Name		C32G2		
Test	Voltage		AC 230V	//50Hz		Pola	Polarization H			al	
Test	Mode		D-SUB 1	920*108	80/60Hz						
80	dBuV/m										
40											
					<u> </u>		3		4	5 6	
			J	1	1 MAN	No I.	The adaption	Mundulum	hand	why war want have	
			LM I	1 martin	WILLIAM TO	"White was	AN Assess				
	Hum. A	Mil 1	Mahurth	engerer all and a starter							
	1 m m	- Why hall									
0 30.	00 127.00	224.00	321.00	418.00	515.00) 612	.00 709.0	00 80	6.00	1000.00	
										(MHz)	
No.	Freq.	Readir			asure	Limit	Margin				
	MHz	Level dBuV/m	Factor dB		nt	dBuV/m	dB	Detec	tor		
1 *	455. 8300		-11.			37.00	-8.53	QP			
2	503. 3600		-10. 4			37.00	-9.52	QP			
3 4 5	599.390		-8.40			37.00	-9.14	QP			
4	839.950		-5. 37			37.00 37.00	-8.77 -8.73	QP QP			
5	890.3900	1 33.16	-4.8	1 28		37 1111		1112			

6

703.1800 32.40

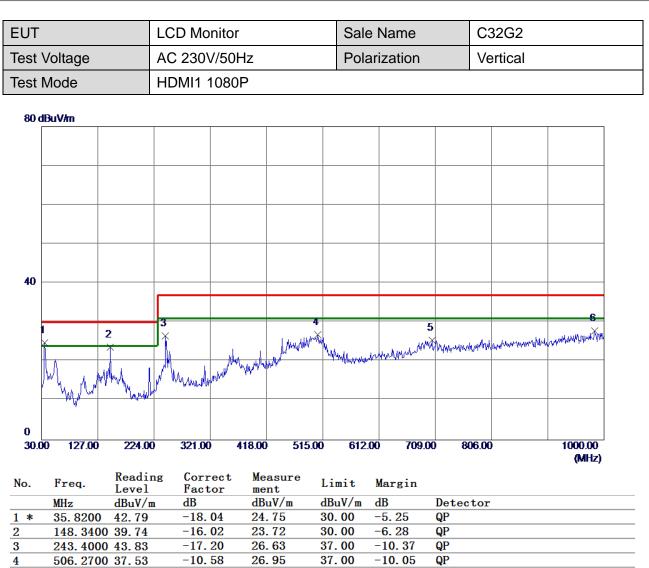
983. 5100 30. 97

-7.00

-3.09

25.40

27.88


37.00

37.00

-11.60

-9.12

QP

6

839.9500 32.52

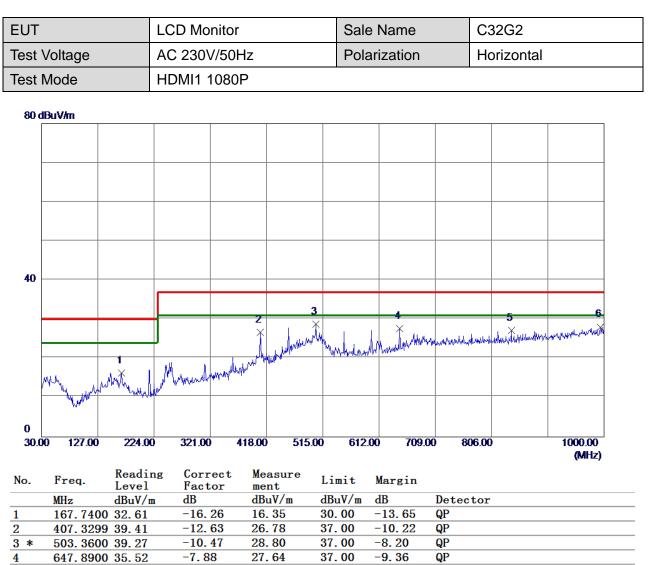
993.2100 31.37

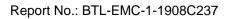
-5.37

-3.29

27.15

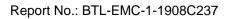
28.08

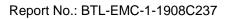

37.00


37.00

-9.85

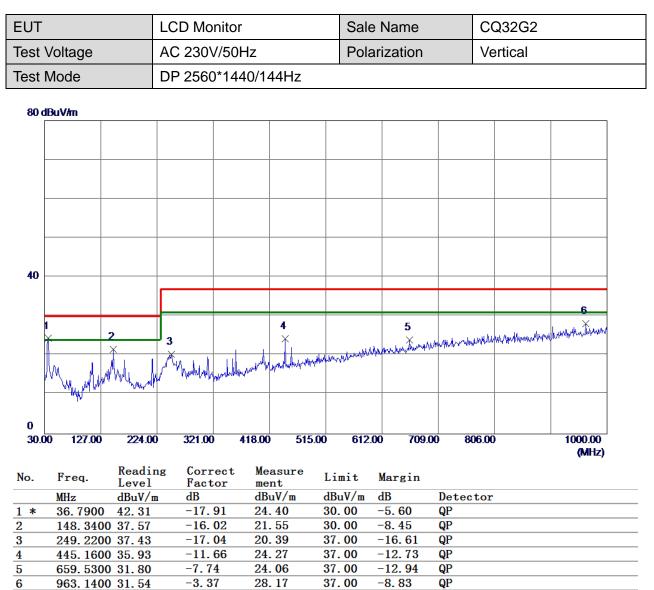
-8.92

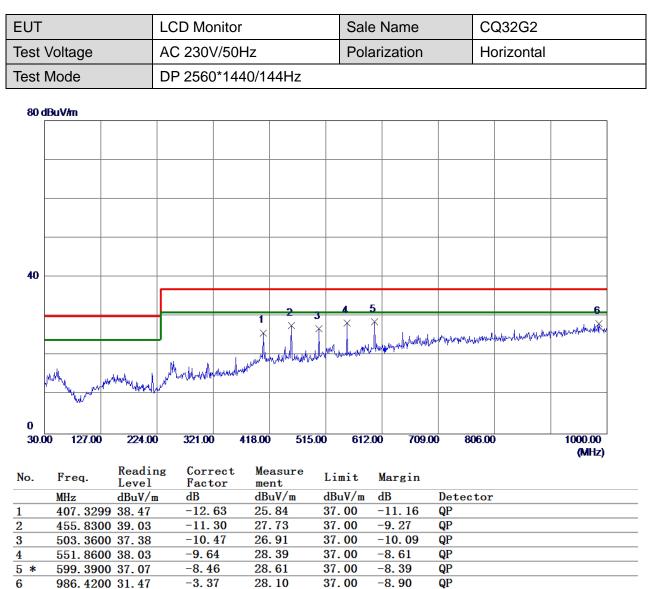

QP



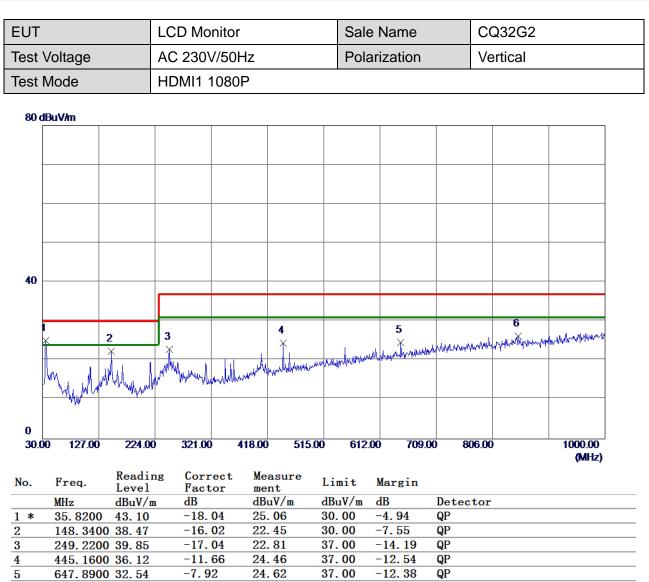
EUT			LCD Mo	nitor		Sale	e Name		C32G2	C32G2		
Test	Voltage		AC 110\	//60Hz		Pola	Polarization Ve					
Test	Mode		HDMI1 '	1920*10	80/165Hz							
90.4	dBuV/m											
001												
40												
40												
			3		4	<u> </u>	5	5		6		
	×	2	×		Jud Whythe book	N I				wordendunterenterenterent		
		T X	T N	tala t	L. Maryon	Mary Marken Mary	Madriden	when when the second	Manager and and			
	LA .	Mark 1	Λ_{i-1}	. M. Wound	WAR							
	M. MA	ALL MAY A	Muranda	www.								
	- WWW	- WWW										
	· ·											
0												
30.0	00 127.00) 224.00	321.00	418.0	0 515.0	0 612.	00 709.0	00 80	6.00	1000.00		
										(MHz)		
No.	Freq.	Readin			easure	Limit	Margin					
110.		Level	Fact		ent		_					
	MHz	dBuV/r				dBuV/m	dB	Detec	tor			
1 *	35.820		-18.			30.00	-4.57	QP QP				
2		00 39.43 00 43.26	<u>-16.</u> -17.			30.00 37.00	-6. 59 -10. 94	QP QP				
3 1		00 43.26	-17.			37.00	-10. 94	QP QP				
3 4 5		00 38.27	-7.1			37.00	-9.25	QP QP				
<u>5</u> 6		00 32.74	-3.3			37.00	-9.96	QP				
U	301.02	00 30.30	0.0	<u> </u>		01.00	5.50	च्यूग				

EUT			LCD Mo	nitor		Sal	e Name		C32G2		
Test	Voltage		AC 110\	//60Hz		Pol	Polarization H			al	
Test	Mode		HDMI1 1	920*108	30/165Hz						
80.	dBuV/m	l									
40											
-10											
					_				-	6	
				2	<u> </u>						
				Ť	WWWWWA	41	In Junitaria	whatter	har maring the second	understanding	
				, , , , , , , , , , , , , , , , ,	Margan	Markan	WW WWWWWWWWW	Clabor of Aral			
		× ·	M	Which also When also and	4 1 7						
	NUM	many 1	W MAUNIAN	UNIVON 1 11							
	1 Martin	r Manudal	W ^{ar} .								
	- v ⁻										
0											
30 .	00 127.00) 224.0	0 321.00	418.00	515.00) 612	.00 709.0	0 80	6.00	1000.00	
										(MHz)	
No.	Freq.	Readi			asure	Limit	Margin				
	-	Level	Fact n dB		nt	dBuV/m	dB	Detec	tom		
	MHz	dBuV/r	n db -15.			dbuv/m 30.00	-13.46	QP	lor		
1	148 344	NN 39 69									
1	148.340					37 00	-9 44	OP			
1 2 3	407.329	99 40.19	-12.	63 27.	. 56	37.00 37.00	-9.44 -8.79	QP QP			
1 2 3 4	407.329 503.360	99 40.19 00 38.68	-12. -10.	63 27 47 28	. 56 . 21	37.00	-8.79	QP			
1 2 3 4 5	407.329 503.360 672.140	99 40.19	-12.	63 27 47 28 1 27	. 56 . 21 . 69						


EUT			LCD Mo	nitor		Sale	e Name		CQ32G2		
Test	Voltage		AC 230\	//50Hz		Pola	Polarization Ve				
Test	Mode		HDMI1 2	2560*144	40/144Hz						
80 0	dBuV/m										
40											
					4	5			6		
	*	2	3		Υ	Ϋ́		Mar and an	human the mark	our Manual and	
			X.		1. male any of the	when he way	nation with the second	of Sulfan soor .			
	M N	nhol I	Mr. Martin	Mullimmerely	Mr. Why Man And Market & Mark	- Yr -					
	1 Wy All	A LAND MANAGE	1 1 1 1 1 1 1 1 1 1	· ·							
	* 94										
0											
30.0	00 127.00	224.00	321.00	418.00	515.00	612.	00 709.0	0 80	6.00	1000.00	
										(MHz)	
No.	Freq.	Readir Level	ng Corr Fact		asure nt	Limit	Margin				
	MHz	dBuV/m				lBuV/m	dB	Detec	tor		
1 *	35.8200		-18.			30.00	-4.42	QP			
2	148. 340		-16.			30.00	-9.39	QP			
3	248.250		-17.			37.00	-15.63	QP			
4 5	445.160 593.570		-11.			37.00 37.00	-10.87 -12.26	QP QP			
5 6	839.950		-5.2				12.20	ΨΓ			


EUT			LCD Mo	nitor		Sale	e Name		CQ32G2		
Fest \	Voltage		AC 230\	//50Hz		Pola	Polarization H			tal	
Fest N	Node		HDMI1 2	2560*144	10/144Hz						
80 d	BuV/m										
Γ											
ŀ											
Ļ											
40											
							_				
					2	4	5 6				
				¥		Υ	XI î			where where the second	
			•			when her had	Mundul Marine	ndd ywy ddiad yw ar	water and a second second second	, (j)	
ł	MARY WAY	optimber with	and Maryan and	Mary Mary Martin	Mpedershirst Varia periodika periodika periodika periodika periodika periodika periodika periodika periodika p	a. 1960 aller a.					
	"Marth"										
0											
30.0	0 127.00	224.00) 321.00	418.00) 515.00	612	.00 709.0	00 80	6.00	1000.00	
			_							(MHz)	
No.	Freq.	Readin Level	ng Corr Fact		asure	Limit	Margin				
	MHz	dBuV/n				dBuV/m	dB	Detect	tor		
1	407.329		-12.			37.00	-9.78	QP			
2	455.830		-11.			37.00	-7.96	QP			
3	503.360		-10.			37.00	-9.89	QP			
4 5	551.860		-9.6			37.00	-9.33	QP			
5 6 *	599.390 647.890		-8.4			37.00 37.00	<u>-9.27</u> -7.74	QP QP			
, *	041.090	0 01.14	1.0	0 29	. 20		1.17	AT.			

986. 4200 31. 47



28.10

850.6200 31.33

-5.14

26.19

37.00

-10.81

6

599.3900 36.44

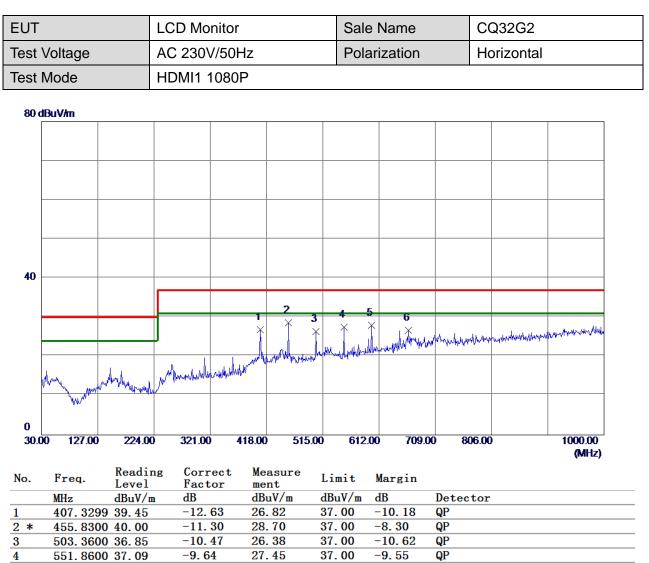
662.9250 34.45

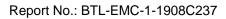
-8.46

-7.66

27.98

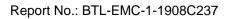
26.79


37.00


37.00

-9.02

-10.21


QP

									1		
EUT			LCD Mo	nitor		Sale	e Name		CQ32G2		
Test	Voltage		AC 110\	//60Hz		Pola	Polarization Ve				
Test	Mode		HDMI1 2	2560*14	40/144Hz	2					
80 0	dBuV/m										
40											
	1		3		4			5		D	
	k −−−−	2	3 		×.		. L. Wardall	Annow	mound	ha have the source of the	
		X	A		and Immeria	munhugendal	Here was an and the	· · ·		an han an han a star and a star	
	M. M.	Whiteman	No Manual	MAN MAN	and a test is a compared of the						
	WWWWW	. Andrea									
0											
30.0	00 127.00	224.00) 321.00	418.0	0 515.00) 612.	00 709.0	8 00	06.00	1000.00 (MHz)	
		Readin	ng Corr	oot M	easure					(111 12.)	
No.	Freq.	Level	Fact		ent	Limit	Margin				
	MHz	dBuV/m				dBuV/m	dB	Detec	tor		
1 *	36.7900		-17.			30.00	-6.55	QP			
2	148.340		<u>-16.</u> -17.			30.00 37.00	-9.48 -14.12	QP QP			
3 4	248.250 445.160		-17.			37.00 37.00	-14.12	QP QP			
2 3 4 5	702. 210		-7.0			37.00	-12.35	QP			
6	950. 530		-3.5			37.00	-9.99	QP			

EUT			LCD Mo	nitor		Sale	e Name		CQ32G2		
Test \	Voltage		AC 110V	′/60Hz		Pola	Polarization Ho			al	
Test I	Mode		HDMI1 2	2560*144	40/144Hz						
80 d	lBuV/m										
[
-											
ŀ											
40											
40											
			_	1	2 3	4	5		6		
				¥	î x	¥	1 ×		mmuniterration	we want the many mark	
ł			•	1		M. Last	Mun Martin Martin	Marin Marina M	Array and a state of the second second	wellow	
4	Munder	nterhanny	www.Althought	watcherworth	h-dawathinganddadd	y the dipped					
0 30.0	0 127.00) 224.00) 321.00	418.00) 515.00) 612	.00 709.0)0 80	6.00	1000.00	
										(MHz)	
No.	Fmer	Readin			asure	Limit	Mam-i-				
NO.	Freq.	Level	Fact		nt		Margin				
	MHz	dBuV/m				dBuV/m	dB	Detec	tor		
1		99 39.11	-12.			37.00	-10.52	QP			
2 *		00 40.29	-11.			37.00	-8.01	QP			
3		00 37.64	-10.			37.00	-9.83	QP			
4 5		00 38.04	-9.6			37.00 37.00	-8.60 -10.14	QP OP			
<u>5</u> 6		00 34.74 00 32.53	-7.8			37.00 37.00	-10.14	QP QP			
0	009.950	00 32.33	-0.0	. 21	. 10	01.00	9.04	۹r			

3.2 RADIATED EMISSION ABOVE 1 GHZ

3.2.1 LIMITS

Class <u>B equipment above 1000MHz</u>

Frequency	Mea	asurement	Class B limit dB(uV/m)
MHz	Distance m	Detector type/bandwidth	FSOATS
1000-3000		Average /	50
3000-6000	2	1 MHz	54
1000-3000	3	Peak /	70
3000-6000		1 MHz	74

Notes:

- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Required highest frequency for radiated measurement

Highest internal frequency (F _x)	Highest measured frequency
MHz	MHz
F _x ≦108	1000
108 <f<sub>x ≦500</f<sub>	2000
500< F _x ≦1000	5000
F _x >1000	5 th up to a maximum 6 GHz,

Note for FM and TV broadcast receiver, F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

3.2.2 MEASUREMENT INSTRUMENTS LIST

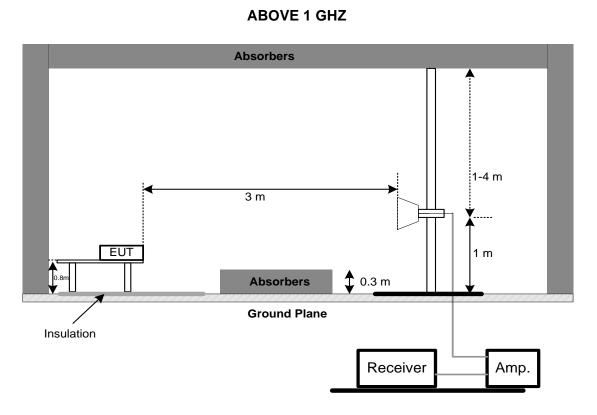

Above 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Horn Antenna	EMCO	3115	9605-4803	Mar. 23, 2020
2	Amplifier	Agilent	8449B	3008A02584	Aug. 03, 2020
3	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
4	Measurement Software	Farad	EZ-EMC Ver.BTL-2AN T-1	N/A	N/A
5	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
6	Controller	MF	MF-7802	MF780208159	N/A
7	Cable	Micable Inc.	B10-01-01-5 M	18047123	Mar. 01, 2020
8	Cable	MIcable Inc.	B10-01-01-10 M	18072746	Mar. 01, 2020
9	Cable	N/A	A50-3.5M3.5 M-1.5M-AT	18041824	Mar. 01, 2020

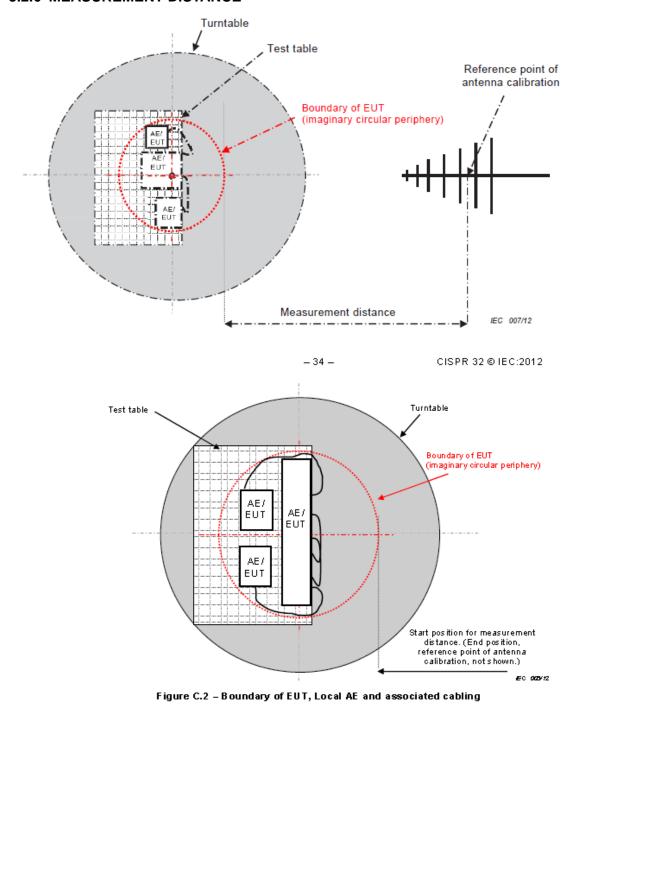
Remark: "N/A" denotes no model no., no serial no. or no calibration specified. All calibration period of equipment list is one year.

3.2.3 TEST PROCEDURE

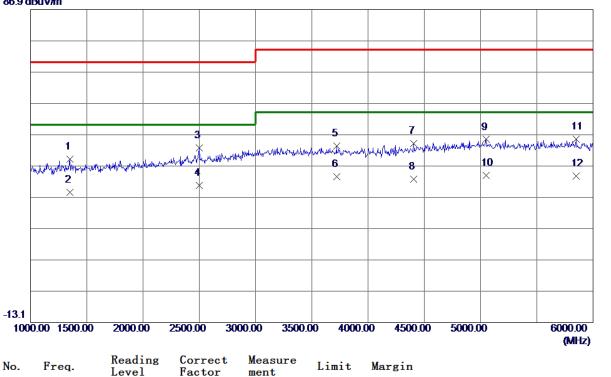
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- f. For the actual test configuration, please refer to the related Item Block Diagram of system tested.



3.2.4 DEVIATION FROM TEST STANDARD


No deviation

3.2.5 TEST SETUP



3.2.7 TEST RESULTS (ABOVE 1 GHZ)

EUT	LCD Monitor	Sale Name	C32G2
Test Voltage	AC 230V/50Hz	Polarization	Vertical
Test Mode	HDMI1 1920*1080/165Hz		

86.9 dBuV/m

	-	Level	ractor	ment		-	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	1352. 5000	43. 32	-4.31	39.01	70.00	-30.99	Peak
2	1352. 5000	32.84	-4.31	28.53	50.00	-21.47	AVG
3	2500.0000	42.13	0.52	42.65	70.00	-27.35	Peak
4 *	2500.0000	30.24	0.52	30.76	50.00	-19.24	AVG
5	3722. 5000	38.79	4.49	43.28	74.00	-30.72	Peak
6	3722. 5000	29.05	4.49	33. 54	54. 00	-20.46	AVG
7	4407.5000	38.09	6.00	44.09	74.00	-29.91	Peak
8	4407.5000	26.72	6.00	32.72	54. 00	-21.28	AVG
9	5050.0000	37.38	8.02	45.40	74.00	-28. 60	Peak
10	5050.0000	25.88	8.02	33.90	54.00	-20. 10	AVG
11	5852. 5000	36.83	8.75	45.58	74.00	-28.42	Peak
12	5852. 5000	24.86	8.75	33.61	54.00	-20. 39	AVG

EUT			LCD Mo	onitor		Sale	Name		C32G2		
Test	Voltage		AC 230	V/50H	7	Pola	rization		Horizon	tal	
	•								110112011		
lest	Mode		HDMI1	1920*	1080/165	ΗZ					
86.9 d	BuV/m										
									11		
	X		3 :	5	7	9					
	2		monterman	×	mal mary provider and the	man month for the mark	invalue	www.day.and		non-anti-stablished	
	www.water	physiological and a second sec	CALCULATE AND A DESCRIPTION OF A DESCRIP)w,.my	8		0		12		
	·		×	×	X	×	<		×		
-13.1											
	0.00 1500.00	2000.00	0 2500.	00 30	00.00 350	0.00 4000.0	00 4500.	00 50	00.00	6000.00	
										(MHz)	
No.		Readi	ng Coi	rrect	Measure	Limit	Margin				
NO.	-	Level		ctor	ment						
-		$\frac{dBuV/r}{dBuV/r}$		05	dBuV/m	dBuV/m	dB	Detec	etor		
1 2 *	1362. 5000 1362. 5000		-4.		45.70 35.87	70.00 50.00	-24.30	Peak AVG			
<u>2</u> * 3	2227. 5000		-0.		41.24	70.00	-28.76	Peak			
4	2227. 5000		-0.		30.65	50.00	-19.35	AVG			
5	2492. 5000		0.4		42.05	70.00	-27.95	Peak			
6	2492. 5000		0.4		30.83	50.00	-19.17	AVG			
7	3317.5000	39.29	3.7	/3	43.02	74.00	-30.98	Peak			
8	3317.5000		3. 7		32.41	54.00	-21. 59	AVG			
9	3950.0000		4.8		43.16	74.00	-30.84	Peak			
	3950.0000		4.8		32.29	54.00	-21.71	AVG			
		37 71	8. 0	13	45.74	74.00	-28.26	Peak			
10 11 12	5067.5000 5067.5000		8.0		33.80	54.00	-20. 20	AVG			

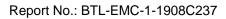
EUT		LC	D Monitor		Sale	Name	C32G	2
Test	Voltage	AC	C 230V/50H	7	Pola	rization	Vertic	al
	Mode		SUB 1920*					<u> </u>
Test	MUULE	0-	SUD 1920	1000/0002				
86.9 d	BuV/m							
					_			
	1	3		5	7 ×		9	11
	×		moundary	man Monte Marchan and		www.when.	apolice manufacture and the second	
	a Mithigh and Antonia Antonia 2	any cherry 4		•			10 ×	12 X
	×	×		×	^			
-13.1	0.00 1500.00	2000.00	2500.00 30	00.00 3500.0	0 4000.	.00 4500.0	00 5000.00	6000.00
100	0.00 100.00	2000.00	2000.00 30	00.00 300.0	0 4000.	.00 4500.0	00.000	(MHz)
No.	Freq.	Reading	Correct	Measure	Limit	Margin		
NO.	-	Level	Factor	ment		dB	Detector	
1	MHz 1250.0000	dBuV/m 44 95	dB -4.88	dBuV/m 40.07	dBuV/m 70.00	-29.93	Detector Peak	
2	1250.0000		-4.88	28.57	50.00	-21.43	AVG	
3	2140. 0000		-1.11	40.03	70.00	-29.97	Peak	
4 5	2140.0000		-1.11	28.66	50.00	-21.34	AVG	
5	3192.5000 3192.5000		3.46	43.22 32.29	74.00 54.00	-30.78	Peak AVG	
	9192. 9000		4. 51	44.83	74.00	-21.71	Peak	
6		40.32					AVG	
6 7 8	3737.5000 3737.5000		4. 51	32.74	54. 00	-21.26	1110	
6 7	3737.5000	28.23	4.51 7.62	45.19	74.00	-28.81	Peak	
6 7 8	3737.5000 3737.5000 4900.0000	28. 23 37. 57 25. 99	4.51					

EUT		l	LCD Moni	tor	Sale	Name	C32G2		
Test	Voltage		AC 230V/	50Hz	Pola	rization		Horizontal	
Test	Mode	[D-SUB 19	20*1080/60H	lz				
00.0.4	D.UL								
80.9 G	BuV/m						1		
				5		-	9	11	
	1		3			*	when when wither	un Nouselle Hubergh William upon	where an and the
		www.	marchunder Mart		HOUR AND	M MARANA ANA ANA ANA ANA ANA ANA ANA ANA AN	10	12	
	· ·	mouth Last AL	4	6 ×		×	×	×	
	2 — X		X			1			
-13.1	0.00 1500.00	2000.00	2500.00	3000.00 35	00.00 4000.	00 4500.	00 500	00.00	6000.00
100	0.00 1300.00	2000.00	2,300.00	5000.00 55	4000.		00 300	00.00	(MHz)
		Readir	ng Corre	ct Measure					
No.	Freq.	Level	Facto		Limit	Margin			
	MHz	dBuV/1		dBuV/m	dBuV/m	dB	Detec	tor	
1	1352. 500		-4.31	38.93	70.00	-31.07	Peak		
2	1352.500		-4.31		50.00	-23.33	AVG		
3	2490.000		0.47	42.06	70.00	-27.94	Peak		
4 * 5	2490.000 3252.500		0.47	30.83 43.61	50.00 74.00	-19. 17 -30. 39	AVG Peak		
6	3252. 500		3. 59	32. 54	54.00	-21.46	AVG		
5 7	4005.000		4.97	43.40	74.00	-30.60	Peak		
8	4005.000		4.97	32.49	54.00	-21.51	AVG		
	4747.500		7.10	44.45	74.00	-29.55	Peak		
9		0 25.45	7.10	32.55	54. 00	-21.45	AVG		
	1111.000						D 1		
9 10 11 12	5375.000 5375.000		8. 33 8. 33	45.17 33.70	74.00 54.00	-28.83 -20.30	Peak AVG		

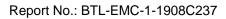
EUT		L	CD Monitor		Sale	Name	(C32G2		
Test	Voltage	A	C 230V/50H	Z	Pola	rization	\ \	Vertical		
	t Mode HDMI1 1080P									
1631	INIOUE									
86.9 d	BuV/m									
			5		7	9		11		
	1	3	X.		1. The softward	moundance	monoral	Multurate	www.www.www.www.	
	1. Mathat March	Mary Mary Mary	6 6	Mouto	8	10		12		
	2	4			×		1	×		
		— × -								
-13.1										
	0.00 1500.00	2000.00	2500.00 30	00.00 3500.	00 4000.	00 4500.0	0 500	0.00	6000.00	
									(MHz)	
No.	Freq.	Readin Level	g Correct Factor	Measure ment	Limit	Margin				
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detect	tor		
1	1247.5000		-4.89	38.87	70.00	-31.13	Peak			
2	1247.5000		-4.89	26.82	50.00	-23.18	AVG			
3 4	1885.0000 1885.0000		-2. 15 -2. 15	38. 52 26. 49	70.00 50.00	-31.48	Peak AVG			
4 5	2730. 0000		1.69	41.83	70.00	-28.17	Peak			
6 *	2730.0000		1.69	30. 53	50.00	-19.47	AVG			
7	3602. 5000	38.70	4.28	42. 98	74.00	-31. 0 2	Peak			
8	3602.5000		4.28	30.73	54.00	-23.27	AVG			
9 10	4437.5000		6.08 6.08	43.39 30.98	74.00 54.00	-30.61	Peak AVG			
11	5030.0000		8.00	45.71	74.00	-28.29	Peak			
12	5030.0000		8.00	33. 59	54.00	-20.41	AVG			

EUT		L	CD Monitor		Sale	Name		C32G2		
Test	Voltage	A	C 230V/50H	Z	Pola	rization		Horizon	tal	
Test	Mode	н	DMI1 1080P)						
1001	mode	•••								
86.9 d	BuV/m									
								9	11	
	1		3		a Manadata dan su	When when have a star	hallmanne	and prover and prover	Manthe Michard March	
	mary water when the war	www.	MANNA In March March	APRIL 19 19 19 19 19 19 19 19 19 19 19 19 19	· · · · ·	<u> </u>		10	12	
	2		4	6 ×		8		×	×	
						<u> </u>				
								_		
-13.1										
100	0.00 1500.00	2000.00	2500.00 30	00.00 3500.0	0 4000.	00 4500.0	00 500	0.00	6000.00 (MHz)	
No.	Freq.	Reading Level	g Correct Factor	Measure ment	Limit	Margin				
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detec	tor		
1	1277. 5000		-4.73	38. 92	70.00	-31.08	Peak			
2	1277.5000		-4.73	26.65	50.00	-23.35	AVG			
3	2490.0000		0.47	41.51 30.39	70.00 50.00	-28.49 -19.61	Peak AVG			
4 * 5	2490.0000 3360.0000		3. 82	42.74	74.00	-19. 61	Peak			
6	3360.0000		3.82	30.90	54.00	-23.10	AVG			
7	3997.5000		4.96	42.68	74.00	-31.32	Peak			
8	3997.5000		4.96	30.71	54.00	-23. 29	AVG			
-	4985.0000	37.65	7.92	45. 57	74.00	-28.43	Peak			
							AUC			
10	4985.0000	25. 60	7.92	33. 52	54.00	-20.48	AVG			
9 10 11 12		25. 60 36. 64	7.92 8.50 8.50	33. 52 45. 14 33. 53	54.00 74.00 54.00	-20. 48 -28. 86 -20. 47	AVG Peak AVG			

EUT		L	CD Monitor		Sale	Name		C32G2	
Test	Voltage	A	AC 110V/60H	łz	Pola	rization	,	Vertical	
Test	Mode	H	HDMI1 1920	*1080/165Hz					
	D-1/1-								
86.9.0	BuV/m								
			3	5		7	9		
		1	×	manna	and have been and	unterman	Manufacture	· · · · · · · · · · · · · · · · · · ·	without the
	when the start t	white with	4	6		8		12 × ×	
		2	* ×	×		×		× ^	
-13.1	0.00 1500.00	2000.00	2500.00 3	8000.00 3500.0	0 4000.	00 4500.0	0 500	0.00	6000.00
100	0.00 1000.00	2000.00	2000.00					0.00	(MHz)
No.	Freq.	Readir		Measure	Limit	Margin			
NO.	-	Level	Factor	ment			D (
1	MHz 1805.0000	$\frac{dBuV/m}{41 71}$	dB -2.42	dBuV/m 39. 29	dBuV/m 70.00	dB -30.71	Detec Peak	tor	
2	1805.0000		-2.42	28.75	50.00	-21.25	AVG		
3	2427.5000	41.80	0.19	41.99	70.00	-28.01	Peak		
4	2427.5000		0.19	30.46	5 0. 00	-19.54	AVG		
5	3255.0000		3.60	43.70	74.00	-30.30	Peak		
6	3255.0000		3.60	32.73	54.00	-21.27	AVG		
7 8	4147.5000 4147.5000		<u>5. 34</u> 5. 34	<u>43.23</u> 32.62	74.00 54.00	-30.77	Peak AVG		
<u> </u>	4900.0000		7.62	45.93	74.00	-28.07	Peak		
10	4900.0000		7.62	33.91	54.00	-20.09	AVG		
	5367.5000		8.32	46.02	74.00	-27.98	Peak		
11 12 *			8. 32	35.53	54.00	-18.47	AVG		


EUT			LCD Monito		Sale	Name		C32G2		
Test	Voltage		AC 110V/60	Ηz	Pola	rization		Horizontal		
Test	Mode		HDMI1 1920	*1080/165Hz	ł					
h P 38	BuV/m	·								
00.00										
						7	9	11		
			3	5	. And the set of the	×		we have a second to a second and the		
		monture	white when the second	Manuford .	wymen w wather	O CONTRACTOR AND	10	12		
	* 2		4	6 ×		- 8 ×	×	*		
	×		×							
-13.1										
100	0.00 1500.00	2000.0	0 2500.00	3000.00 3500.0	0 4000 .	00 4500.0	00 50	00.00 6000.00 (MHz)		
		Readi	ng Correct	Measure				(iau re)		
No.	Freq.	Level		ment	Limit	Margin				
		dBuV/		dBuV/m	dBuV/m	dB	Detec	tor		
1 2	1215.0000 1215.0000		-5.08	42.03 30.56	70.00 50.00	-27.97 -19.44	Peak AVG			
2 3	2495. 0000			43.65	70.00	-26.35	Peak			
4	2495.0000			30.93	50.00	-19.07	AVG			
5	3180.0000	40.67	3.44	44.11	74.00	-29.89	Peak			
6	3180.0000			32.74	54.00	-21.26	AVG			
7 8	4107.5000 4107.5000		5.24 5.24	44. 69 32. 81	74.00 54.00	-29.31 -21.19	Peak AVG			
<u>。</u> 9	4612. 5000			45. 53	74.00	-28.47	Peak			
10	4612. 5000			33.72	54.00	-20.28	AVG			
10		00 00	0 46	46.49	74.00	-27.51	Peak			
10 11 12 *	5507.5000 5507.5000			35. 23	54.00	-18.77	AVG			

EUT			LCD) Moni	tor		Sale	Sale Name C			CQ32G2	
Test \	Voltage		AC	230V/	50Hz		Pola	rizatior	n	\	/ertical	
Test I	Mode		HDN	AI1 25	60*144	0/144H	Z					
96 0 d	BuV/m											
00.9 u												
ŀ												
-												
-	X			5		-7		_	9		11	
	2	3 ×			whytener	white which which	unounounou	whether whethe	march	south the second and the second se		and many many
1	MALLINAM		WW WW	6		8			-10			
		4 ×		*		×			×		×	
		^										
-												
-13.1												
	0.00 1500.00	2000.0	00 2	2500.00	3000.00	3500	.00 4000	00 45	500.00	0 5000	0.00	6000.00
												(MHz)
No.	Freq.	Readi		Corre		easure	Limit	Margi	n			
	MHz	Level dBuV/		Facto dB		ent SuV/m	dBuV/m	dB		Detect	or	
1	1245.000			-4.91		. 36	70.00	-24.6	54	Peak	,01	
2 *	1245.000			-4.91		. 35	50.00	-14.6		AVG		
3	1860.000			-2.23		. 71	70.00	-30.2	9	Peak		
4	1860.000			-2.23		. 29	50.00	-21.7		AVG		
5	2495.000			0.50		. 92	70.00	-28.0		Peak		
6 7	2495.000		•	0.50 3.41		. 71 . 84	50.00 74.00	-19.2 -31.1		AVG Peak		
7 8	3165.000 3165.000			3.41		. 83	54.00	-23.1		AVG		
9	4440.000			6. 09		. 76	74.00	-30.2		Peak		
10	4440.000			6.09		. 79	54.00	-21.2		AVG		
	5417.500	0 36. 54	Ł	8.37		. 91	74.00	-29.0	9	Peak		
11 12	5417.500			8.37		. 84	54.00	-21.1		AVG		



EUT			LCD Mor	nitor		Sale	Name		CQ32G2		
Test	Voltage		AC 230V	//50Hz		Pola	rization		Horizon	tal	
Test	Mode		HDMI1 2560*1440/144Hz								
h 0 A8	BuV/m										
							-		9	11	
	1		3		5 ×			and share	n matteriored	mmmmmuluu	
	X. M		manuthing	mountanon	44,~4,4,444,444 6	mountermether	Manunan	philotopes . us .	10	12	
	2	And Andrews	4		×		X		×	×	
	×		×								
13.1											
100	0.00 1500.00	2000.0	0 2500.0	0 3000.	00 3500	.00 4000.	00 4500.0	0 50	00.00	6000.00 (MHz)	
		Readi	ng (or	rect N	leasure					(1411 12.)	
No.	Freq.	Level			ieasure ient	Limit	Margin				
	MHz	dBuV/			lBuV/m	dBuV/m	dB	Detec	tor		
1	1210.0000				0.90	70.00 50.00	-29.10	Peak			
2 3	1210.0000 2227.5000		-5. 1 -0. 7		28. 56 0. 92	70.00	-21.44	AVG Peak			
5 4	2227.5000				8.74	50.00	-21.26	AVG			
5	3215.0000		3. 51		3. 9 5	74.00	-30.05	Peak			
6	3215. 0000		3. 51		3.41	54. 00	-20. 59	AVG			
7	4465.0000		6.1		3.94	74.00	-30.06	Peak			
	4465.0000 5045.0000				5 76	54.00	-21.47	AVG			
		31.15			5.76 3.69	74.00 54.00	-28.24	Peak AVG			
9		25 68	8. U	-							
8 9 10 11	5045.0000 5655.0000		8. 01 8. 58		6.13	74.00	-27.87	Peak			

EUT			D Monitor		Sale	Name		CQ32G2	
Test \	Voltage	AC	230V/50H	Z	Pola	rization		Vertical	
Test I	Mode	DP	2560*144	0/144Hz					
86.9 dl	BuV/m				1	1	1		
ŀ									
-									
							0		11
-	1				7		9 X	worker and when a when	
	water water	3	man	warm the many where the	munthentings	Alexander	10		12
2	2			6	8				×
	×	4		×	×				
ŀ									
-13.1									
1000	0.00 1500.00	2000.00	2500.00 30	00.00 3500.	00 4000.	00 4500.0	00 50	00.00	6000.00 (MHz)
		Reading	Correct	Measure					(MILE)
No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detec	tor	
1 2	1255.0000		-4.85	39.52 28.75	70.00 50.00	-30.48 -21.25	Peak AVG		
3	1255.0000 1950.0000		-1.92	38.36	70.00	-31.64	Peak		
4	1950.0000		-1.92	26.96	50.00	-23.04	AVG		
5	3027.5000		3.12	42.62	74.00	-31. 38	Peak		
6	3027.5000		3.12	30.54	54.00	-23.46	AVG		
7 8	3827.5000 3827.5000		4.67	43.54 31.63	74.00 54.00	-30.46	Peak AVG		
9	4792. 5000		7.25	45.03	74.00	-28.97	Peak		
10	4792. 5000		7.25	33. 52	54.00	-20.48	AVG		
	5725.0000	37 66	8.64	46.30	74.00	-27.70	Peak		
$\frac{11}{12 *}$	5725.0000		8.64	35.43	54.00	-18.57	AVG		

EUT		IC	D Monitor		Sale	Name		CQ32G2		
	/oltogo		230V/50H	-		rization			lorizontal	
	Voltage				Pola	Ization			11	
Test I	Node	DP	2560*144	0/144Hz						
00.0.1	D. 1/1_									
86.9 dl	Buv/m									
-										
-					7			9	11	
	1		3	5	M. M	- Industry	multinet with an	AN MALINAM	prophing and a stranger	
	when white the states	ull mon he should	Anna Ann Ann Anna Anna	Accessing to the second second	8 8	A MANANA AND A		10	12	
	2		4	6 ×	×			×	×	
-	×			^						
-										
-13.1										
	0.00 1500.00	2000.00	2500.00 30	000.00 3500.0	00 4000 .	00 4500.0	00 500	0.00	6000.00	
									(MHz)	
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin				
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detec	tor		
1	1377. 500		-4.17	38. 30	70.00	-31.70	Peak			
2	1377.500		-4.17	26.89	50.00	-23.11	AVG			
3 4 *	2490.000 2490.000		0.47	41. 59 30. 45	70.00	-28.41 -19.55	Peak AVG			
<u>4 ≁</u> 5	3180.000		3. 44	42.40	74.00	-31.60	Peak			
6	3180.000		3.44	30.75	54.00	-23. 25	AVG			
7	3697.500		4.45	43.67	74.00	-30.33	Peak			
8	3697.500 4920.000		4.45	32.61 45.30	54.00 74.00	-21.39	AVG Peak			
0	4920.0000									
<u>9</u> 10	4920,000	0 26.09	7.69	33.78	54.00	-20.22	AVG			
9 10 11	4920.000 5537.500		7.69 8.48	33.78 45.61	54.00 74.00	-20. 22 -28. 39	AVG Peak			


EUT		LC	D Monitor		Sale	Name		CQ32G2		
Test \	Voltage	AC	230V/50H	2	Pola	rization		Vertical		
	Mode	нг	0MI1 1080P							
10011	Noue	1.12								
86.9 di	BuV/m									
ſ										
-										
-										
								11		
-			3	-5	7	9 ×		your when we we		
	1 .X.		www.hattenshawww	www.www.www.www.	Antomation	-Hylonman and the	phone peritor by	4/************************************	wardellikeren jaarden ja valkaan on seen seen seen seen seen seen seen	
r	and Willing and the state of th	hald we have been been been been been been been be	4	6	8	10 ×		×		
	×		*	*	×	^				
-										
-										
-13.1										
1000	0.00 1500.00	2000.00	2500.00 30	00.00 3500	.00 4000	.00 4500.0	0 50	00.00	6000.00 (MHz)	
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin				
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detec	tor		
1	1200.0000		-5.16	39.50	70.00	-30.50	Peak			
2 3	1200.0000 2492.5000		-5. 16 0. 49	28.57 41.68	50.00 70.00	-21.43 -28.32	AVG Peak			
3 4	2492. 5000		0.49	<u>41.68</u> 30.40	50.00	-19.60	AVG			
5	3007.5000		3. 08	42.68	74.00	-31. 32	Peak			
6	3007.5000		3. 0 8	30.79	54.00	-23. 21	AVG			
7	3487.5000		4.08	43.28	74.00	-30.72	Peak			
8	3487.5000		4.08	31.58	54.00	-22.42	AVG			
9 10	4425.0000 4425.0000		6.05 6.05	44.82 32.62	74.00 54.00	-29.18	Peak AVG			
10	5112. 5000		8.08	46.69	74.00	-27.31	Peak			
**	5112.5000		8.08	35.35	54.00	-18.65	AVG			

EUT		L	CD Monitor		Sale	Name		CQ32G2	
Test	Voltage	A	C 230V/50H	Ηz	Pola	rization		Horizontal	
	Mode	н	DMI1 1080	P					
1001	Mode			1					
86.9 d	BuV/m								
			3		5		7	9	11
	1			University and the second	with the wheel where the second	mannen	www.	man the second	rhumunhinipulun
	Munim Motherwood	www.and.	Martin Martin Communic		6		1		12 ×
	2		*		×		×	×	
	× –								
-13.1									
100	0.00 1500.00	2000.00	2500.00 3	8000.00 3500.0	0 4000.	.00 4500.0	0 50	00.00	6000.00 (MHz)
		Reading	g Correct	Measure					ç
No.	Freq.	Level	Factor	ment	Limit	Margin			
1	MHz	dBuV/m	dB -3.82	dBuV/m 38.54	dBuV/m 70.00	dB -31.46	Deteo Peak	ctor	
1 2	1440.0000 1440.0000		-3.82	26. 92	50.00	-23.08	AVG		
3	2495.0000		0.50	43.08	70.00	-26.92	Peak		
4 *	2495.0000		0.50	31.75	50.00	-18.25	AVG		
5 6	3565.0000		4.22	43.49 31.48	74.00 54.00	-30. 51 -22. 52	Peak AVG		
	3565.0000 4640.0000		6.72	44.00	74.00	-30.00	Peak		
		J 40		32. 57	54.00	-21.43	AVG		
8 7 8	4640.0000	25.85	6.72						
7 8 9	4640.0000 5287.5000	36.67	8.25	44.92	74.00	-29.08	Peak		
7 8	4640.0000	36. 67 24. 58			74.00 54.00 74.00	-29.08 -21.17 -28.78	Peak AVG Peak		

EUT		LC	CD Monitor		Sale	Name		CQ32G2	
Test	Voltage	A	C 110V/60I	Ηz	Pola	rization		Vertical	
Test	Mode	Н	DMI1 2560	*1440/144Hz	2				
86.9 d	lBuV/m								
							9	11	
	-		3				ALL AND THE	when the work the way the	margan with be
		hu ha	mount	whole many for the second	Hunnyshuham	with the west of the second		12	and here a sheet.
	and phar the other of the second	New York Comments	4	×		×		×	
	2		*			<u> </u>			
	Î Î Î								
-13.1									
	0.00 1500.00	2000.00	2500.00	3000.00 3500.0	0 4000	.00 4500.	00 50	00.00	6000.00
									(MHz)
No.	Freq.	Reading		Measure	Limit	Margin			
NO.	-	Level	Factor	ment			D .		
1	MHz	dBuV/m	dB -3.44	dBuV/m	dBuV/m	dB -31.32	Deteo Peak	ctor	
1 2	1512. 5000 1512. 5000		-3.44	38.68 26.85	70.00 50.00	-31.32 -23.15	AVG		
∠ 3	2497. 5000		0.51	41. 59	70.00	-23.13 -28.41	Peak		
3 4 *	2497.5000		0.51	30.74	50.00	-19.26	AVG		
5	3245.0000		3. 57	43.07	74.00	-30. 93	Peak		
6	3245.0000		3. 57	32.83	54.00	-21.17	AVG		
7	4035.0000		5. 0 5	43.23	74.00	-30.77	Peak		
8	4035.0000		5. 0 5	32.59	54.00	-21.41	AVG		
9	4740.0000		7.07	44.77	74.00	-29.23	Peak		
10	4740.0000		7.07	32.61	54.00	-21.39	AVG		
11 12	5420.0000 5420.0000		8. 37 8. 37	45.84 33.73	74.00 54.00	-28.16 -20.27	Peak AVG		

EUT			LCD N	1onito	or		Sale	Nam	ne		CQ	32G2	
Test \	Voltage		AC 11	0V/60)Hz		Pola	rizati	on		Hor	izontal	
Test I	Mode		HDMI	256	0*144	0/144H	Z						
					• • •		_						
86.9 d	BuV/m												
-													
ŀ				_									
-				_									
ŀ				_			7			9		11	
ľ	1		3		5	mmuhan			unine	manderstan	market	M. M. R. M. All	anna an ann ann ann ann ann ann ann ann
,	Junior Mary Mary	www.wayha	way with	mburn	beautor in the	ebo.Mailli el alcan	8	and An A				12	
	2		4 ×		6 ×		×			×		×	
ŀ	×			_									
				_									
ŀ													
-13.1													
1000	0.00 1500.00	2000.0	0 250	0.00	3000.0	0 3500	.00 4000.	00	4500.0	0 50	00.00		6000.00 (MHz)
	_	Readi	ng C	orrec	t M	easure							(iau rz.)
No.	Freq.	Level	. F	actor	. ш	ent	Limit	Mar	gin				
1	MHz	dBuV/		B 3.97		BuV/m 8.94	dBuV/m 70.00	dB −31.	06	Dete Peak	ctor		
1 2	1412.5000 1412.5000			3.97 3.97		6.79	50.00	-31.		AVG			
3	2227.5000			0.72		1.17	70.00	-28.		Peak			
4	2227.5000			0.72		0.51	50.00	-19.		AVG			
5	2875.0000			. 42		2.66	70.00	-27.		Peak			
6*	2875.0000			. 42		0.80	50.00	-19.		AVG			
7	3802. 5000	38.80	4	. 62	4	3.42	74.00	-30.	. 58	Peak			
8	3802. 5000	27.91	4	. 62	3	2. 53	54.00	-21.	. 47	AVG			
9	4770.0000	37.38		. 17		4.55	74.00	-29.		Peak			
10	4770.0000			. 17		2. 69	54.00	-21.		AVG			
11	5425.0000			. 38		5.40	74.00	-28.		Peak			
12	5425.0000	25.06	8	. 38	3	3.44	54. 00	-20.	. 56	AVG			

3.3 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS

3.3.1 LIMITS

Requirements for conducted emissions from AC mains power ports of Class B equipment

Frequency Range MHz	Coupling Device	Detector Type / bandwidth	Class B Limits (dB(µV))
0.15 - 0.5		Over Deals /	66-56
0.5 - 5	AMN	Quasi Peak / 9 kHz	56
5 - 30		5 112	60
0.15 - 0.5			56-46
0.5 - 5	AMN	Average / 9 kHz	46
5 - 30		0 10 12	50

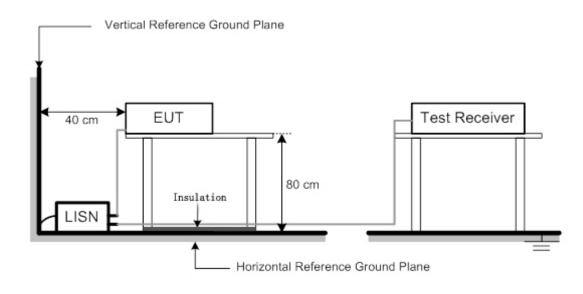
NOTE:

 (1) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value

3.3.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	EMI Test Receiver	R&S	ESCI	100382	Mar. 10, 2020
2	LISN	EMCO	3816/2	52765	Mar. 10, 2020
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	May. 19, 2020
4	50Ω Terminator	SHX	TF5-3	15041305	Mar. 10, 2020
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A
6	Cable	N/A	RG223	12m	Mar. 12, 2020

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.


3.3.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3.4 DEVIATION FROM TEST STANDARD

No deviation

3.3.5 TEST SETUP

3.3.6 TEST RESULTS

EUT			LC	DI	Moi	nito	or		Sa	ale Na	ame	;		C	32G2		
Test \	/oltage		AC	23	30V	//5	0H:	Z	Pł	nase				L	.ine		
Test N	Node		HD	DMI	1 1	92	20*1	080/165	Hz								
80 di	BuV																
40 -		Lange Contraction of the second secon						from the providence of the second sec	3 4 ×		5 7 6		7 *****~~ 8 *	9 "/******			
0.15			0.50)			1.00				5.0	0		10	.00	30.00(MH	Z)
No.	Freq.	Readin Level	ıg		rre cto			Measure ment	Limit	Mar	gin						
	MHz	dBuV		dB			C	lBuV	dBuV	dB			etec	tor			
1	0.1949	43.82		9.8				53.63	63.83	-10		QI					
2	0.1949	33.50		9.8				13.31	53.83	-10							
2 3 4	2.3325	32.11			02			2.13	56.00	-13		QI					
4 5 *	2. 3325	22.80			02			32.82	46.00	-13 -7.		AV QF					_
0 *	4.9874	38.69			19			18.88	56.00	-1.		ly I					_

46.00

60.00

50.00

60.00

50.00

60.00

50.00

-15. 51

-1**0**. 15

-16.95

-10.48

-12.59

-15.31

-15.46

AVG

QP AVG

QP

QP

AVG

AVG

10.19

10.34

10.34

10.45

10.45

11.14

11.14

4.9875 20.30

7.2735 39.51

23.8515 33.55

23.8515 23.40

22.71

39.07

26.96

7.2735

9.2850

9.2850

6 7

8

9

10

11

12

30.49

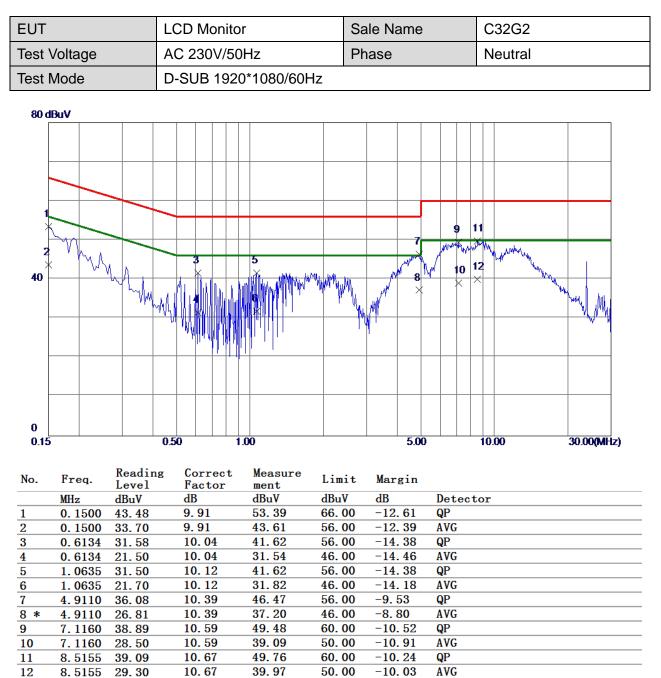
49.85

33.05

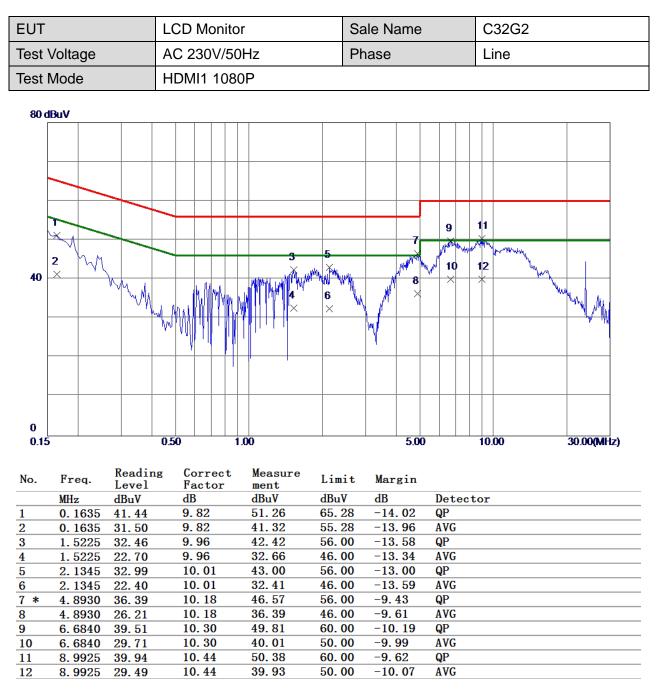
49.52 37.41

44.69

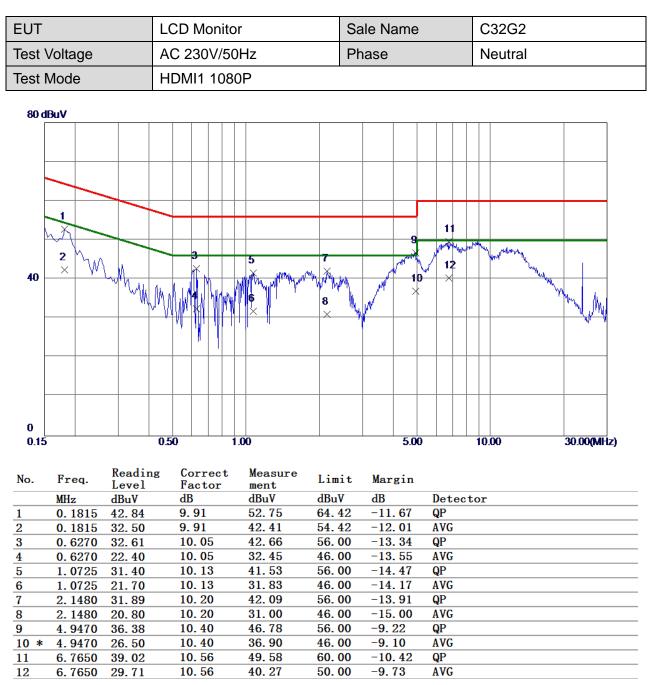
34.54

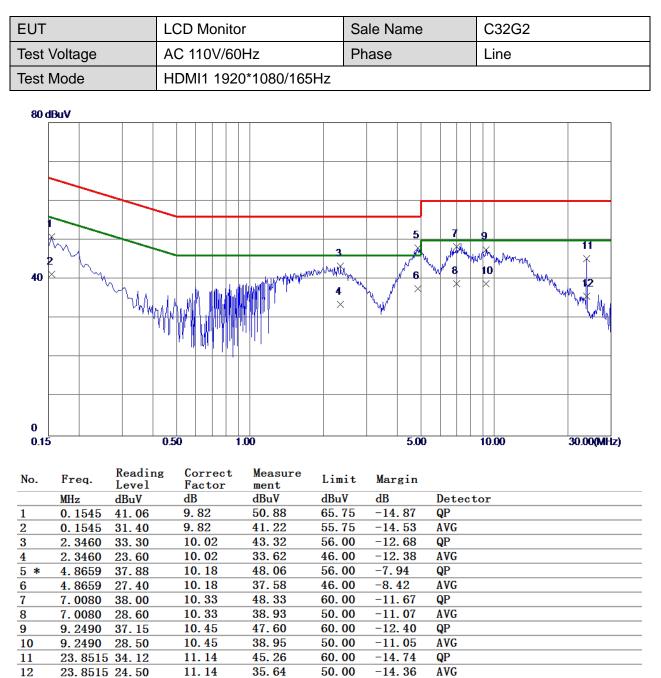


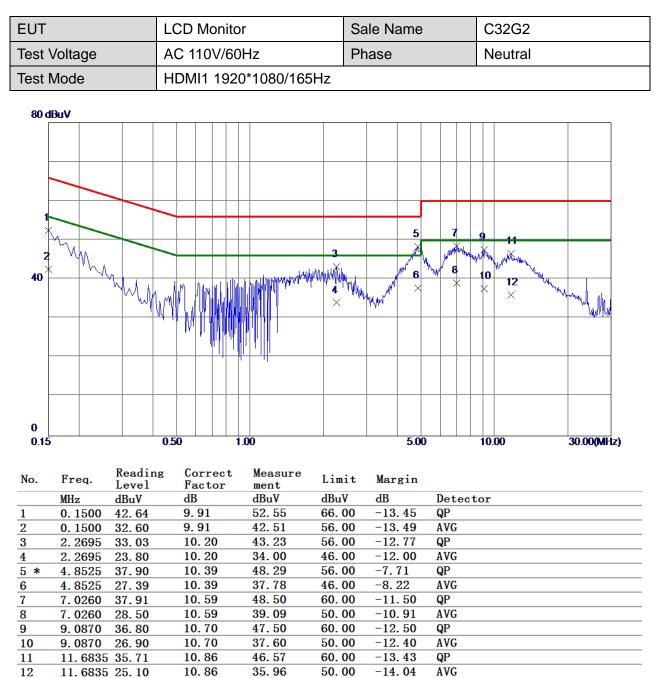
EUT		L	CD Monitor		Sale Nam	ne	C32G2	
Test \	Voltage	A	AC 230V/50H	z	Phase		Neutral	
Test I	Mode	н	IDMI1 1920*	1080/165Hz				
80 d	BuV							
40		MM,				5 7 5 8 6 ×	9 11 10 12 12 11	
0								
0.15 No.	Freq. Read	ing l	50 1.0 Correct Factor	Measure Lin	nit Margi		10.00	30.00(MHz)
1	MHz dBuV 0.1860 43.7			dBuV dBu 53.61 64.		Detect 0 QP	or	
2	0.1860 43.7			43.30 54.				
3	0.6134 32.0			42.08 56.				
4	0.6134 23.5			33. 54 46.				
5*	4.9064 37.3		10.39	47.71 56.				
6	4.9064 25.8	1	10.39	36. 20 46.	00 -9.80	AVG		
7	7.0215 39.1			49.69 60.				
8	7.0215 29.4		10. 59	39. 99 50.				
	8.8754 38.9	7	10.69	49.66 60.				
9								
9 10	8.8754 28.4			39. 18 50 .				
			10.85	39. 18 50. 48. 15 60. 36. 35 50.	00 -11.8	5 QP		

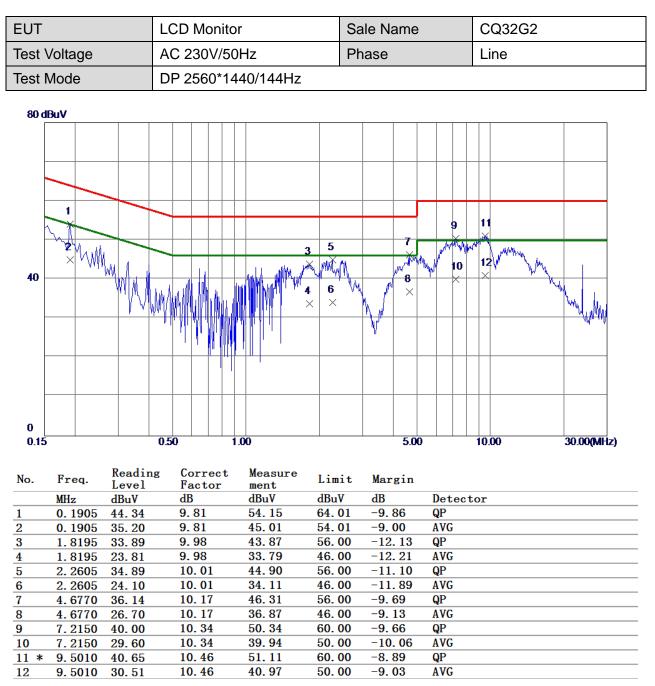


EUT		LCD Monito	or	Sa	ale Name		C32G2	
Test Voltage)	AC 230V/50	OHz	Pł	nase		Line	
Test Mode		D-SUB 192						
80 dBuV								
						9	11	
M					7	JAN MAL	MONTO YM I LA MU	
Ž My	WA I		3	5 . X	and the second	10	12	
40	Wh .		HTTM. AMARY	6 K	8	× 10	*	
	MWW	M. A.M.M.	4	×	<i> </i>			Mr. Mar
		<u> VUN AIMERN</u>			M			
		- Marth II.			1 41			
0								
0.15		0.50	1.00		5.00)	10.00	30.00(MHz)
	D 1:	6						
No. Freq.	Readir Level	ng Correct Factor	Measure ment	Limit	Margin			
MHz	dBuV	dB	dBuV	dBuV	dB	Detec	tor	
1 0.181		9.82	52.34	64.42	-12.08	QP		
2 0.181		9.82	43.52	54.42	-10.90	AVG QP		
3 1.531 4 1.531		9.96 9.96	41.94 31.46	56.00 46.00	-14.06 -14.54	AVG		
5 2.166		10.01	42.58	56.00	-13. 42	QP		
6 2.166		10.01	33.81	46.00	-12. 19	AVG		
7 * 4.956		10. 01	47.05	56.00	-8.95	QP		
8 4.956		10.19	36. 59	46.00	-9.41	AVG		
		10. 32	49.80	60.00	-10.20	QP		
9 6.891						-		
9 6.891 10 6.891		10.32	38.82	50.00	-11.18	AVG		
	0 28.50		38.82 50.20	50.00 60.00	-11. 18 -9. 80	AVG QP		



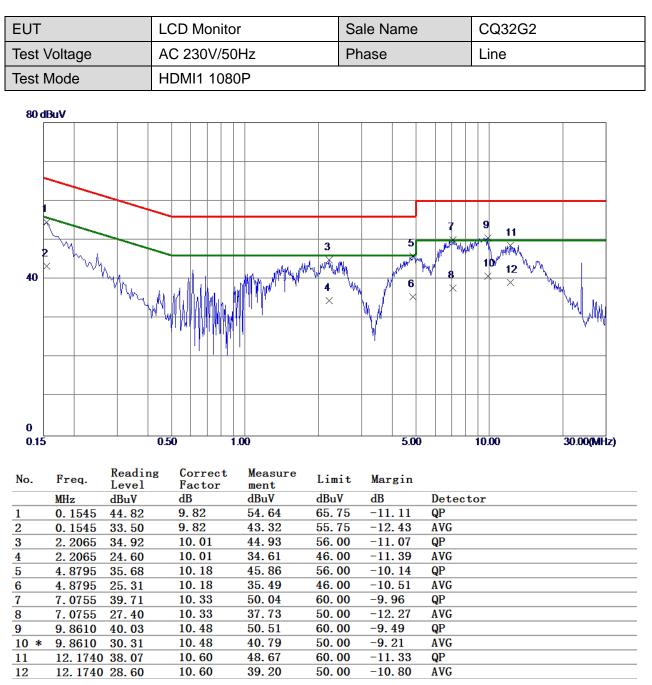




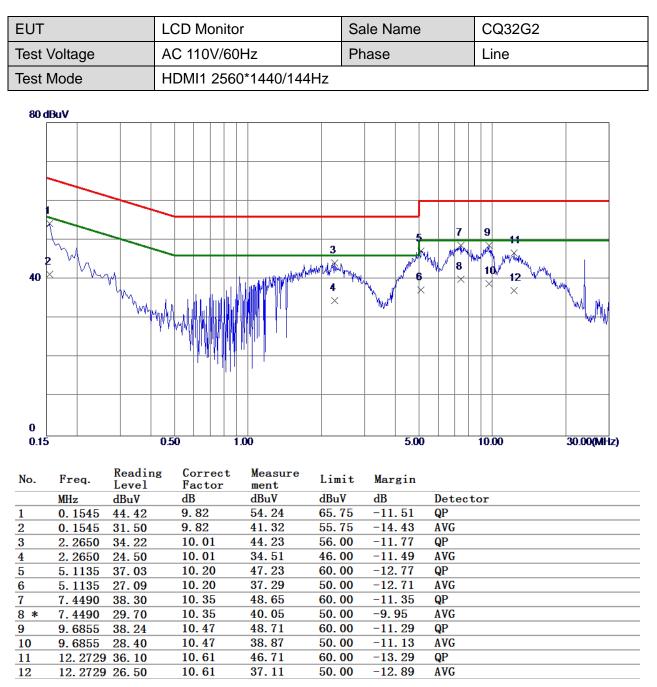


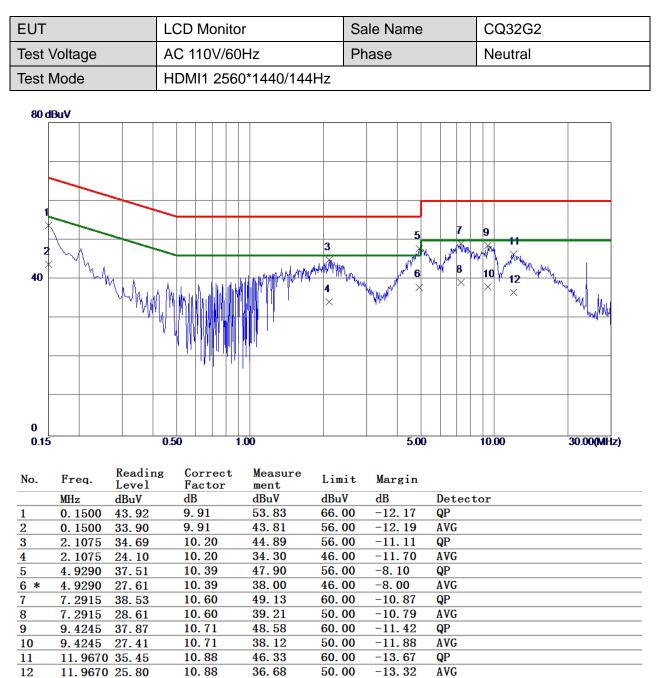
			LCD Monito	r	6				-
Test \				1	30	ale Name		CQ32G2	2
1631 1	Voltage		AC 230V/50	Hz	Pł	nase		Line	
Test N	Mode		HDMI1 2560)*1440/144	Hz				
80 di	BuV								
40 -					5 ×		9 10 ×		
o									
0.15			0.50 1	.00		5.00		10.00	30.00(MHz)
No.	Freq.	Readin Level	g Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detect	tor	
1 2	0. 1949	43.15 33.60	9.81 9.81	52.96 43.41	63.83 53.83	-10.87 -10.42	QP AVG		
2 3	1. 4415	33.60	9.95	43. 59	56.00	-10.42	QP		
5 4	1. 4415	23.10	9.95	33.05	46.00	-12. 95	AVG		
5	2. 1165	35.26	10.01	45.27	56.00	-10.73	QP		
6	2.1165	26.70	10.01	36.71	46.00	-9.29	AVG		
7	5.1495	35.86	10.20	46.06	60.00	-13. 94	QP		
8	5.1495	25. 80	10.20	36.00	5 0. 00	-14.00	AVG		
9	7.1250	40.14	10.33	50.47	60.00	-9.53	QP		
	7 1950	31.40	10.33	41.73	50.00	-8.27	AVG		
10 *	7.1250								
10 * 11 12	9. 3435 9. 3435	40. 61 30. 19	10. 46 10. 46	51.07 40.65	60.00 50.00	-8.93 -9.35	QP AVG		

EUT	LCD Monitor		or	Sa	ale Name		CQ32G2	
Test Voltag	е	AC 230V/50Hz		Pł	Phase		Neutral	
Test Mode		HDMI1 2560*1440/144Hz						
80 dBuV								
1						9	11	
					7		X	
2			3	5		n proved	12 Martin	
40 ×	M		Mar May M	WWWWWW	MA	V 10	<u> </u>	VMM
~	my M	x William I		6				No.
	1. W	3		×				man Mu
					Mil I			Warri
		- No						
0								
0.15		0.50	1.00		5.00)	10.00	30.00(MHz)
	Readin	ng Correct	Measure					
No. Freq	· Level	Factor	ment	Limit	Margin			
MHz	dBuV	dB	dBuV	dBuV	dB	Detec	tor	
1 0.19 2 0.19		9.90 9.90	52.10 42.50	63.83	-11.73 -11.33	QP		
2 0.19 3 1.44		10.15	42.50	53.83 56.00	-11. 33	AVG QP		
4 1.44		10.15	35.45	46.00	-10.55	AVG		
5 2.13	00 34.48	10.20	44.68	56. 00	-11. 32	QP		
6 2.13		10.20	34.30	46.00	-11.70	AVG		
7 4.94		10.40	46.58	56.00	-9.42	QP		
8 4.94		10.40 10.59	37.10 50.33	46.00	-8.90 -9.67	AVG QP		
0 7 00		10.02	50.55	00.00	5.01	AL.		
9 7.06			40,09	50,00	-9,91	AVG		
9 7.06 10 7.06 11 9.62	20 29.50	10. 59 10. 72	40.09 51.89	50.00 60.00	-9.91 -8.11	AVG QP		



EUT	UT L(LCD Monitor		ale Name		CQ32G2	
Test Voltage		AC 230V/50Hz		Pł	nase		Neutral	
Test Mode	DP 2560*1440/144							
80 dBuV								
1								
						7	9 × 11	
2				3		S PARM	D Marine Law	
40 × \	Mul		walk althe of	Murrut	MATHY	8		<u>^~</u>
40	WA A	Mi lini li a al I		14				M
		VV LU NUMAN		X*1	url f			Mulle
		"WUTUM						
0								
0.15		0.50	1.00		5.0	D	10.00	30.00(MHz)
N D	Readin	g Correct	Measure					
No. Freq.	Level	Factor	ment	Limit	Margin	D .		
MHz 1 0.1905	dBuV 43. 50	dB 9.90	dBuV 53.40	dBuV 64. 01	dB -10.61	Detec QP	tor	
2 0. 1905		9.90	43.00	54.01	-11.01	AVG		
3 2. 5305	34.06	10.22	44.28	56 . 00	-11.72	QP		
4 2.5305		10.22	34.92	46.00	-11.08	AVG		
5 5.1000		10.41	46.89	60.00	-13.11	QP		
6 5.1000 7 6.7695		10. 41 10. 57	36.81 50.19	50.00 60.00	-13. 19 -9. 81	AVG QP		
8 6.7695		10. 57	40.17	50.00	-9.81	AVG		
0 0.1090		10. 73	51. 29	60.00	-8.71	QP		
9 9 7800	40 56							
9 9.7800 10 * 9.7800			41.52			AVG		
10 * 9.7800		10.73 10.92		50.00 60.00	-8.48 -11.56	-		





UT LCD N		LCD Monitor		Sa	Sale Name			CQ32G2	
Test Voltage	est Voltage AC 230V/50Hz		Hz	Pł	Phase			Neutral	
Test Mode		HDMI1 1080P							
			//						
80 dBuV									
						7	9		
				3	5	MAN AL			
P Vh					MM	8	10	Mr. H.	
40			HIM IN WATER WATER	WY VII	6	"\\ \ \	<u> </u>	www.w	
	WW I	- Di Kini Kutari K	n r n ma	4				W. In	
	WM	A N. ULIYAAN		× ""(Wa P			N.M.	
	, y	'WWWWWW			u y u			. www. i W	
		ר אין אין איז אייי ר							
			1						
			11						
0									
0.15	I	0.50 1	00		5.00)	10.00	30.00(MHz)	
	Reading	Correct	Measure						
No. Freq.	Level	Factor	ment	Limit	Margin				
MHz	dBuV	dB	dBuV	dBuV	dB	Detec	tor		
1 0.1545	44.62	9.91	54.53	65.75	-11.22	QP	tor		
1 0. 1545 2 0. 1545	44. 62 33. 70	9.91 9.91	54. 53 43. 61	65.75 55.75	-11. 22 -12. 14	QP AVG	tor		
10. 154520. 154532. 2020	44.62 33.70 34.70	9.91 9.91 10.20	54.53 43.61 44.90	65.75 55.75 56.00	-11. 22 -12. 14 -11. 10	QP AVG QP	tor		
1 0. 1545 2 0. 1545 3 2. 2020 4 2. 2020	44. 62 33. 70	9.91 9.91	54. 53 43. 61	65.75 55.75	-11. 22 -12. 14	QP AVG	tor		
1 0.1545 2 0.1545 3 2.2020 4 2.2020 5 4.7220 6 4.7220	44. 62 33. 70 34. 70 24. 10	9.91 9.91 10.20 10.20	54.53 43.61 44.90 34.30	65.75 55.75 56.00 46.00	-11. 22 -12. 14 -11. 10 -11. 70	QP AVG QP AVG QP AVG	tor		
$\begin{array}{cccccccc} 1 & 0.1545 \\ 2 & 0.1545 \\ 3 & 2.2020 \\ 4 & 2.2020 \\ 5 & 4.7220 \\ 6 & 4.7220 \\ 7 & 6.6660 \end{array}$	44. 62 33. 70 34. 70 24. 10 36. 15 26. 80 39. 72	9.91 9.91 10.20 10.20 10.38 10.38 10.56	54. 53 43. 61 44. 90 34. 30 46. 53 37. 18 50. 28	65.75 55.75 56.00 46.00 56.00 46.00 60.00	-11.22 -12.14 -11.10 -11.70 -9.47 -8.82 -9.72	QP AVG QP AVG QP AVG QP	tor		
$\begin{array}{ccccccc} 1 & 0.1545 \\ 2 & 0.1545 \\ 3 & 2.2020 \\ 4 & 2.2020 \\ 5 & 4.7220 \\ 6 & 4.7220 \\ 7 & 6.6660 \\ 8 & 6.6660 \end{array}$	44. 62 33. 70 34. 70 24. 10 36. 15 26. 80 39. 72 29. 40	9.91 9.91 10.20 10.20 10.38 10.38 10.56 10.56	54. 53 43. 61 44. 90 34. 30 46. 53 37. 18 50. 28 39. 96	65.75 55.75 56.00 46.00 56.00 46.00 60.00 50.00	-11. 22 -12. 14 -11. 10 -11. 70 -9. 47 -8. 82 -9. 72 -10. 04	QP AVG QP AVG QP AVG QP AVG			
$\begin{array}{cccccccc} 1 & 0.1545 \\ 2 & 0.1545 \\ 3 & 2.2020 \\ 4 & 2.2020 \\ 5 & 4.7220 \\ 6 & 4.7220 \\ 7 & 6.6660 \\ 8 & 6.6660 \\ 8 & 6.6660 \\ 9 & 8.6459 \end{array}$	44. 62 33. 70 34. 70 24. 10 36. 15 26. 80 39. 72 29. 40 40. 10	9.91 9.91 10.20 10.20 10.38 10.38 10.56 10.56 10.67	54. 53 43. 61 44. 90 34. 30 46. 53 37. 18 50. 28 39. 96 50. 77	$\begin{array}{c} 65.\ 75\\ 55.\ 75\\ 56.\ 00\\ 46.\ 00\\ 56.\ 00\\ 46.\ 00\\ 60.\ 00\\ 50.\ 00\\ 60.\ 00\\ \end{array}$	-11. 22 -12. 14 -11. 10 -11. 70 -9. 47 -8. 82 -9. 72 -10. 04 -9. 23	QP AVG QP AVG QP AVG QP AVG QP			
$\begin{array}{ccccccc} 1 & 0.1545 \\ 2 & 0.1545 \\ 3 & 2.2020 \\ 4 & 2.2020 \\ 5 & 4.7220 \\ 6 & 4.7220 \\ 7 & 6.6660 \\ 8 & 6.6660 \\ 8 & 6.6660 \\ 9 & 8.6459 \end{array}$	44. 62 33. 70 34. 70 24. 10 36. 15 26. 80 39. 72 29. 40 40. 10 30. 61	9.91 9.91 10.20 10.20 10.38 10.38 10.56 10.56	54. 53 43. 61 44. 90 34. 30 46. 53 37. 18 50. 28 39. 96	65.75 55.75 56.00 46.00 56.00 46.00 60.00 50.00	-11. 22 -12. 14 -11. 10 -11. 70 -9. 47 -8. 82 -9. 72 -10. 04	QP AVG QP AVG QP AVG QP AVG			

4. EMC EMISSION TEST- EN 55032:2015+AC:2016

4.1 RADIATED EMISSIONS UP TO 1 GHZ

4.1.1 LIMITS

Class B equipment up to 1000MHz

	Frequency Range		Measureme	ent	Class B limits
	MHz	Facility	Distance m	Detector type/ bandwidth	dB(µV/m)
	30 - 230 230 - 1000	SAC	10	Quasi peak / 120 kHz	30 37
L	230 - 1000			120 KI I2	51

Notes:

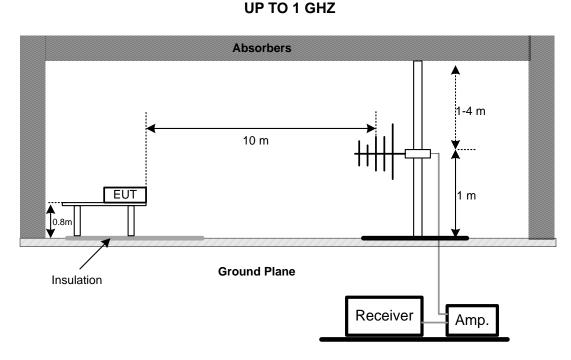
- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

4.1.2 MEASUREMENT INSTRUMENTS LIST

Up to 1GHz:

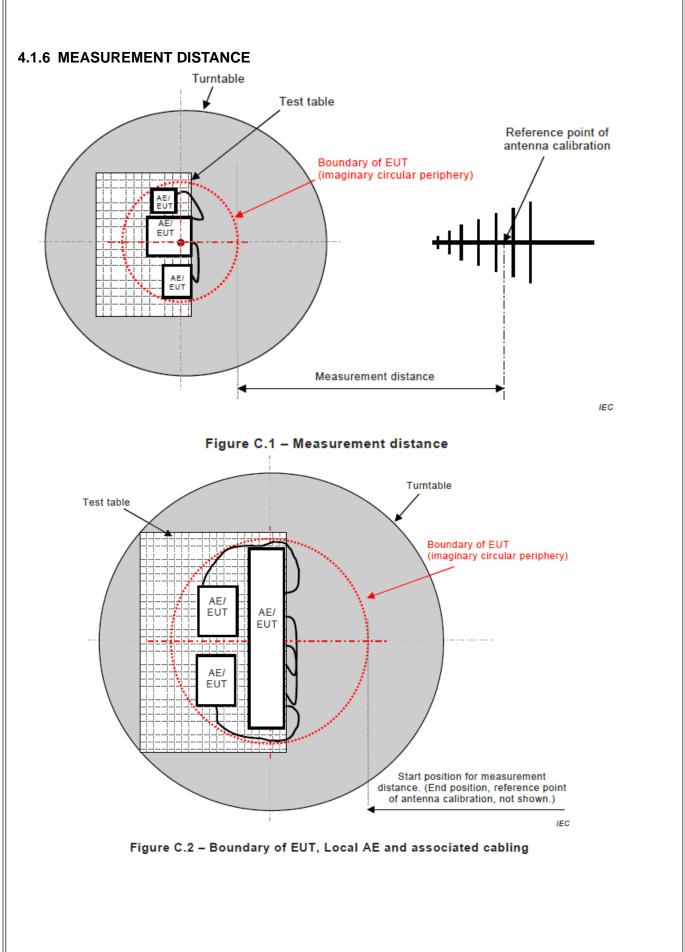
Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Receiver	Keysight	N9038A	MY54450004	Aug. 03, 2020
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
3	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980284	Mar. 10, 2020
4	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980283	Mar. 10, 2020
5	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	946	Nov. 24, 2019
6	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	947	Nov. 24, 2019
7	Cable	emci	LMR-400(5m+1 1m+15m)	N/A	Aug. 06, 2020
8	Cable	emci	LMR-400(5m+8 m+8m)	N/A	Aug. 06, 2020
9	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
10	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
11	Attenuator	EMCI	EMCI-N-6-06	N0670	Nov. 24, 2019
12	Attenuator	EMCI	EMCI-N-6-06	N0671	Nov. 24, 2019

Remark: "N/A" denotes no model no., no serial no. or no calibration specified. All calibration period of equipment list is one year.


4.1.3 TEST PROCEDURE

- a. The measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz).
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- e. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

4.1.4 DEVIATION FROM TEST STANDARD


No deviation

4.1.5 TEST SETUP

Note: The antenna can be moved between 1 to 4 meters above the ground.

979.6300 30.64

-3.14

27.50

37.00

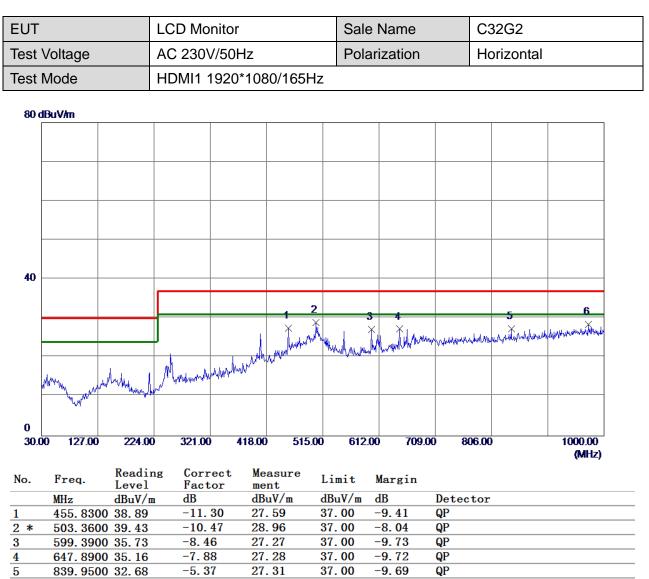
-9.50

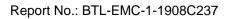
QP

4.1.7 TEST RESULTS (UP TO 1 GHZ)

EUT		LCD Monito	or	Sale	Name		C32G2	
Test	Voltage	AC 230V/50)Hz	Pola	rization		Vertical	
Test	Mode	HDMI1 192	0*1080/165Hz	<u></u>				
80 (dBuV/m							
40		3 A Manuarda Maria	Mar		5 Marine Marine Marine	5 5	Mid Mercel and Me Mercel and Mercel and Merc	S
0 30.0	00 127.00 224.0	0 321.00	418.00 515.00	0 612.0	0 709.0	0 806	5.00	1000.00 (MHz)
No.	Freq. Readi		Measure ment	Limit	Margin			(
	MHz dBuV/			dBuV/m	dB	Detect	or	
						0.0		
	35.8200 42.72	-18.04			-5. 32	QP		
2	35.8200 42.72 148.3400 39.33	-18.04 -16.02	23.31	30.00	-6.69	QP		
1 * 2 3	35. 8200 42. 72 148. 3400 39. 33 243. 4000 42. 80	-18.04 -16.02 -17.20	23. 31 25. 60	30.00 37.00	-6.69 -11.40	QP QP		
	35.8200 42.72 148.3400 39.33	-18.04 -16.02 -17.20 -10.73	23. 31 25. 60 26. 91	30.00 37.00	-6.69	QP		

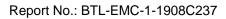
972.8400 32.00


-3.53


28.47

37.00

-8.53


QP

									1	
EUT			LCD Mo	nitor		Sale	e Name		CQ320	G2
Test	Voltage		AC 230	//50Hz		Pola	arization		Vertica	I
Test	Mode		HDMI1 2	2560*14	40/144Hz	z				
80 c	dBuV/m									
40										
	1				4		:	5		on for the first the second
	×	2	3		×.		and handhalander	Kanarana	www.	when a when the second and a second as
		Å I	Jun 1		h millhunder	allow your property	Kerditation and a second s			
	Mrs when	"Why why	Varia manual	MARKINGAN						
	- mun -									
_										
0 30.0	0 127.00	224.0) 321.00	418.0	0 515.0	0 612	.00 709.0	0 8	06.00	1000.00
										(MHz)
No.	Freq.	Readin			easure	Limit	Margin			
NO.		Level	Fact dB		ent	dBuV/m	dB	Detec	4	
1 *	MHz 36. 3050	dBuV/1 41.02	<u>a ab</u> -17.			30.00	-6.96	QP	tor	
2	148.340		-16.			30.00	-9.22	QP		
3	247.280	37.42	-17.	10 20). 32	37.00	-16. 68	QP		
4 5	445.1600		-11.			37.00	-14.02	QP		
5	701.2400		-7.0			37.00	-12.51	QP		
6	946.6500	J 30.56	-3.6	2 26	6. 94	37.00	-10.06	QP		

EUT			LCD Mo	nitor		Sale	e Name		CQ32G2	
Test	Voltage		AC 230	//50Hz		Pola	arization		Horizonta	al
Test	Mode		HDMI1 2	2560*144	0/144Hz					
80 (dBuV/m									
40										
					1				_	6
					¥ 2		x X			
			μ –		Ť		The Jump	phill have	a manufacture	Nr-MAMManananan
					what when	ht half have a state of a	Martin Administration	· · · · ·		
	يا بد ا		Mapping	montainer	Weite State State					
	standing and	www.hayww.M	A Window of a							
	w.	1								
0										
30.0	00 127.00	224.0	0 321.00	418.00	515.00	612	.00 709.0	0 80	6.00	1000.00
									0.00	(MHz)
		Readin	ng Corr	ect Me	asure					
No.	Freq.	Level	Fact		nt	Limit	Margin			
	MHz	dBuV/1				dBuV/m	dB	Detect	tor	
1 *	455.830		-11.			37.00	-8.51	QP		
2	503.360		-10.			37.00	-10.71	QP		
3	599.390		-8.4			37.00	-9.47	QP		
4 5	647.890		-7.8 -5.3			37.00 37.00	-8.79 -9.72	QP QP		
5 6	839.950 979.630		-5.3			37.00 37.00	-9.72	QP QP		
U	919.030	0 31.40	-5.4	J 28.	01 0	51.00	-0.99	ΨΓ		

4.2 RADIATED EMISSIONS ABOVE 1 GHZ

4.2.1 LIMITS

Class B equipment above 1000MHz

Frequency Range MHz 1000 - 3000 3000 - 6000 1000 - 3000 3000 - 6000		Class B limits		
-	Facility	Distance	Detector	dB(µV/m)
IVIHZ	T donity	m	type/bandwidth	
1000 - 3000			Average /	50
3000 - 6000	FSOATS	3	1 MHz	54
1000 - 3000	FSUATS	3	Peak /	70
3000 - 6000			1 MHz	74

Notes:

- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Required highest frequency for radiated measurement

Highest internal frequency (F _x) MHz	Highest measured frequency MHz
F _x ≦108	1000
108 <f<sub>x ≦500</f<sub>	2000
500< F _x ≦1000	5000
F _x >1000	5 th up to a maximum 6 GHz,

Note for FM and TV broadcast receiver, F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

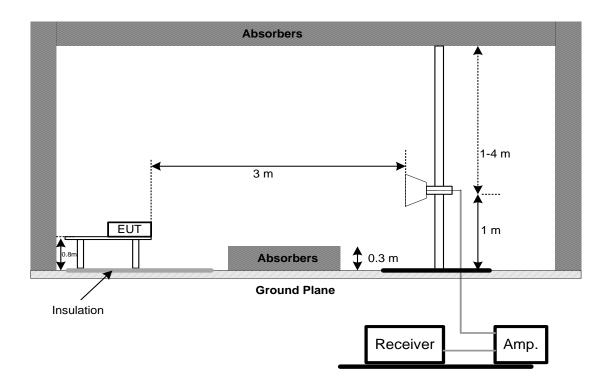
Above 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Horn Antenna	EMCO	3115	9605-4803	Mar. 23, 2020
2	Amplifier	Agilent	8449B	3008A02584	Aug. 03, 2020
3	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
4	Measurement Software	Farad	EZ-EMC Ver.BTL-2AN T-1	N/A	N/A
5	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
6	Controller	MF	MF-7802	MF780208159	N/A
7	Cable	MIcable Inc.	B10-01-01-5 M	18047123	Mar. 01, 2020
8	Cable	MIcable Inc.	B10-01-01-10 M	18072746	Mar. 01, 2020
9	Cable	N/A	A50-3.5M3.5 M-1.5M-AT	18041824	Mar. 01, 2020

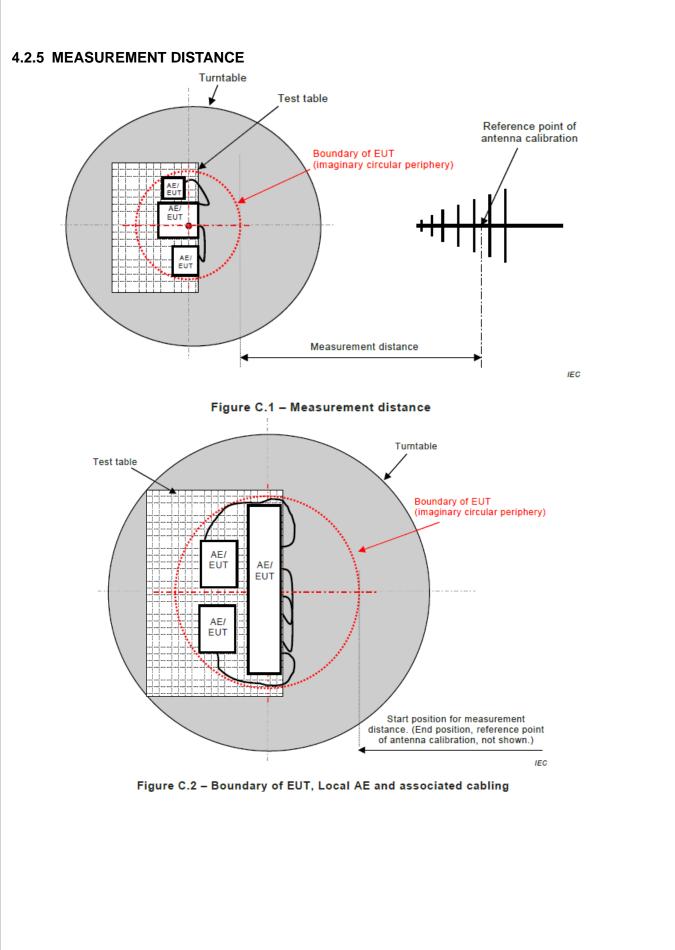
Remark: "N/A" denotes no model no., no serial no. or no calibration specified. All calibration period of equipment list is one year.

4.2.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- d. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- e. For the actual test configuration, please refer to the related Item Block Diagram of system tested.


4.2.3 DEVIATION FROM TEST STANDARD

No deviation



4.2.4 TEST SETUP

ABOVE 1 GHZ

4.2.6 TEST RESULTS (ABOVE 1 GHZ)

EUT		LC	CD Monito	r	Sale	Name	C	32G2	
Test	Voltage	A	C 230V/50	Hz	Pola	rization	V	ertical	
Test	Mode	н	DMI1 1920)*1080/165H	z				
86.9 d	BuV/m								
							9		11
	4		3	5				mondemonder	
	1		www.whitender	When the manual and the second s	www.www.	whether the warment	1		12
	1 1 1	Charles and a contract of the second of the	4	6	×		×		×
	2 ×		×	×					
-13.1									
100	0.00 1500.00	2000.00	2500.00	3000.00 3500	.00 4000.	00 4500.0	00 5000	.00	6000.00 (MHz)
No.	Frea.	Reading			Limit	Margin			
	MHz	Level dBuV/m	Factor dB		dBuV/m	dB	Detect	0.r	
1		00 43.34	-4.92	38.42	70.00	-31.58	Peak	01	
2		00 31.77	-4.92	26.85	50.00	-23.15	AVG		
3		00 41.17	0.05	41.22	70.00	-28.78	Peak		
4		00 30.38	0.05	30.43	50.00	-19.57	AVG		
5	2890.00		2.50	42.41	70.00	-27.59	Peak AVG		
6* 7	2890.00	00 28.25 00 39.03	2.50 4.15	30.75 43.18	50.00 74.00	-19.25 -30.82	AVG Peak		
8		00 28.46	4.15	32.61	54.00	-21. 39	AVG		
9		00 37.94	7.62	45.56	74.00	-28.44	Peak		
10	4900.00	00 26.10	7.62	33.72	54.00	-20.28	AVG		
10									
10 11 12	5752.50	00 36.62 00 25.26	8.67 8.67	45.29 33.93	74.00 54.00	-28.71	Peak AVG		

EUT			LCD Mo	nitor		Sale	Name		C32G2	
Test `	Voltage		AC 230\	//50Hz		Pola	rization		Horizontal	
Test	Mode		HDMI1 ⁻	1920*108	0/165Hz	I				
86.9 d	Bullin									
00.9 u	DUANI									
ŀ										
-										
ŀ										
				r						
ł			_		5	7		9	11	
	1		3		when a good work		a		www.whenter	mount
	n working the the second	all all and a second	margardenserver	in many way have been been been been been been been be	6	8	M.M.A.Manas L	10	12	
ſ	· ·	*** · · · ·	4		×	×		×	×	
	2 ————————————————————————————————————		×	(
-										
47.4										
-13.1 100	0.00 1500.00	2000.00) 2500.0	0 3000.00) 3500.0	0 4000.	00 4500.0	0 500	0.00	6000.00
1000	100000	2000.00	2000	0 0000.00	0000.0	0 1000.			0.00	(MHz)
	P	Readi	ng Cor	rect Me	asure		·			
No.	Freq.	Level			ent	Limit	Margin			
	MHz	dBuV/1			SuV/m	dBuV/m	dB	Detec	tor	
1	1390.000		-4.		. 34	70.00	-30.66	Peak		
2 3	1390.000		-4.		<u>67</u>	50.00	-23.33	AVG Peak		
	2490.000 2490.000		0.4		. 98 . 45	70.00	-28.02 -19.55	AVG		
4 * 5	3082.500		3.2		. 10	74.00	-30.90	Peak		
5 6	3082. 500		3.2		. 53	54.00	-21.47	AVG		
0 7	3617.500		4.3			74.00	-30.69	Peak		
8	3617.500		4.3		. 60	54.00	-21.40	AVG		
9	4612.500		6.6	3 45	. 53	74.00	-28.47	Peak		
10	4612.500		6.6		. 41	54.00	-20. 59	AVG		
11	5457.500		8.4		. 20	74.00	-28.80	Peak		
12	5457.500	0 25.51	8.4	1 33	. 92	54. 00	-20.08	AVG		

EUT			LCD Moni	tor	Sale	Name	C	Q32G2	
Test	Voltage		AC 230V/	50Hz	Pola	arization	н	orizontal	
Test	Mode		HDMI1 25	60*1440/144	Hz				
86.9 d	BuV/m								
				5		7	9	9 11	
	1		`	and the second second second		and preparation	hummenter terrer	Antohold make	with when when we wanted
	you how many	www.w	www.hawhow			8	1	10 12	
	*** 2		4 ×		<	×	· · · · · · · · · · · · · · · · · · ·	$\gamma \times$	
	~								
-13.1									
100	0.00 1500.00	2000.0	0 2500.00	3000.00 35	00.00 4000	.00 4500.	00 5000.	.00	6000.00
									(MHz)
No.	Freq.	Readi Level			Limit	Margin			
	MHz	dBuV/		dBuV/m	dBuV/m	dB	Detecto	or	
1	1212. 5000				70.00	-28.76	Peak		
2 3	1212.5000 2487.5000		-5. 09	30. 13 42. 97	50.00 70.00	-19.87	AVG Peak		
3 4	2487.5000			30.74	50.00	-19.26	AVG		
5	3350.0000		3.79	43.80	74.00	-30. 20	Peak		
6	3350.0000	28.73		32. 52	54.00	-21.48	AVG		
7	4297.5000			44.05	74.00	-29.95	Peak		
8 9	4297.5000 4970.0000			32.58 47.59	54.00 74.00	-21.42	AVG Peak		
	4970.0000			35.63	54.00	-18.37	AVG		
				-		-			
10 * 11	5452. 5000		8.40	45.67	74.00	-28.33 -20.28	Peak		

EUT			LCD Mo	nitor		Sale	Name	(CQ32G2	
Test '	Voltage		AC 230\	//50Hz		Pola	rization	H	Horizontal	
Test	Mode		HDMI1 2	2560*144	0/144H	z				
00.0.4		•								
80.9 G	BuV/m									
-					E		7		9	11
	1		3		5 Xaadataa	and the defension		Mar war when the	Hannes and marked and the second of the	Ampor
	www.	hun ho	mathemark	washing wash		ana na anti-nana	8		10	12
	WWWWWWWW IN IT A MARK		4		6		×		×	×
	2 ————————————————————————————————————		×		×					
-13.1										
	0.00 1500.00	2000.0	0 2500.0	0 3000.0	0 3500.	.00 4000.	.00 4500.0	00 500	0.00 600	00.00
										(MHz)
NT	P	Readi	ng Cor	rect M	easure		и .			
No.	Freq.	Level			ent	Limit	Margin			
	MHz	dBuV/			BuV/m	dBuV/m	dB	Detect	tor	
1	1352. 5000				3.28 5.75	70.00 50.00	-31.72	Peak AVG		
2 3	1352.5000 2227.5000		-0.		1.09	70.00	-23. 25	Peak		
4 *	2227.5000		-0.). 49	50.00	-19.51	AVG		
5	3087.5000				2.77	74.00	-31.23	Peak		
6	3087.5000		3. 24	4 30). 83	54. 00	-23.17	AVG		
7	4265.0000	38.08			3.72	74.00	-30.28	Peak		
8	4265.0000				3. 52	54.00	-20.48	AVG		
9	4942.5000				1.70 	74.00	-29.30	Peak		
	4942. 5000	25.06	7.7		2.83	54.00	-21.17	AVG Peak		
10 11	5810.0000	96 10	8.7) 4	4.85	74.00	-29.15			

4.3 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS

4.3.1 LIMITS

Requirements for conducted emissions from AC mains power ports of Class B equipment

Frequency Range MHz	Coupling Device	Detector Type / bandwidth	Class B Limits (dB(µV))
0.15 - 0.5		Oweri Deely /	66-56
0.5 - 5	AMN	Quasi Peak / 9 kHz	56
5 - 30		5 112	60
0.15 - 0.5			56-46
0.5 - 5	AMN	Average / 9 kHz	46
5 - 30			50

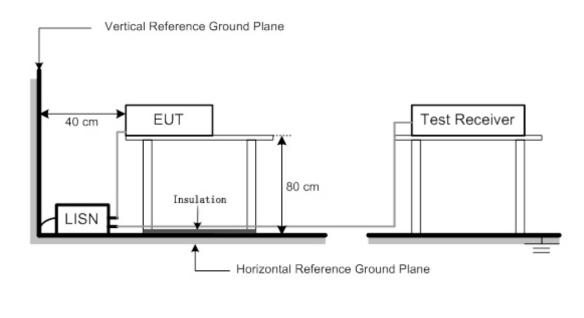
NOTE:

 (1) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value

4.3.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	EMI Test Receiver	R&S	ESCI	100382	Mar. 10, 2020
2	LISN	EMCO	3816/2	52765	Mar. 10, 2020
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	May. 19, 2020
4	50Ω Terminator	SHX	TF5-3	15041305	Mar. 10, 2020
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
6	Cable	N/A	RG223	12m	Mar. 12, 2020

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.


4.3.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP

11 12 9.3885 27.39

11.8500 36.37

11.8500 26.50

10.46

10.59

10. 59

37.85

46.96

37.09

4.3.6 TEST RESULTS

EUT			L	CD	M	oni	itor	,	S	Sale I	Nam	е			С	32G2			
Test	Voltage		A	C 2	230	V/	50	Ηz	F	hase	Э				Li	ine			
	Mode		н	DN	111	19	920	*1080/165	Hz										
80 d	lBuV							1											
						$\left \right $				_		-							
				-								4							
										_	_	5		7	9	11			
	M						_		3			×.	M	ΥŇ,	MA	waterwate			
40	2 1	۸ I						. LI ADMAR	NWWWWWWWW		N'alma	6 🔨	1	8	10	1			
40	X ,	MI						ala minimite and a second	4	M.	Λ	*		\times	X	X	19 M	wheel i	
		hule	1	1.0					×	- Nue	/						יער	why the	
		Y	włj	hM	Ш					14		-							
			Ų	WY	W.A	M	Υß												
				11	₩.		111			_	_								
						1	чш												
0																			
0.15	5		0.5	50			1.	00			5.	00			10.	00		30.00(MH	Z)
																		•	
No.	Freq.	Readir	ıg	Co	orr	ec	t	Measure	Limit	М	rgin								
NO.		Level			act	or		ment											
1	MHz	dBuV			3 82			dBuV 49. 24	dBuV 65.25	dE	6. 01		Det QP	ect	tor				
1 2	0. 1641	39.42 29.50			82			<u>49.24</u> 39.32	55.25		5. 93		QP AVG						
3	2. 1885	33.77			02). 0			43.78	56.00		2. 22		QP	•					
4	2. 1885	23.40). 0			33.41	46.00		2.59		AVG	÷					
5	5.0190	37.38		10). 1	9		47.57	60.00	-1	2.43		QP						
6	5.0190	27.50). 1			37.69	50.00		2.31		AVG	ŕ					
7	7.4985	38.09). 3			48.45	60.00		1.55		QP						
8 *	7.4985	28.59). 3			38.95	50.00		1.05		AVG	ŕ					
9	9.3885	37.48		10). 4	6		47.94	60.00	-1	2.06)	QP						

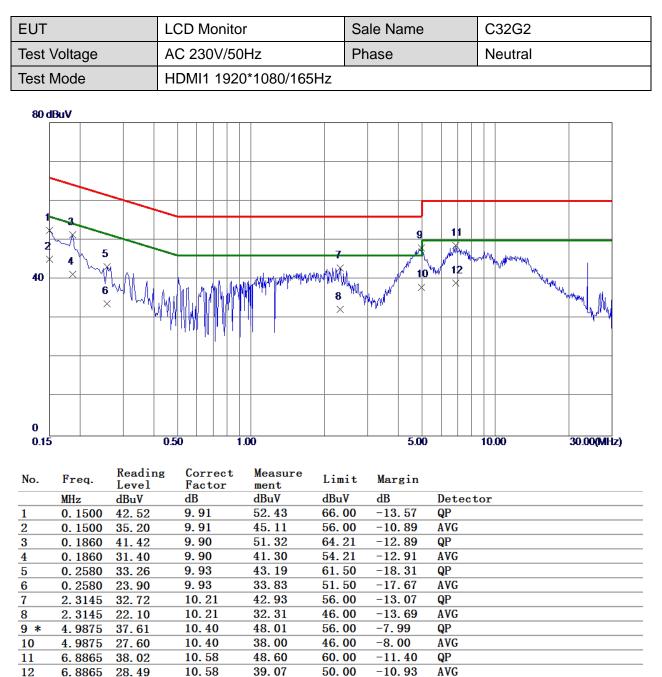
50.00

60.00

50.00

-12.15

-13.04


-12.91

AVG

AVG

QP

									_									
EUT			LC	D	Мo	nit	or			Sa	le Na	ame	;			CQ32G2		
Test V	oltage		A	C 23	30\	//5	0H	lz		Ph	ase					Line		
Test M	1ode		Н	DM	12	256	60*	1440/144	Hz									
80 dB	kuV																	
-																		
				_	_	_				_								
					-									4	9			
A	$\overline{\mathbf{w}}$				+	_	+		3	_		5		MM	JAM	11 		
×	MM				+			ala P	M. M. N			WAY	14m /	8	1 1	0 12		
40	V	Mu					LI.	thous the the	4	Ym	N	6	v	Ŧ		+ × * '	WW.	
		"Why	M	Mill	n h	14	JN		×	Ì	41	×					Ň	W. Ald
			• ₩	' M		TM)	M				¥.							APR - M
				1	η.	19	ľ	<u> </u>										
							Γ											
0																		
0.15			0.5	0			1.0	0				5.0	0		1	0.00	3	0.00(MHz)
No.	Freq.	Readin Level	ıg		rre ctc			Measure ment	Limi		Mar	gin						
	MHz	dBuV		dB				dBuV	dBuV		dB			ete	to	r		
	0.1545 0.1545	44. 15 33. 70		9.8 9.8				53.97 43.52	65.7 55.7		-11. -12.			P VG				
	2. 1660	35.01		9. d				45. 52 45. 02	56.0		-12.			P				
4	2. 1660	25.30		10.				35.31	46.0		-10.			VG				
	4. 5420	35.65			16			45.81	56.0	-	-10.			P				
	4.5420	25.70		10.				35.86	46.0	0	-10.	14		VG				
7	7.2105	39.77		10.				50 . 11	60.0		-9.8		Q	Р				
	7.2105	29.10		10				39.44	5 0. 0		-10.			VG				
	9.0239	40.48		10.				5 0. 9 2	60.0		-9. (P				
	9.0239	30.60		10.				41.04	50.0		-8.9			VG				
$\frac{11}{12}$	12.1605				60			48.48	60.0		-11.			P				
	12.1605	29 40		10.	60			40.00	50.0	U	-10.	00	A	VG				

EUT			LCD Mor	vitor	C	ale Name		CQ32G	2
									۷
Test Vo	Itage		AC 230V	/50Hz	Pł	nase		Neutral	
Test Mo	ode		HDMI1 2	560*1440/14	44Hz				
80 dBu\	v								
40			3		5 6 ×		9 10 ×	11 12 × 12 ×	who have a second secon
0									
0.15	I		0.50	1.00		5.0	D	10.00	30.00(MHz)
No. F	req.	Readin Level	g Correc Factor		Limit	Margin			
	Hz	dBuV	dB	dBuV	dBuV	dB	Detec	tor	
	. 1500	43.60	9.91	53.51	66.00	-12.49	QP OD		
2 0	. 1500	33.90	9.91 10.04	43.81 45.59	66.00 56.00	-22. 19 -10. 41	QP QP		
	. 5820 . 5820	35.55 25.80	10.04	45.59 35.84	46.00	-10. 41	AVG		
4 0 5 1	. 7655	34.31	10.04	44.48	56.00	-11. 52	QP		
6 1	. 7655	24.50	10.17	34.67	46.00	-11. 33	AVG		
	. 7310	36.12	10.38	46.50	56.00	-9.50	QP		
				36.48	46.00	-9.52	AVG		
	. 7310	26.10	10.38	50.40					
8 4	. 7310	26. 10 40. 07	10.61	50.48	60.00	-9.32	QP		
8 4 9 7		40. 07 30. 70	10. 61 10. 61		60.00 50.00	-9.32 -8.69	QP AVG		
8 4 9 7 10 7	. 4130	40.07	10.61	5 0. 68	60.00	-9.32	QP		

5. HARMONIC AND FLICKER TEST

5.1 HARMONIC CURRENT EMISSIONS

5.1.1 LIMITS

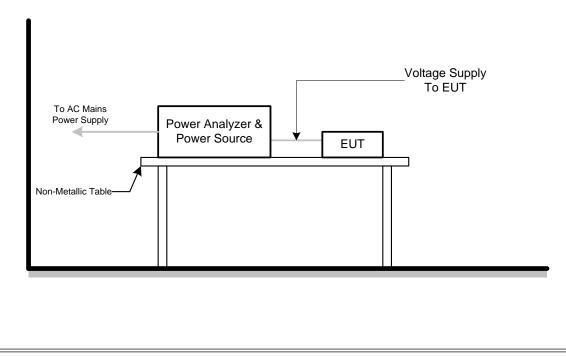
The power consumption is less than 75W, there is no limit applied.

5.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Harmonics and Flicker Analyzer	California Instruments	PACS-1	72344	Aug. 03, 2020
					_
2	3KVA AC Power source	California Instruments	3001ix	56309	Aug. 03, 2020
3	Measurement Software	California	CTS4.0 Version 4.21	N/A	N/A

Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

All calibration period of equipment list is one year.

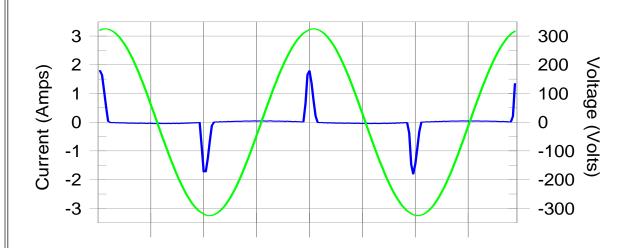

5.1.3 TEST PROCEDURE

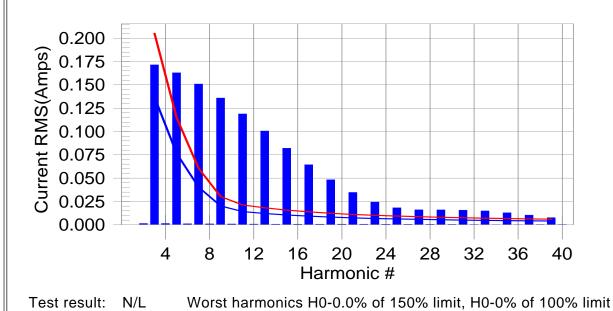
- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- b. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

5.1.4 DEVIATION FROM TEST STANDARD

No deviation

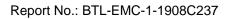
5.1.5 TEST SETUP



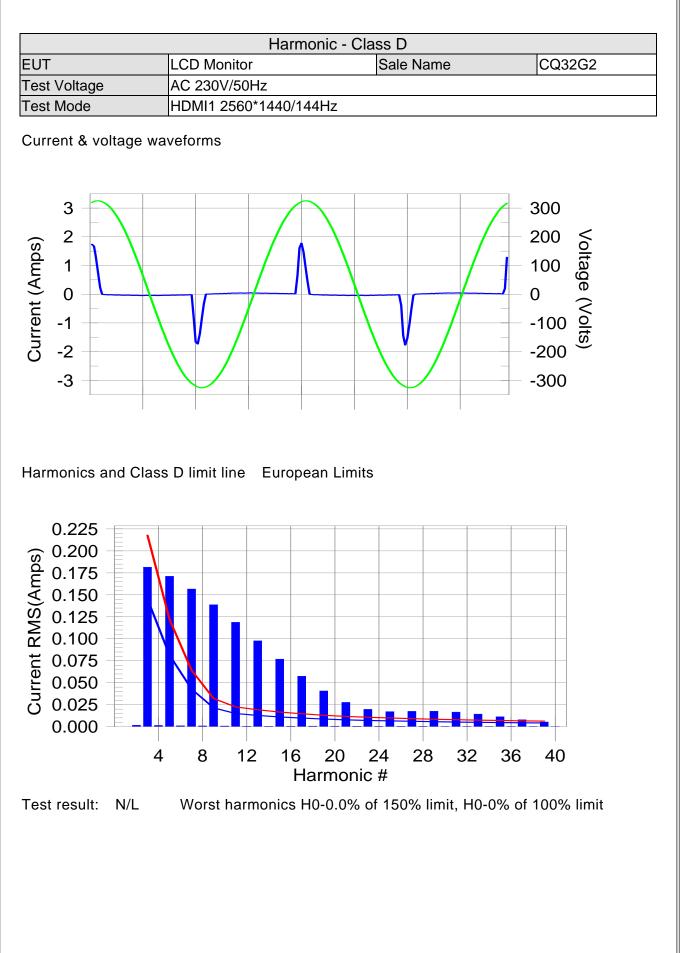

5.1.6 TEST RESULTS

Harmonic - Class D							
EUT	LCD Monitor	Sale Name	C32G2				
Test Voltage	AC 230V/50Hz						
Test Mode	HDMI1 1920*1080/165Hz						

Current & voltage waveforms


Harmonics and Class D limit line European Limits

		Curre	ent Test Re	sult Summary	/ (Run time)	
EUT		LCD Mon	itor	Sal	e Name	C	32G2
Test Vol	tage	AC 230V	/50Hz				
Test Mo		HDMI1 1	920*1080/1	65Hz			
۲ ۱ ۱	parameter /_RMS (Vol _Peak (Amp _Fund (Amp Power (Wath	ts):230.03 os):1.842 os):0.182	ng test:	Frequency(H I_RMS (Amps Crest Factor: Power Factor	s): 0.415 4.450		
Harm#H	larms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
23456789011213415678901122234567890312334	0.001 0.171 0.001 0.163 0.001 0.151 0.001 0.136 0.001 0.119 0.001 0.001 0.001 0.082 0.001 0.064 0.001 0.048 0.001 0.048 0.001 0.024 0.001 0.024 0.001 0.024 0.001 0.024 0.001 0.024 0.001 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.001 0.016 0.000 0.015 0.000	0.000 0.137 0.000 0.076 0.000 0.040 0.020 0.000 0.014 0.000 0.012 0.000 0.012 0.000 0.009 0.000 0.009 0.000 0.000 0.000 0.007 0.000 0.000 0.007 0.000 0.000 0.005 0.000 0.005 0.000	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.002 0.173 0.002 0.163 0.001 0.151 0.001 0.136 0.001 0.120 0.001 0.102 0.001 0.067 0.001 0.051 0.001 0.051 0.001 0.026 0.001 0.026 0.001 0.026 0.001 0.026 0.001 0.026 0.001 0.026 0.001 0.026 0.001 0.026 0.001 0.026 0.001 0.019 0.001 0.016 0.000 0.015 0.000 0.015 0.000	0.000 0.205 0.000 0.115 0.000 0.000 0.030 0.000 0.021 0.000 0.018 0.000 0.016 0.000 0.016 0.000 0.012 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.010 0.000 0.000 0.000 0.009 0.000 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/L N/L N/L N/L N/L N/L N/L N/L N/L N/L
35 36 37 38 39 40	0.013 0.000 0.010 0.000 0.008 0.000	$\begin{array}{c} 0.004 \\ 0.000 \\ 0.004 \\ 0.000 \\ 0.004 \\ 0.000 \end{array}$	N/A N/A N/A N/A N/A	0.013 0.000 0.011 0.000 0.008 0.000	0.007 0.000 0.006 0.000 0.006 0.000	N/A N/A N/A N/A N/A	N/L N/L N/L N/L N/L N/L


Note: The EUT power level is below 75.0 Watts and therefore has no defined limits

	Voltog	e Source Verifi	nation Data (P	un timo)	
UT	LCD Mon		Sale Nar	/	C32G2
			Sale Mai	lie	03202
est Volta	•				
est Mod	e HDMI119	920*1080/165Hz	-		
Vi I_ I_	parameter values durin oltage (Vrms):230.03 Peak (Amps):1.842 Fund (Amps):0.182 ower (Watts): 40.2 Harmonics V-rms	Free I_R Cre	quency(Hz): 50 MS (Amps):0.4 st Factor: 4.4 ver Factor: 0.4 % of Limit	415 450	
2	0.137	0.460	29.69	ОК	
2 3	0.549	2.070	26.52	OK	
	0.064	0.460	13.84	OK	
4 5 6 7	0.040	0.920	4.35	OK	
<u>6</u>	0.027	0.460	5.80	OK	
	0.081	0.690	11.69	OK	
8	0.019	0.460	4.19	OK	
9	0.059	0.460	12.77	OK	
10	0.030	0.460	6.56	OK OK	
11 12	0.076 0.016	0.230 0.230	32.93 6.77	OK	
13	0.057	0.230	24.86	OK	
14	0.013	0.230	5.44	OK	
15	0.066	0.230	28.78	OK	
16	0.023	0.230	9.82	ÖK	
17	0.048	0.230	20.90	ŌK	
18	0.016	0.230	6.91	OK	
19	0.048	0.230	20.87	OK	
20	0.021	0.230	9.08	OK	
21	0.030	0.230	13.12	OK	
22	0.013	0.230	5.58	OK	
23 24	0.027	0.230	11.91 2.60	OK	
24 25	0.006 0.022	0.230 0.230	9.73	OK OK	
26	0.022	0.230	3.32	OK	
27	0.017	0.230	7.47	OK	
28	0.008	0.230	3.46	ŎK	
29	0.025	0.230	10.73	ŌK	
30	0.005	0.230	2.26	OK	
31	0.020	0.230	8.62	OK	
32	0.006	0.230	2.42	OK	
33	0.025	0.230	11.01	OK	
34	0.003	0.230	1.10	OK	
35	0.021	0.230	9.15	OK	
36 37	0.003 0.017	0.230 0.230	1.22 7.29	OK OK	
37 38	0.002	0.230	1.01	OK OK	
39	0.014	0.230	6.01	OK	

Current Test Result Summary (Run time T LCD Monitor Sale Name St Voltage AC 230V/50Hz Sale Name St Mode HDMI1 2560*1440/144Hz Sale Name	,	Q32G2
st Voltage AC 230V/50Hz		
hest parameter values during test:		
V_RMS (Volts):230.03 Frequency(Hz): 50.00 I_Peak (Amps):1.804 I_RMS (Amps): 0.426		
I_Fund (Amps):0.193 Crest Factor: 4.249 Power (Watts): 42.7 Power Factor: 0.439		
rm#Harms(avg) 100%Limit %of Limit Harms(max) 150%Limit	%of Limit	Status
2 0.002 0.000 N/A 0.002 0.000		
3 0.182 0.145 N/A 0.183 0.218		
4 0.001 0.000 N/A 0.002 0.000		
5 0.171 0.081 N/A 0.172 0.122		
6 0.001 0.000 N/A 0.001 0.000 7 0.157 0.043 N/A 0.157 0.064		
8 0.001 0.000 N/A 0.001 0.000 9 0.139 0.021 N/A 0.139 0.032		
9 0.139 0.021 N/A 0.139 0.032 10 0.001 0.000 N/A 0.001 0.000		
10 0.001 0.000 N/A 0.001 0.000 11 0.119 0.015 N/A 0.119 0.022		
12 0.001 0.000 N/A 0.001 0.000		
13 0.098 0.013 N/A 0.098 0.019		
14 0.001 0.000 N/A 0.001 0.000		
15 0.077 0.011 N/A 0.078 0.017		
16 0.001 0.000 N/A 0.001 0.000		
17 0.058 0.010 N/A 0.058 0.015		
18 0.001 0.000 N/A 0.001 0.000		
19 0.041 0.009 N/A 0.041 0.013		
20 0.001 0.000 N/A 0.001 0.000		
21 0.028 0.008 N/A 0.028 0.012		N/L
22 0.001 0.000 N/A 0.001 0.000	N/A	N/L
23 0.020 0.007 N/A 0.020 0.011	N/A	N/L
24 0.001 0.000 N/A 0.001 0.000		N/L
25 0.017 0.007 N/A 0.017 0.010		
26 0.000 0.000 N/A 0.001 0.000		
27 0.017 0.006 N/A 0.018 0.009		
28 0.000 0.000 N/A 0.001 0.000		
29 0.018 0.006 N/A 0.018 0.009		
30 0.000 0.000 N/A 0.000 0.000		
31 0.017 0.005 N/A 0.017 0.008		
32 0.000 0.000 N/A 0.000 0.000		
33 0.014 0.005 N/A 0.015 0.007		
34 0.000 0.000 N/A 0.000 0.000		
35 0.011 0.005 N/A 0.012 0.007		
36 0.000 0.000 N/A 0.000 0.000		
37 0.008 0.004 N/A 0.008 0.007		
38 0.000 0.000 N/A 0.001 0.000 39 0.005 0.004 N/A 0.006 0.006		
39 0.005 0.004 N/A 0.006 0.006 40 0.000 0.000 N/A 0.000 0.000		
+0 0.000 0.000 N/A 0.000 0.000	IN/A	IN/L

Note: The EUT power level is below 75.0 Watts and therefore has no defined limits

	_		cation Data (Ru	,	
EUT	LCD Mon		Sale Nan	ne	CQ32G2
Test Volta	age AC 230V/	50Hz			
Test Mod	e HDMI1 25	560*1440/144Hz			
V	oltage (Vrms):230.03	Fro	quency(Hz): 50	00	
	Peak (Amps):1.804		MS (Amps): 0.4		
	Fund (Amps):0.193		st Factor: 4.2		
P	ower (Watts): 42.7	Pov	ver Factor: 0.4	39	
Harm#	Harmonics V-rms	Limit V-rms	% of Limit	Status	
2	0.148	0.460	32.26	OK	
3	0.554	2.070	26.75	OK	
4	0.059	0.460	12.82	OK	
5	0.041	0.920	4.45	OK	
6	0.027	0.460	5.80	OK	
7 8	0.084 0.020	0.690 0.460	12.12 4.36	OK OK	
9	0.020	0.460	13.04	OK	
10	0.028	0.460	6.15	OK	
11	0.077	0.230	33.60	Ŏĸ	
12	0.015	0.230	6.54	ÖK	
13	0.054	0.230	23.52	OK	
14	0.012	0.230	5.21	OK	
15	0.061	0.230	26.58	OK	
16 17	0.021	0.230 0.230	9.22 18.85	OK OK	
18	0.043 0.016	0.230	7.00	OK	
19	0.040	0.230	17.60	OK	
20	0.021	0.230	8.95	ÖK	
21	0.025	0.230	10.94	OK	
22	0.012	0.230	5.35	OK	
23	0.020	0.230	8.74	OK	
24	0.006	0.230	2.70	OK	
25 26	0.022 0.008	0.230	9.71	OK OK	
26 27	0.008	0.230 0.230	3.28 7.92	OK OK	
28	0.018	0.230	3.55	OK	
29	0.000	0.230	10.91	ÖK	
30	0.005	0.230	2.30	OK	
31	0.021	0.230	8.98	OK	
32	0.005	0.230	2.31	OK	
33	0.024	0.230	10.61	OK	
34	0.003	0.230	1.40	OK	
35 36	0.018 0.003	0.230 0.230	8.02 1.35	OK OK	
36 37	0.003	0.230	5.26	OK	
38	0.002	0.230	1.02	OK	
39	0.011	0.230	4.91	ÖK	
40	0.007	0.230	2.94	ÖK	

5.2 VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER TEST

5.2.1 LIMITS

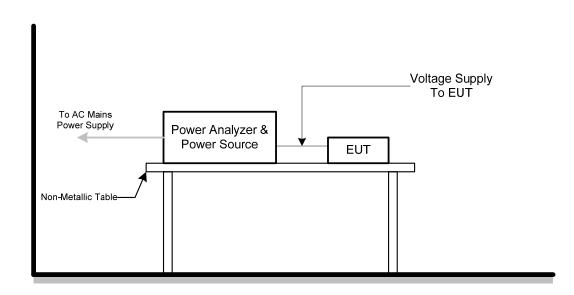
Tests	Limits EN 61000-3-3	Descriptions
Pst	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator
Plt	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator
dc	≤ 3.3%	Relative Steady-State V-Chang
dmax	≤ 4%	Maximum Relative V-change
d (t)	≤ 500 ms	Relative V-change characteristic

5.2.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Harmonics and Flicker Analyzer	California Instruments	PACS-1	72344	Aug. 03, 2020
2	3KVA AC Power source	California Instruments	3001ix	56309	Aug. 03, 2020
3	Measurement Software	California	CTS4.0 Version 4.21	N/A	N/A

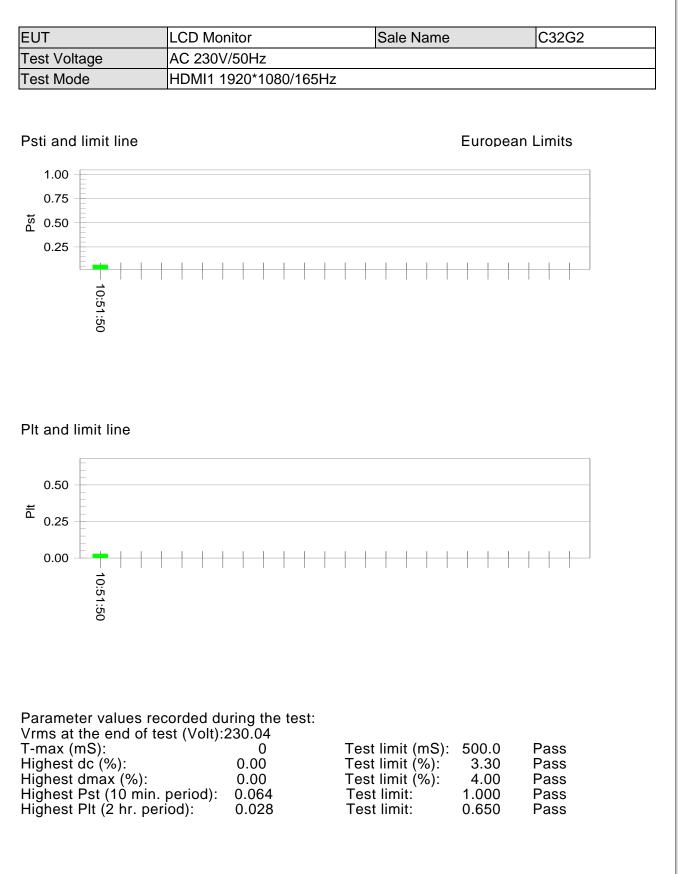
Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

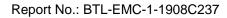
5.2.3 TEST PROCEDURE

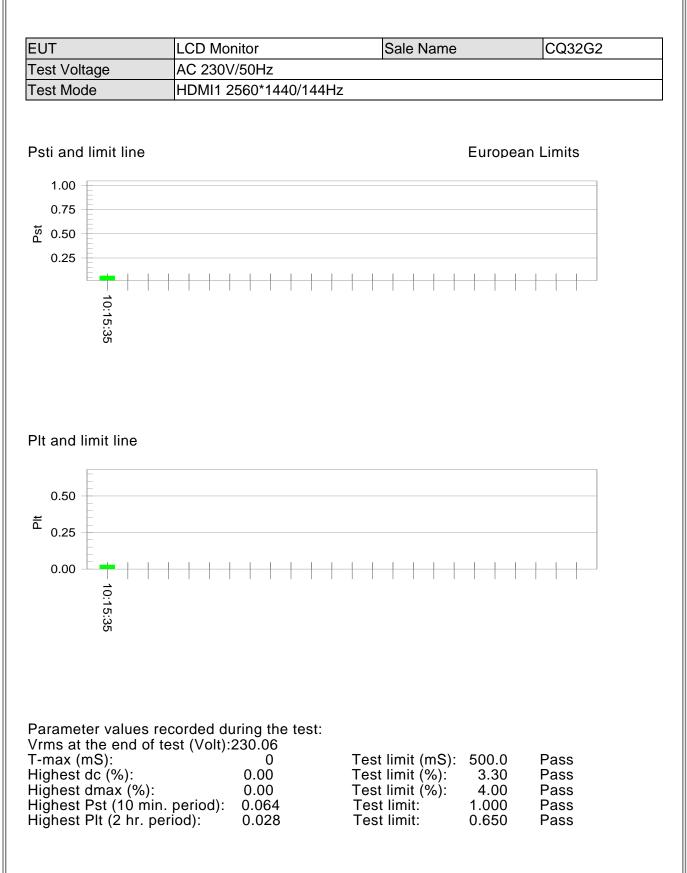

- a. Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in EN 61000-3-3 depend on which standard adopted for compliance measurement.
- b. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

5.2.4 DEVIATION FROM TEST STANDARD

No deviation




5.2.5 TEST SETUP



5.2.6 TEST RESULTS

6. EMC IMMUNITY TEST

6.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA

Tests Standard No.	Test Specification Level	Test Ports	Criteria
Electrostatic discharge IEC 61000-4-2	±8 kV air discharge ±4 kV contact discharge (Direct Mode)	Enclosure	В
(ESD)	±4kV HCP discharge ±4kV VCP discharge (Indirect Mode)	Enclosure	В
Radiated, radio-frequency, electromagnetic field immunity IEC 61000-4-3 (RS)	80 MHz to 1000 MHz 3V/m(unmodulated, r.m.s), 1 kHz, 80% AM modulated	Enclosure	A
Electrical fast transient/burst	±0.5kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency (100kHz Repetition Frequency for xDSL ports)	Signal ports and telecommunication ports (Only applicable to cable length>3 m)	В
immunity IEC 61000-4-4 (EFT)	±0.5kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency	DC Power Ports	В
	±1 kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency	AC Power Ports	В
	±1 kV(peak) 10/700 Tr/Th μs (without primary protection)	Signal ports and telecommunication ports	С
	±4 kV(peak) 10/700 Tr/Th μs (with primary protectors fitted)	(applicable only to ports connect directly to outdoor cables)	С
Surge immunity IEC 61000-4-5 (Surge)	±0.5 kV(peak) 1.2/50(8/20) Tr/Th μs	DC Power Ports (applicable only to ports connect directly to outdoor cables)	В
	±1 kV(peak) 1.2/50(8/20) Tr/Th μs (line to line)		В
	±2 kV(peak) 1.2/50(8/20) Tr/Th μs (line to earth or ground)	AC Power Ports	В

	0.15 MHz to 80 MHz 3V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance	Signal ports and telecommunication ports (Only applicable to cable length>3 m)	А
Immunity to conducted disturbances, induced by radio-frequency fields IEC 61000-4-6 (CS)	0.15 MHz to 80 MHz 3V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance	DC Power Ports	A
	0.15 MHz to 80 MHz 3V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance	AC Power Ports	A
Power frequency magnetic field immunity IEC 61000-4-8 (PFMF)	50 Hz or 60Hz, 1A/m(r.m.s)	Enclosure	A
Voltage dips, short interruptions and voltage variations immunity IEC 61000-4-11 (Dip)	Voltage reduction>95% 0.5 cycle Voltage reduction 30% 25 cycle Voltage reduction>95% 250 cycle	AC Power Ports	B C C

6.2 GENERAL PERFORMANCE CRITERIA

According to EN55024 standard, the general performance criteria as following:

Criterion A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.	
Criterion B	After the test, the equipment shall continue to operate as intended without operator Intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.	
Criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.	

6.3 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

6.3.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-2
Discharge Impedance	330 ohm / 150 pF
Required Performance	В
Discharge Voltage	Air Discharge: ±2 kV, ±4 kV, ±8 kV
	Contact Discharge: ±2 kV, ±4 kV
Polarity	Positive & Negative
Number of Discharge	Air Discharge: min. 20 times at each test point
	Contact Discharge: min. 200 times in total
Discharge Mode	Single Discharge
Discharge Period	1 second

6.3.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	ESD Generator	TESEQ AG	NSG 437	450	Sep. 28, 2019

Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

All calibration period of equipment list is one year.

6.3.3 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Contact discharge was applied to conductive surfaces (Direct) and coupling planes (Indirect) of the EUT.

During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges.

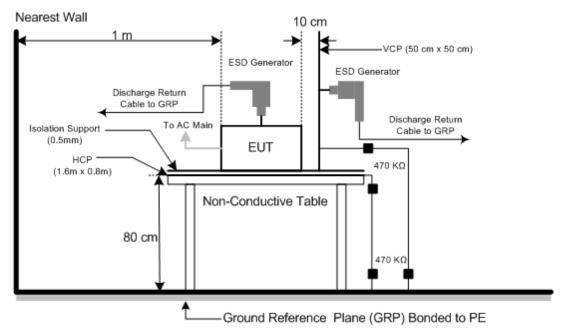
If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge. Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

b. Air discharges at insulation surfaces of the EUT. It was at least ten single discharges with positive and negative at the same selected point.


c. For TABLE-TOP equipment:

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test was installed in a representative system as described in IEC 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

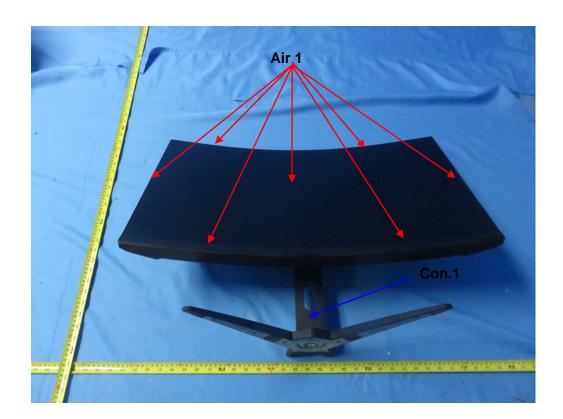
6.3.4 DEVIATION FROM TEST STANDARD

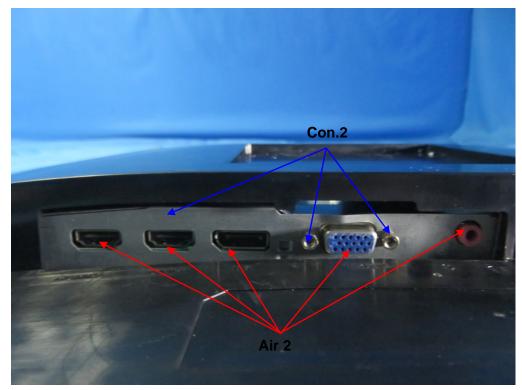
No deviation

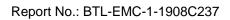
6.3.5 TEST SETUP

6.3.6 TEST RESULTS

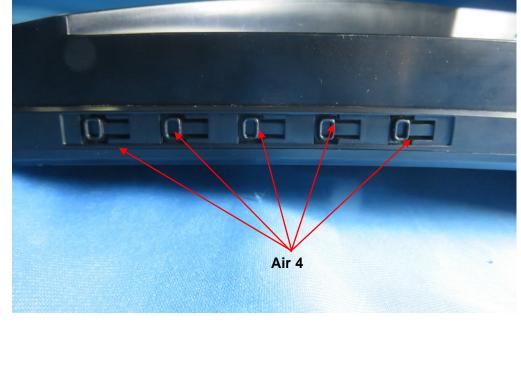
Sale Name		C	32G2	2													
Test Voltag	e	AC 230V/50Hz															
Test Mode		Н	DMI1	1920	*1080	/165ł	Ηz										
Mode				Ai	r Dis	char	ge					Co	ntact	Disc	charge		
Test Leve	el	2k	٢V	4	٢V	8	kV		- k	٢V	2k	V	4	1kV	-	kV	
Location	1	Ρ	Ν	Р	Ν	Ρ	N	F	>	Ν	Ρ	Ν	Р	Ν	Р	Ν	
1		A	Α	А	Α	А	A			-	А	А	Α	Α	-	-	
2		A	Α	А	А	А	A			-	А	А	Α	Α	-	-	
3		A	Α	А	Α	А	A			-	-	-	-	-	-	-	
4		A	Α	А	А	А	A			-	-	-	-	-	-	-	
Criteria				l	3		-				В					-	
Result					4		-			A					-		
Mode		H	ICP (Contac	ct Disc	harg	е				VC	P Co	ntact	Disch	arge		
Test Level	2	kV		4	kV		- k'	V		2	٧٧		4k∖	/	-	kV	
Location	Ρ		Ν	Ρ	Ν	F)	Ν		Ρ	N	F	>	Ν	Р	Ν	
Left side	А		A	А	А	-		-		А	Α	A	1	А	-	-	
Right side	e A A A A /		А	Α	A	1	А	-	-								
Front side	Α		A	А	А	-		-		А	Α	A		А	-	-	
Rear side	side A A A A					-		-		А	Α	A	ι	А	-	-	
Criteria		В					-					В	-				
Result			A	۱			-					А				-	


Note:

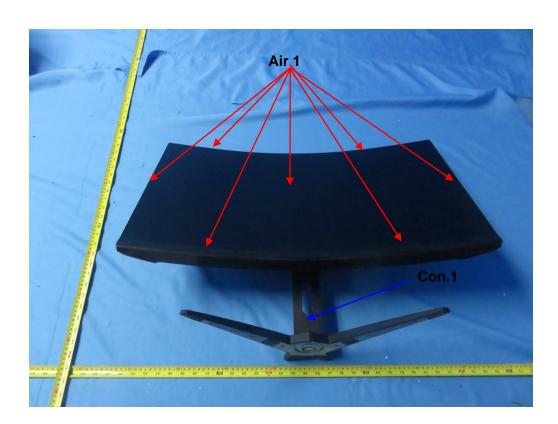

1) P/N denotes the Positive/Negative polarity of the output voltage.

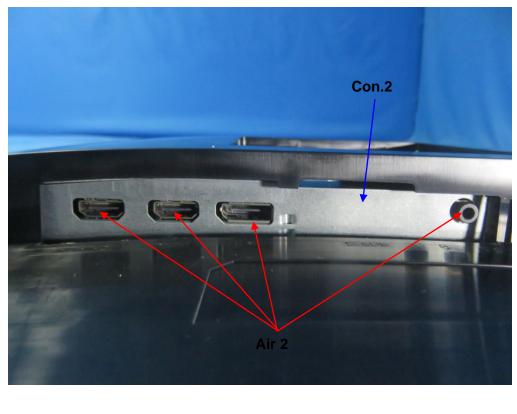

2) N/A - denotes test is not applicable in this test report

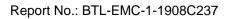
PHOTO(S) SHOWN THE LOCATION(S) OF ESD EVALUATED

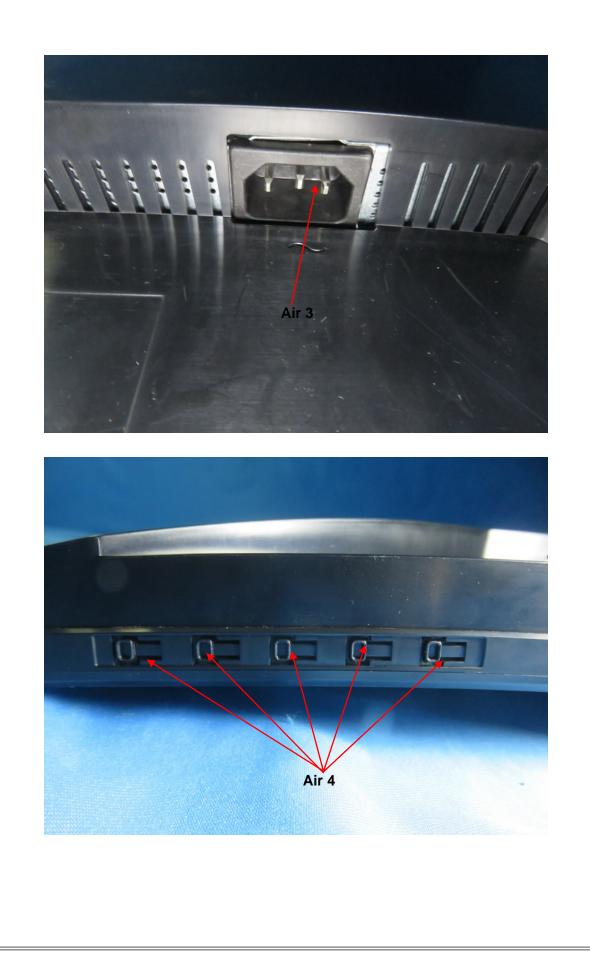


Sale Name		CQ32G2															
Test Voltag	je	AC 230V/50Hz															
Test Mode HDMI1 2560*1440/144Hz																	
Mode				Ai	r Dis	schar	ae					Сс	ntact	Disc	harge		
Test Leve	əl	2k	٢V	1	٧٧		kV		- k\	V	2k			kV	-	kV	
Location	1	Ρ	Ν	Р	Ν	Ρ	N	P		Ν	Р	Ν	Р	Ν	Р	Ν	
1		Α	Α	А	Α	А	A	-		-	А	А	А	Α	-	-	
2		Α	Α	Α	Α	А	A	-		-	А	А	А	Α	-	-	
3		Α	Α	Α	Α	А	A	-		-	-	-	-	-	-	-	
4		Α	Α	Α	Α	А	A	-		-	-	-	-	-	-	-	
Criteria				l	В		-				В					-	
Result					Ą		-				A					-	
Mode		H	ICP (Contac	ct Disc	harg	е				VC	CP Co	ntact I	Disch	arge		
Test Level	2	2kV		4	kV		- k'	V		2	٧٧		4kV		-	κV	
Location	Р		N	Р	Ν	F)	Ν		Ρ	N	F)	Ν	Р	N	
Left side	Α		A	А	Α	-		-		A	Α	A	4	А	-	-	
Right side	Right side A A A A -			-		А	Α	A	4	А	-	-					
Front side A A A A		-		-		A	Α	A	4	А	-	-					
Rear side A A A A			-		-		А	Α	A	4	А	-	-				
Criteria	eria B					-				В				-			
Result			A				-					А				-	


Note:


1) P/N denotes the Positive/Negative polarity of the output voltage.


2) N/A - denotes test is not applicable in this test report


PHOTO(S) SHOWN THE LOCATION(S) OF ESD EVALUATED

6.4 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

6.4.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-3
Required Performance	А
Frequency Range	80 MHz - 1000 MHz
Field Strength	3 V/m(unmodulated, r.m.s)
Modulation	1 kHz Sine Wave, 80%, AM Modulation
Frequency Step	1% of fundamental
Polarity of Antenna	Horizontal and Vertical
Test Distance	3 m
Antenna Height	1.55 m
Dwell Time	3 seconds

6.4.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	MXG Analog Signal Generator	Agilent	N5181A	MY49060710	Aug. 03, 2020
2*	Power amplifier	MILMEGA	80RF1000-250	1064833	Aug. 20, 2020
3	Antenna	ETS	3142C	47662	Mar. 23, 2020
4	Measurement Software	ΤΟΥΟ	IM5/RS Ver 3.8.050	N/A	N/A

Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

"*" calibration period of equipment list is three year.

Except * item, all calibration period of equipment list is one year.

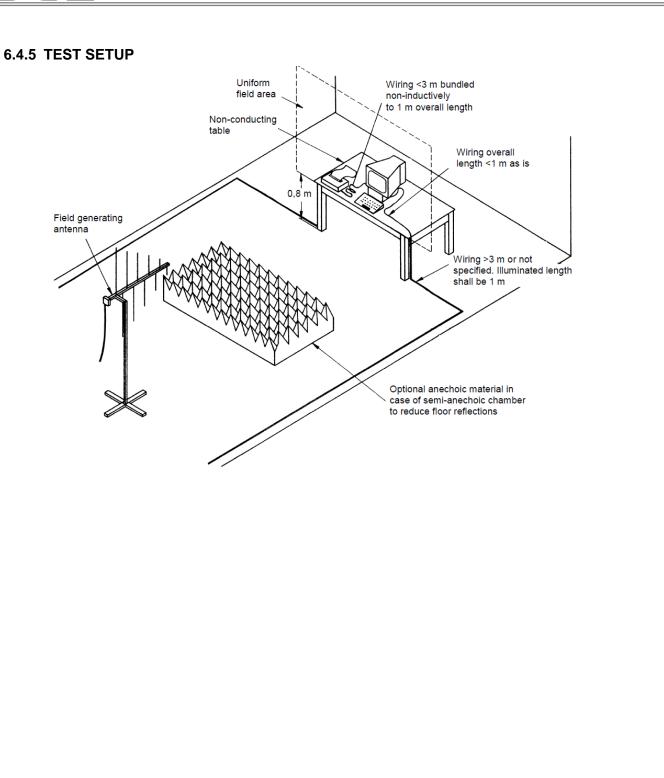
6.4.3 TEST PROCEDURE

The EUT and support equipment are in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.

For TABLE-TOP equipment:

The EUT installed in a representative system as described in IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.


The other condition as following manner:

- a. The field strength level was 3 V/m(unmodulated, r.m.s).
- b. The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

6.4.4 DEVIATION FROM TEST STANDARD

No deviation

6.4.6 TEST RESULTS

Sale Name	C32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 1920*1080/165Hz

Frequency Range	RF Field	R.F.	Modulation	Azimuth	Criterion	Result
(MHz)	Position	Field Strength	Modulation	Azimutn	Cillenon	Result
				0		
00 4000		2)//	AM Modulated	90		•
80 - 1000	H/V	3V/m	1000Hz, 80%	180	A	A
				270		

Sale Name	CQ32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 2560*1440/144Hz

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Modulation	Azimuth	Criterion	Result
	FUSILION			0		
80 - 1000	H/V	3V/m	AM Modulated	90	А	А
00 1000	117 V	0 V/III	1000Hz, 80%	180	~	~
				270		

6.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT/BURST)

6.5.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-4
Required Performance	В
Test Voltage	AC Power Ports:±1 kV
Polarity	Positive & Negative
Impulse Frequency	5 kHz: except for xDSL ports.
Impulse Wave shape	5/50 ns
Burst Duration	15 ms
Burst Period	300 ms
Test Duration	1 min.

6.5.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	THE MODULAR SOLUTION FOR 6 KV APPLICATIONS	Teseq	NSG 3060	1423	Aug. 03, 2020

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

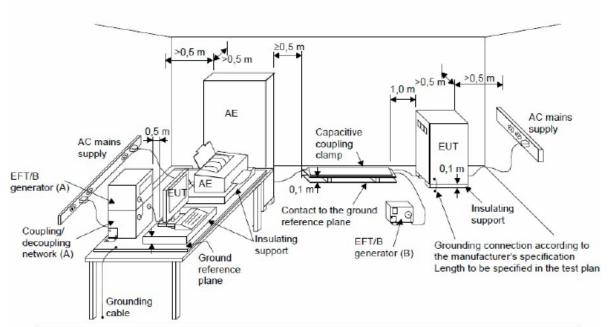
6.5.3 TEST PROCEDURE

For TABLE-TOP equipment:

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane and should be located 0.1 m+/- 0.01m above the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

The other condition as following manner:

a. Both positive and negative polarity discharges were applied.


b. The duration time of each test sequential was 1 minute

6.5.4 DEVIATION FROM TEST STANDARD

No deviation

6.5.5 TEST SETUP

6.5.6 TEST RESULTS

Sale Name	C32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 1920*1080/165Hz

EUT Ports Tested		Polarity	Repetition Frequency	Test Level 1kV	Criterion	Result
	Ling(L)	+	5 kHz	А	В	٨
	Line (L)	-	5 kHz	А	D	A
	Noutrol (NI)	+	5 kHz	А	В	Δ
	Neutral (N)	-	5 kHz	А	D	A
	Ground (PE)	+	5 kHz	А	В	Δ
	Glound (PE)	-	5 kHz	А	D	A
AC Power Port	L+N	+	5 kHz	А	В	Δ
AC FOWER FOIL		-	5 kHz	А	D	A
	L+PE	+	5 kHz	А	В	
		-	5 kHz	А	D	A
	N+PE	+	5 kHz	А	В	Δ
		-	5 kHz	А	D	A
	L+N+PE	+	5 kHz	А	В	Δ
		-	5 kHz	А	D	A

Sale Name	CQ32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 2560*1440/144Hz

EUT Ports Tested		Polarity	Repetition Frequency	Test Level 1kV	Criterion	Result
	Line(L)	+	5 kHz	А	В	٨
	Line (L)	-	5 kHz	А	D	A
	Noutrol (NI)	+	5 kHz	А	D	٨
	Neutral (N)	-	5 kHz	А	В	A
		+	5 kHz	А	В	٨
	Ground (PE)	-	5 kHz	А	D	A
AC Power Port	L+N	+	5 kHz	А	В	_
AC Power Pon		-	5 kHz	А	D	A
	L+PE	+	5 kHz	А	В	•
		-	5 kHz	А	Б	A
	N+PE	+	5 kHz	А	В	٨
		-	5 kHz	А	Б	A
		+	5 kHz	А	D	•
	L+N+PE	-	5 kHz	A	В	A

6.6 SURGE IMMUNITY TEST

6.6.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-5
Required Performance	B (For AC/DC Power Ports)
Wave-Shape	1.2/50(8/20) Tr/Th µs combination wave
Test Voltage	AC Power Port: ±0.5 kV, ±1 kV, ±2 kV
Generator Source	2 Ω of the low-voltage power supply network.
Impedance	12 Ω (10Ω+2Ω) of the low-voltage power
	supply network and ground.
Number of Tests & Polarity	5 positive and 5 negative at selected points
Phase Angle	AC Power Port: 0°/90°/180°/270°
Pulse Repetition Rate	1 time / min.

6.6.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	THE MODULAR SOLUTION FOR 6 KV APPLICATIONS	Teseq	NSG 3060	1423	Aug. 03, 2020

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

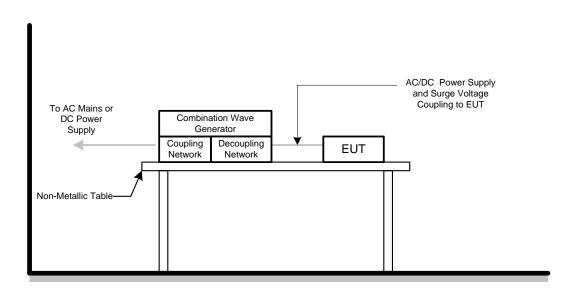
6.6.3 TEST PROCEDURE

a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT : The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT :


The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

6.6.4 DEVIATION FROM TEST STANDARD

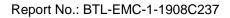
No deviation

6.6.5 TEST SETUP

6.6.6 TEST RESULTS

Sale Name	C32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 1920*1080/165Hz

Move Form			1.2/						
	Wave Form EUT Ports Tested		Phase		Volta	age		Criterion	Result
EUT POILS Tested		Polarity	Fliase	0.5kV	1kV	kV	kV		
	+/-	0 °	А	А	-	-			
10		+/-	90°	А	А	-	-	Р	۸
AC L-N		+/-	180°	А	А	-	-	- B	A
		+/-	270°	А	А	-	-		


Wave Form EUT Ports Tested			1.2/						
		Polarity	Phase		Volta	age		Criterion	Result
LUIT		Folanty	Fliase	0.5kV	1kV	2kV	kV		
		+/-	0°	А	А	А	-		
	L – PE	+/-	90°	А	Α	Α	-	В	A
	L-PC	+/-	180°	А	Α	А	-		
AC		+/-	270°	А	А	А	-		
AC		+/-	0°	А	Α	Α	-		
N – PE		+/-	90°	А	Α	A	-	В	۸
		+/-	180°	А	Α	Α	-	В	A
	+/-	270°	А	Α	Α	-			

Sale Name	CQ32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 2560*1440/144Hz

			1.2/						
	Wave Form EUT Ports Tested		Polarity Phase		Volta	age		Criterion	Result
EUI			Fliase	0.5kV	1kV	kV	kV		
	AC L-N	+/-	0 °	А	А	-	-		
10		+/-	90°	А	А	-	-	Р	۸
AC		+/-	180°	А	А	-	-	В	A
		+/-	270°	А	А	-	-		

Wave Form EUT Ports Tested			1.2/						
		Polarity	Phase		Volta	age		Criterion	Result
LUIT		Fulanty	Fliase	0.5kV	1kV	2kV	kV		
		+/-	0°	А	А	А	-		
	L – PE	+/-	90°	А	А	A	-	В	A
		+/-	180°	А	Α	А	-		
AC		+/-	270°	А	Α	Α	-		
AC		+/-	0°	А	Α	A	-		
	N – PE	+/-	90°	А	А	Α	-	В	٨
N-FC		+/-	180°	А	А	А	-	Б	A
	+/-	270°	А	Α	Α	-			

6.7 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY RADIO-FREQUENCY FIELDS TEST (CS)

6.7.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-6
Required Performance	A
Frequency Range	0.15 MHz - 80 MHz
Field Strength	3 V (unmodulated, r.m.s.)
Modulation	1 kHz Sine Wave, 80%, AM Modulation
Frequency Step	1% of fundamental
Dwell Time	3 seconds

6.7.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Power CDN	FCC	FCC-801-M 2/M3-16A	100270	Mar. 10, 2020
2	TEST SYSTEM FOR CONDUCTED AND RADIATED IMMUNITY	TESEQ	NSG 4070B	37513	Aug. 03, 2020
3	Measurement Software	Farad	EZ-CS(V2. 0.1.2)	N/A	N/A

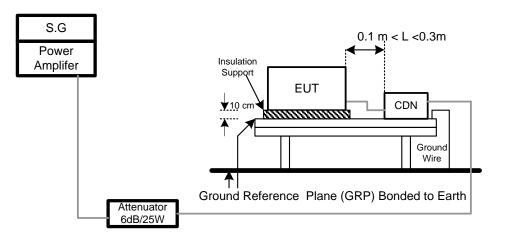
Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

6.7.3 TEST PROCEDURE

The equipment to be tested is placed on an insulating support of 0.1m height above a reference ground plane. All cables exiting the EUT shall be supported at a height of at least 30 mm above the reference ground plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

The other condition as following manner:

a. The field strength level was 3 V (unmodulated, r.m.s.)


- b. The frequency range is swept from 150 kHz to 80 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.

6.7.4 DEVIATION FROM TEST STANDARD

No deviation

6.7.5 TEST SETUP

6.7.6 TEST RESULTS

Sale Name	C32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 1920*1080/165Hz

Test Ports (Mode)	Frequency Range (MHz)	Field Strength	Modulation	Criteria	Results
Input/ Output AC.Power Port	0.1580	3V	AM Modulated	A	A
			1000Hz, 80%		

Sale Name	CQ32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 2560*1440/144Hz

Test Ports (Mode)	Frequency Range (MHz)	Field Strength	Modulation	Criteria	Results
Input/ Output AC.Power Port	0.1580	3V	AM Modulated	A	А
			1000Hz, 80%		

6.8 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF)

6.8.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-8
Required Performance	A
Frequency Range	50/60 Hz
Field Strength	1 A/m
Observation Time	1 minute
Inductance Coil	Rectangular type, 1mx1m

6.8.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Magnetic Field test Generator	FCC	F-1000-4-8- G-125A	04032	Mar. 10, 2020
2	Magnetic Field immunity loop	Thermo KeyTek	F-1000-4-8/ 9/10-L-1M	04024	Mar. 10, 2020

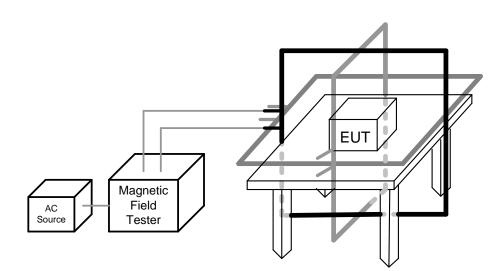
Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

All calibration period of equipment list is one year.

6.8.3 TEST PROCEDURE

For TABLE-TOP equipment:

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations. The other condition as following manner:


- a. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- b. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

6.8.4 DEVIATION FROM TEST STANDARD

No deviation

6.8.5 TEST SETUP

6.8.6 TEST RESULTS

Sale Name	C32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 1920*1080/165Hz

50Hz

Test Mode	Test Level	Antenna aspect	Duration (s)	Criteria	Results
Enclosure	1 A/m	Х	60	А	А
Enclosure	1 A/m	Y	60	A	А
Enclosure	1 A/m	Z	60	А	А

60Hz

Test Mode	Test Level	Antenna aspect	Duration (s)	Criteria	Results
Enclosure	1 A/m	Х	60	А	А
Enclosure	1 A/m	Y	60	А	А
Enclosure	1 A/m	Z	60	А	A

Sale Name	CQ32G2
Test Voltage	AC 230V/50Hz
Test Mode	HDMI1 2560*1440/144Hz

50Hz

Test Mode	Test Level	Antenna aspect	Duration (s)	Criteria	Results
Enclosure	1 A/m	Х	60	А	А
Enclosure	1 A/m	Y	60	A	A
Enclosure	1 A/m	Z	60	А	А

60Hz

Test Mode	Test Level	Antenna aspect	Duration (s)	Criteria	Results
Enclosure	1 A/m	Х	60	А	А
Enclosure	1 A/m	Y	60	A	A
Enclosure	1 A/m	Z	60	А	А

6.9 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS IMMUNITY TEST

6.9.1 TEST SPECIFICATION

Basic Standard	IEC 61000-4-11
Required Performance	B (For >95% Voltage Dips)
	C (For 30% Voltage Dips)
	C (For >95% Voltage Interruptions)
Interval between Event	Ten seconds
Phase Angle	0°/180°
Test Cycle	3 times

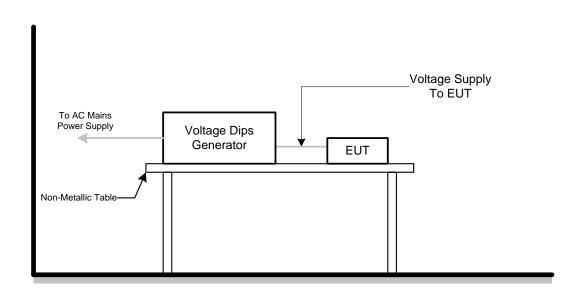
6.9.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	THE MODULAR SOLUTION FOR 6 KV APPLICATIONS	Teseq	NSG 3060	1423	Aug. 03, 2020

Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

All calibration period of equipment list is one year.

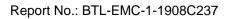
6.9.3 TEST PROCEDURE


The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

6.9.4 DEVIATION FROM TEST STANDARD

No deviation

6.9.5 TEST SETUP


6.9.6 TEST RESULTS

Sale Name	CQ32G2
Test Voltage	AC 100V/50Hz, AC 230V/50Hz, AC 240V/50Hz
Test Mode	HDMI1 1920*1080/165Hz

AC 100V/50Hz					
Item	Residual Voltage	Cycle	Criteria	Results	
Voltage dips	>95%	0.5	В	А	
Voltage dips	30%	25	С	А	
Voltage Interruption	>95%	250	С	С	

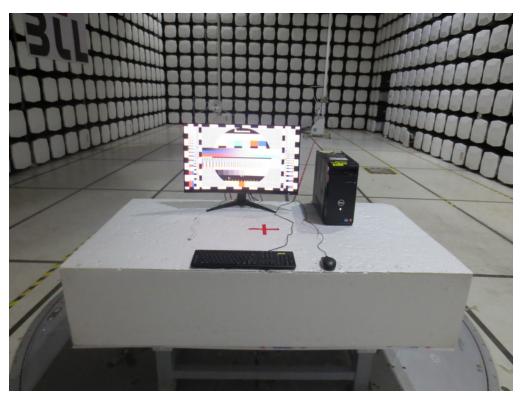
	AC 230V/50Hz					
Item	Residual Voltage	Cycle	Criteria	Results		
Voltage dips	>95%	0.5	В	А		
Voltage dips	30%	25	С	А		
Voltage Interruption	>95%	250	С	С		

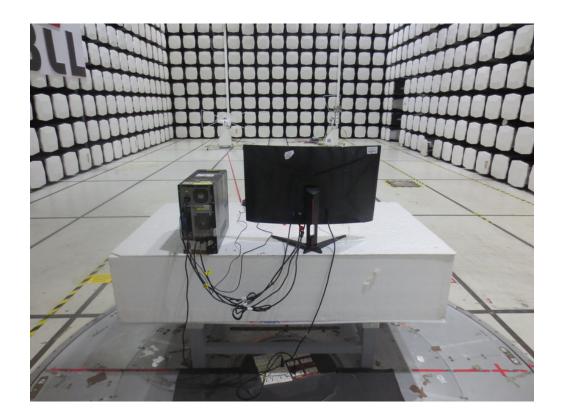
AC 240V/50Hz					
Item	Residual Voltage	Cycle	Criteria	Results	
Voltage dips	>95%	0.5	В	А	
Voltage dips	30%	25	С	А	
Voltage Interruption	>95%	250	С	С	

Sale Name	C32G2
Test Voltage	AC 100V/50Hz, AC 230V/50Hz, AC 240V/50Hz
Test Mode	HDMI1 2560*1440/144Hz

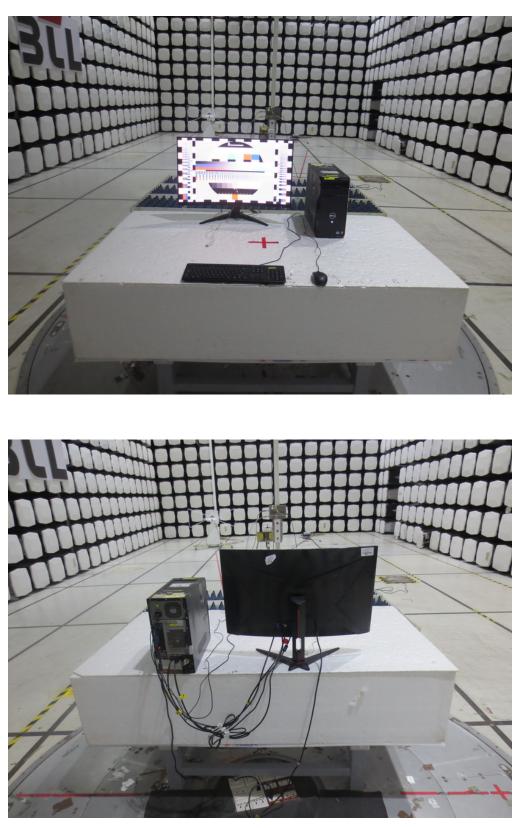
AC 100V/50Hz					
Item	Residual Voltage	Cycle	Criteria	Results	
Voltage dips	>95%	0.5	В	А	
Voltage dips	30%	25	С	А	
Voltage Interruption	>95%	250	С	С	

AC 230V/50Hz					
Item	Residual Voltage	Cycle	Criteria	Results	
Voltage dips	>95%	0.5	В	A	
Voltage dips	30%	25	С	A	
Voltage Interruption	>95%	250	С	С	


AC 240V/50Hz					
Item	Residual Voltage	Cycle	Criteria	Results	
Voltage dips	>95%	0.5	В	А	
Voltage dips	30%	25	С	A	
Voltage Interruption	>95%	250	С	С	



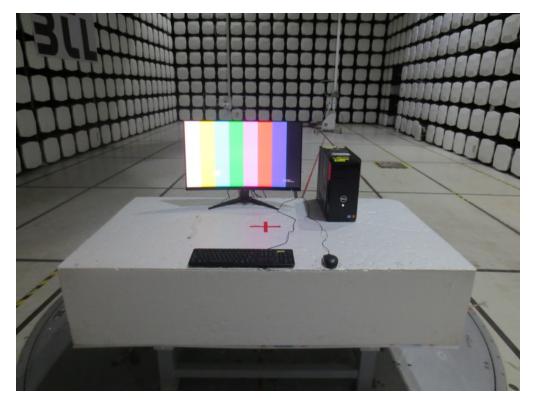
7. EUT TEST PHOTO

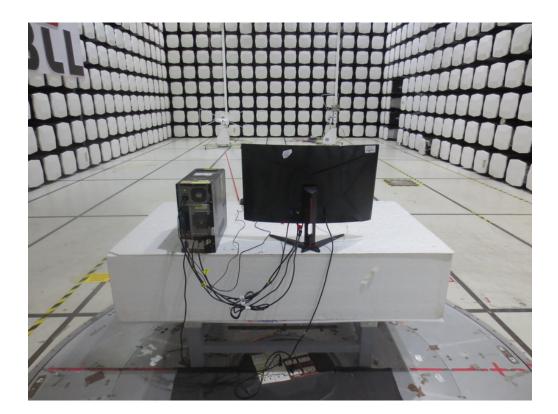

EN 55032:2012+AC:2013 &2015

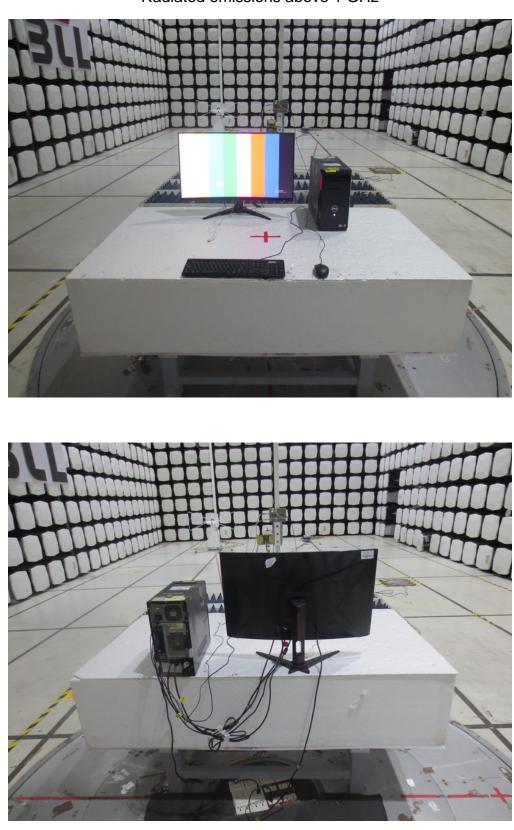
Radiated emissions up to 1 GHz

Radiated emissions above 1 GHz

<u> STL</u>


Conducted emissions AC mains power port



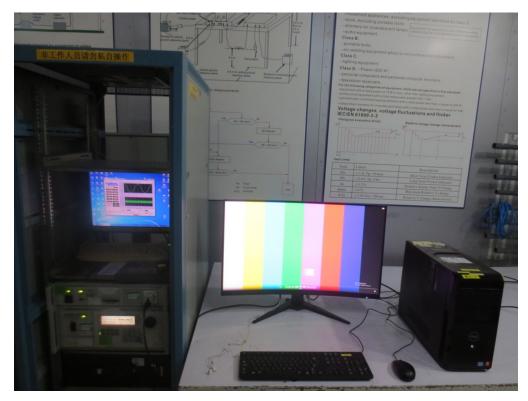

EN 55032:2015+AC:2016

Radiated emissions up to 1 GHz

Radiated emissions above 1 GHz


BĨL

Conducted emissions AC mains power port



Harmonic current emissions

Voltage fluctuations (Flicker)

Electrostatic discharge immunity

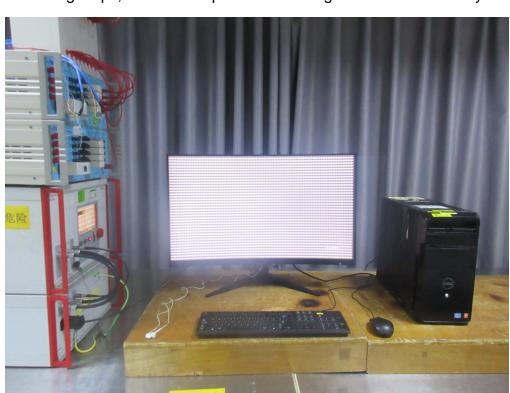
Radiated, radio-frequency, electromagnetic field immunity

Electrical fast transient/burst immunity

Surge immunity



3โL


Immunity to conducted disturbances, induced by radio-frequency fields

Power frequency magnetic field immunity

Voltage dips, short interruptions and voltage variations immunity

End of Test Report