

# **FCC&ISED EMC Test Report**

| Project No.           | : | 2002C090                                                                                      |
|-----------------------|---|-----------------------------------------------------------------------------------------------|
| Equipment             | : | LCD Monitor                                                                                   |
| Brand Name            | : | N/A                                                                                           |
| Test Model            | : | **27E2*******(*=0-9,A-Z,a-z,+,-,/,\ or blank)                                                 |
| Series Model          | : | N/A                                                                                           |
| Applicant             | : | TPV Electronics (Fujian) Co., Ltd.                                                            |
| Address               | : | Rongqiao Economic and Technological Development Zone, Fuqing City,                            |
|                       |   | Fujian Province, P.R. China                                                                   |
| Date of Receipt       | : | Feb. 28, 2020                                                                                 |
| Date of Test          | : | Mar. 06, 2020 ~Mar. 24, 2020                                                                  |
| Issued Date           | : | Apr. 10, 2020                                                                                 |
| <b>Report Version</b> | : | R00                                                                                           |
| Test Sample           | : | Engineering Sample No.: DG2020030645                                                          |
| Standard(s)           | : | FCC Part 15, Subpart B<br>ICES-003 Issue 6:2016<br>ICES-003 Issue 6:2016 (updated April 2019) |

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Detek. Tong

Prepared by : Derek Tong

evr li

Approved by : Kevin Li



Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town,Dongguan, Guangdong, China. Tel: +86-769-8318-3000 Web: www.newbtl.com



#### Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

**BTL** is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

#### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.





| Table of Contents                                            | Page     |
|--------------------------------------------------------------|----------|
| REPORT ISSUED HISTORY                                        | 4        |
| 1 . SUMMARY OF TEST RESULTS                                  | 5        |
| 1.1 TEST FACILITY                                            | 6        |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 6        |
| 1.3 TEST ENVIRONMENT CONDITIONS                              | 7        |
| 2 . GENERAL INFORMATION                                      | 8        |
| 2.1 GENERAL DESCRIPTION OF EUT                               | 8        |
| 2.2 DESCRIPTION OF TEST MODES                                | 9        |
| 2.3 EUT OPERATING CONDITIONS                                 | 10       |
| 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 10       |
| 2.5 DESCRIPTION OF SUPPORT UNITS                             | 11       |
| 3 . EMC EMISSION TEST                                        | 12       |
| 3.1 AC POWER LINE CONDUCTED EMISSIONS TEST                   | 12       |
| 3.1.1 LIMIT                                                  | 12       |
| 3.1.2 MEASUREMENT INSTRUMENTS LIST<br>3.1.3 TEST PROCEDURE   | 12<br>13 |
| 3.1.4 DEVIATION FROM TEST STANDARD                           | 13       |
| 3.1.5 TEST SETUP                                             | 13       |
| 3.1.6 TEST RESULTS                                           | 13       |
| 3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ                       | 20       |
|                                                              | 20       |
| 3.2.2 MEASUREMENT INSTRUMENTS LIST<br>3.2.3 TEST PROCEDURE   | 20<br>21 |
| 3.2.4 DEVIATION FROM TEST STANDARD                           | 21       |
| 3.2.5 TEST SETUP                                             | 21       |
| 3.2.6 TEST RESULTS-BELOW 1 GHZ                               | 21       |
| 3.3 RADIATED EMISSIONS ABOVE 1 GHZ                           | 28       |
|                                                              | 28       |
| 3.3.2 MEASUREMENT INSTRUMENTS LIST<br>3.3.3 TEST PROCEDURE   | 28<br>29 |
| 3.3.4 DEVIATION FROM TEST STANDARD                           | 29       |
| 3.3.5 TEST SETUP                                             | 29       |
| 3.3.6 TEST RESULTS-ABOVE 1 GHZ                               | 30       |
| 4 . EUT TEST PHOTO                                           | 37       |



# **REPORT ISSUED HISTORY**

| Report Version | Description     | Issued Date   |
|----------------|-----------------|---------------|
| R00            | Original Issue. | Apr. 10, 2020 |



## **1. SUMMARY OF TEST RESULTS**

| Emission        |                                    |        |  |
|-----------------|------------------------------------|--------|--|
| Ref Standard(s) | Test Item                          | Result |  |
|                 | AC Power Line Conducted Emissions  | PASS   |  |
| ANSI C63.4-2014 | Radiated Emissions 30 MHz to 1 GHz | PASS   |  |
|                 | Radiated Emissions Above 1 GHz     | PASS   |  |



## 1.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

BTL's Test Firm Registration Number for ISED: 4428B

## **1.2 MEASUREMENT UNCERTAINTY**

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

| Test Site | Method | Measurement Frequency Range | U,(dB) |
|-----------|--------|-----------------------------|--------|
| DG-C02    | CISPR  | 150kHz ~ 30MHz              | 2.60   |

#### B. Radiated emissions test:

| Test Site       | Method Measurement Frequency Range |                   | Ant.<br>H / V | U,(dB) |
|-----------------|------------------------------------|-------------------|---------------|--------|
| DG-CB08<br>(3m) |                                    | 30MHz ~ 200MHz    | V             | 3.72   |
|                 | CISPR                              | 30MHz ~ 200MHz    | Н             | 3.02   |
|                 |                                    | 200MHz ~ 1,000MHz | V             | 4.20   |
|                 |                                    | 200MHz ~ 1,000MHz | Н             | 3.66   |

| Test Site       | Method Measurement Frequency Range |             | U,(dB) |
|-----------------|------------------------------------|-------------|--------|
| DG-CB08<br>(3m) | CISPR                              | 1GHz ~ 6GHz | 4.36   |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

## **1.3 TEST ENVIRONMENT CONDITIONS**

| Test Item                             | Temperature | Humidity | Tested By   |
|---------------------------------------|-------------|----------|-------------|
| AC Power Line<br>Conducted Emissions  | 25°C        | 55%      | Gatsby Wang |
| Radiated emissions<br>30 MHz to 1 GHz | 25°C        | 60%      | Promise Yin |
| Radiated emissions<br>above 1 GHz     | 25°C        | 60%      | Promise Yin |



# 2. GENERAL INFORMATION

#### 2.1 GENERAL DESCRIPTION OF EUT

| Equipment                         | LCD Monitor                                                                               |
|-----------------------------------|-------------------------------------------------------------------------------------------|
| Brand Name                        | N/A                                                                                       |
| Test Model                        | **27E2*******(*=0-9,A-Z,a-z,+,-,/,\ or blank)                                             |
| Series Model                      | N/A                                                                                       |
| Model Difference(s)               | N/A                                                                                       |
| Power Source                      | AC Mains.                                                                                 |
| Power Rating                      | 100-240V~ 50-60Hz 1.5A                                                                    |
| Connecting I/O Port(s)            | 1* AC port<br>1* DP port<br>1* HDMI port<br>1* D-SUB port<br>1* Earphone<br>1* Audio port |
| Classification Of EUT             | Class B                                                                                   |
| Highest Internal<br>Frequency(Fx) | 600MHz                                                                                    |

| Cable Type    | Shielded Type | Ferrite Core | Length(m) | Note                             |
|---------------|---------------|--------------|-----------|----------------------------------|
| AC Power Cord | Non-shielded  | NO           | 1.8/1.5   | 1.8m is worst case<br>Detachable |
| HDMI          | Shielded      | NO           | 1.8/1.5   | -                                |
| D-SUB         | Shielded      | YES          | 1.8/1.5   | Bonded two Ferrite Cores         |
| DP            | Shielded      | NO           | 1.8/1.5   | -                                |
| Audio         | Non-shielded  | NO           | 1.8/1.5   | -                                |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Power cable 1.8m, 1.5m length, worst case is Power cable 1.8m with HDMI+ D-SUB+ DP+ Audio length testing and recording in test report.

## 2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description              |
|--------------|--------------------------|
| Mode 1       | HDMI 1920*1080/75Hz1.8m  |
| Mode 2       | DVI 1920*1080/75Hz 1.8m  |
| Mode 3       | DP 1920*1080/75Hz 1.8m   |
| Mode 4       | HDMI 1080P 1.8m          |
| Mode 5       | HDMI 1280*720/60Hz 1.8m  |
| Mode 6       | HDMI 640*480/60Hz 1.8m   |
| Mode 7       | HDMI 1920*1080/60Hz 1.5m |

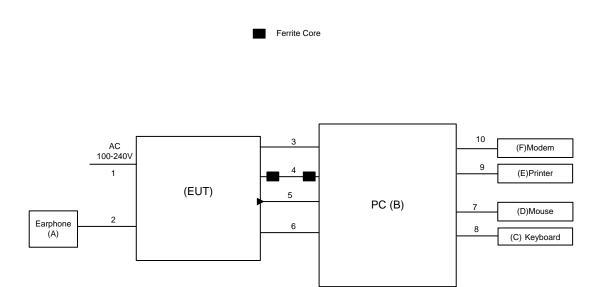
| AC Power Line Conducted Emissions test |                         |  |  |
|----------------------------------------|-------------------------|--|--|
| Final Test Mode                        | Description             |  |  |
| Mode 1                                 | HDMI 1920*1080/75Hz1.8m |  |  |
| Mode 2                                 | DVI 1920*1080/75Hz 1.8m |  |  |
| Mode 4                                 | HDMI 1080P 1.8m         |  |  |

| Radiated emissions 30 MHz to 1 GHz test |                         |  |  |  |  |  |
|-----------------------------------------|-------------------------|--|--|--|--|--|
| Final Test Mode Description             |                         |  |  |  |  |  |
| Mode 1                                  | HDMI 1920*1080/75Hz1.8m |  |  |  |  |  |
| Mode 2                                  | DVI 1920*1080/75Hz 1.8m |  |  |  |  |  |
| Mode 4                                  | HDMI 1080P 1.8m         |  |  |  |  |  |

| Radiated emissions Above 1 GHz test |                         |  |  |  |  |  |
|-------------------------------------|-------------------------|--|--|--|--|--|
| Final Test Mode Description         |                         |  |  |  |  |  |
| Mode 1                              | HDMI 1920*1080/75Hz1.8m |  |  |  |  |  |
| Mode 2                              | DVI 1920*1080/75Hz 1.8m |  |  |  |  |  |
| Mode 4                              | HDMI 1080P 1.8m         |  |  |  |  |  |

Evaluation description:

- 1. The maximum resolution is evaluated Mode 1-4. The worst case is Mode 1 and evaluated the middle and low resolution Mode 5 and Mode 6.
- 2. According to the client's requirement, choose Mode 1, Mode 2, Mode 4 and recorded in test report.




## 2.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following: 1. EUT connected to PC via D-SUB & HDMI & Audio & DP cable.

- 2. EUT connected to Earphone via Earphone cable.
- 3. Mouse and Keyboard connected to PC via USB cable.
- 4. Printer connected to PC via Parallel cable.
- 5. Modem connected to PC via RS232 cable.

#### 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED





#### 2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Series No.              |
|------|-----------|-----------|----------------|-------------------------|
| Α    | Earphone  | APPLE     | N/A            | N/A                     |
| В    | PC        | DELL      | Vostro 470     | 24454162837             |
| С    | Keyboard  | DELL      | KB212-B        | CN0HTXH97158125004DXA01 |
| D    | Mouse     | DELL      | MS111-P        | CN011D3V71581279OLOT    |
| E    | Printer   | SII       | DPU-414        | 3018507 B               |
| F    | Modem     | ACEEX     | DM-1414V       | 603002131               |

| ltem | Cable Type     | Shielded Type | Ferrite Core | Length   |
|------|----------------|---------------|--------------|----------|
| 1    | AC Cable       | NO            | NO           | 1.8/1.5m |
| 2    | Earphone Cable | NO            | NO           | 1.2m     |
| 3    | HDMI Cable     | YES           | NO           | 1.8/1.5m |
| 4    | D-SUB Cable    | YES           | YES          | 1.8/1.5m |
| 5    | DP Cable       | YES           | NO           | 1.8/1.5m |
| 6    | Audio Cable    | NO            | NO           | 1.8/1.5m |
| 7    | USB Cable      | YES           | NO           | 1.8m     |
| 8    | USB Cable      | YES           | NO           | 1.8m     |
| 9    | Parallel Cable | YES           | NO           | 1.8m     |
| 10   | RS232 Cable    | YES           | NO           | 1.8m     |



# **3. EMC EMISSION TEST**

#### 3.1 AC POWER LINE CONDUCTED EMISSIONS TEST

#### 3.1.1 LIMIT

| Frequency of Emission (MHz) | Class B (dBuV) |           |  |  |  |
|-----------------------------|----------------|-----------|--|--|--|
| Frequency of Emission (MHz) | Quasi-peak     | Average   |  |  |  |
| 0.15 - 0.5                  | 66 - 56 *      | 56 - 46 * |  |  |  |
| 0.5 - 5.0                   | 56.00          | 46.00     |  |  |  |
| 5.0 - 30.0                  | 60.00          | 50.00     |  |  |  |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

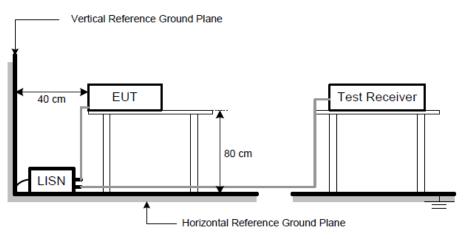
## 3.1.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment       | Manufacturer | Type No.                 | Serial No. | Calibrated until |
|------|-------------------------|--------------|--------------------------|------------|------------------|
| 1    | EMI Test Receiver       | R&S          | R&S ESCI 10              |            | Feb. 28, 2021    |
| 2    | LISN                    | EMCO         | 3816/2                   | 52765      | Mar. 01, 2021    |
| 3    | TWO-LINE<br>V-NETWORK   | R&S          | ENV216                   | 101447     | May. 19, 2020    |
| 4    | 50Ω Terminator          | SHX          | TF5-3                    | 15041305   | Mar. 01, 2021    |
| 5    | Measurement<br>Software | Farad        | EZ-EMC<br>Ver.NB-03A1-01 | N/A        | N/A              |
| 6    | Cable                   | N/A          | RG223                    | 12m        | Mar. 10, 2021    |

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.



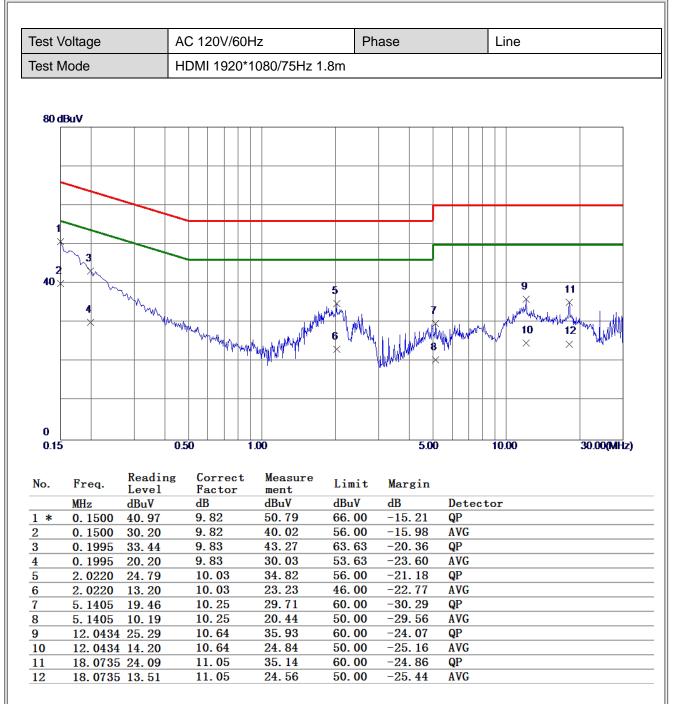

## 3.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. Measuring frequency range from 150KHz to 30MHz.

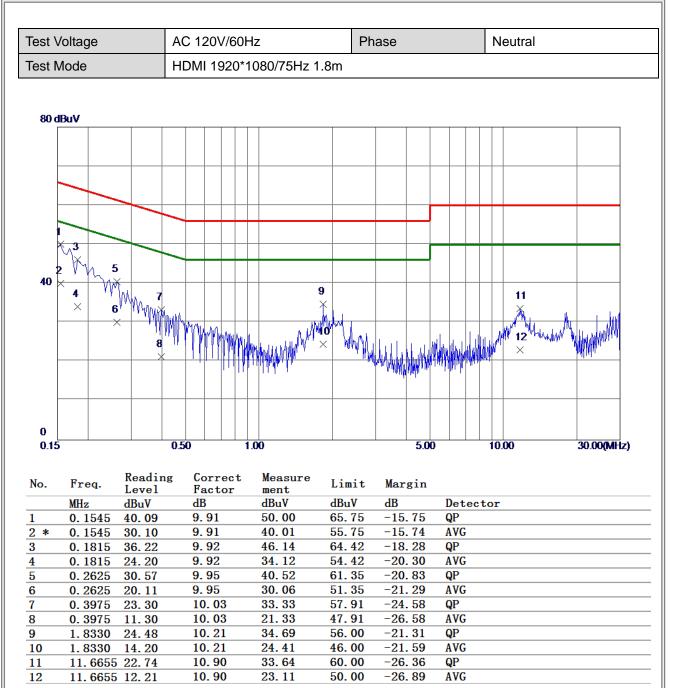
#### 3.1.4 DEVIATION FROM TEST STANDARD

No deviation

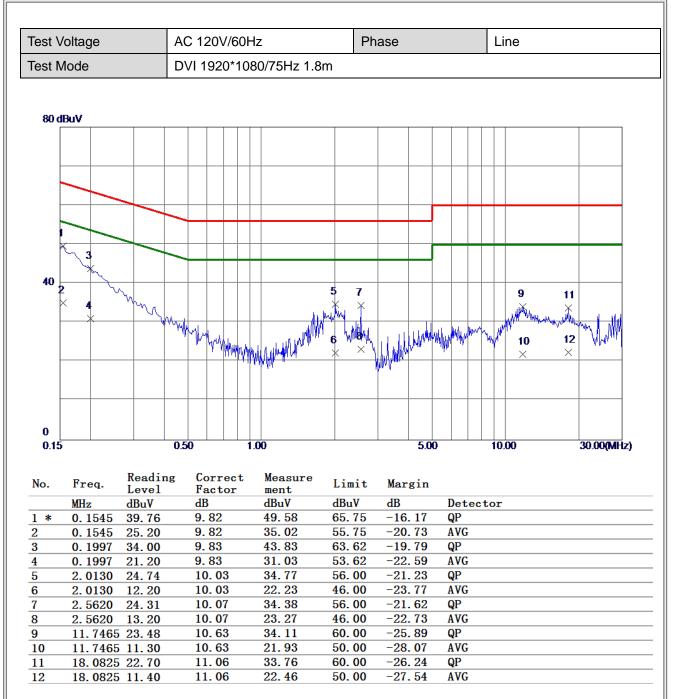
#### 3.1.5 TEST SETUP



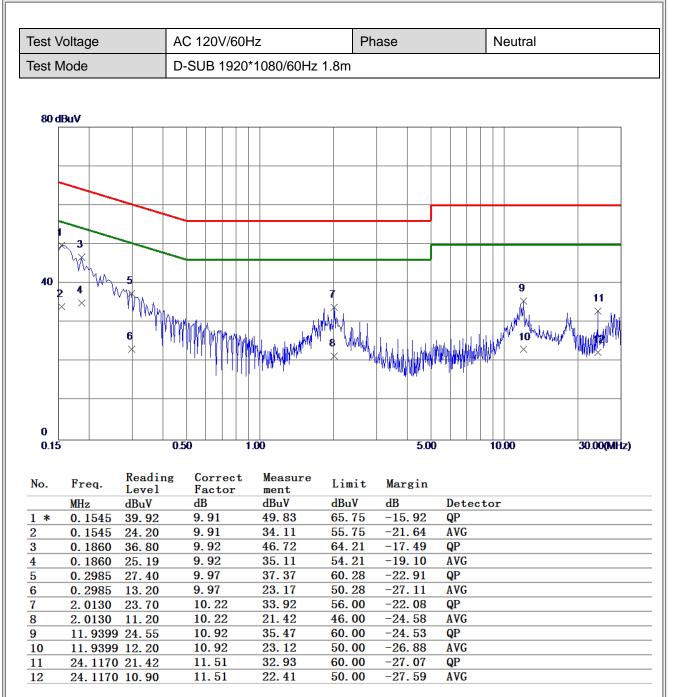

#### 3.1.6 TEST RESULTS


#### Remark

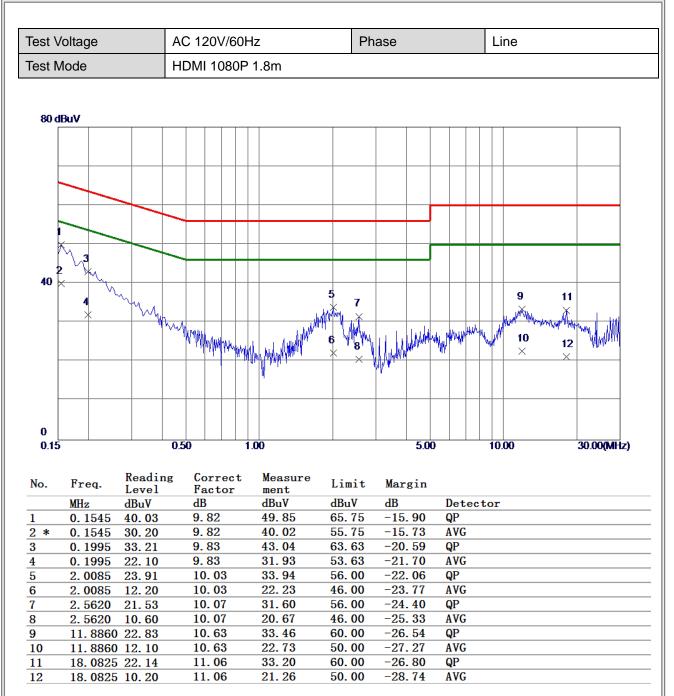
- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note ]. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a " \* " marked in AVG Mode column of Interference Voltage Measured.



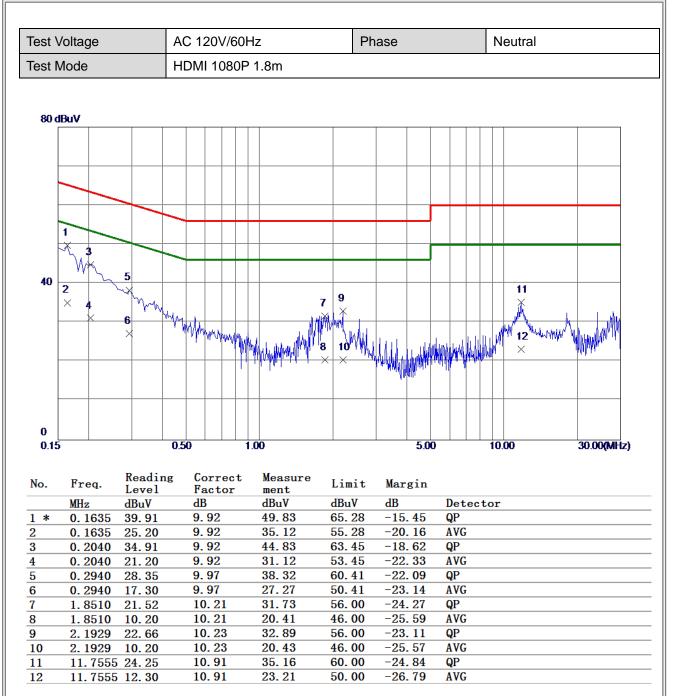



















## 3.2 RADIATED EMISSIONS 30 MHZ TO 1 GHZ

# 3.2.1 LIMIT

#### 30 MHz to 1 GHz

|                 | Class B (at 3m)          |                            |  |  |  |  |
|-----------------|--------------------------|----------------------------|--|--|--|--|
| Frequency (MHz) | (uV/m)<br>Field strength | (dBuV/m)<br>Field strength |  |  |  |  |
| 30 - 88         | 100                      | 40                         |  |  |  |  |
| 88 - 216        | 150                      | 43.5                       |  |  |  |  |
| 216 - 960       | 200                      | 46                         |  |  |  |  |
| Above 960       | 500                      | 54                         |  |  |  |  |

NOTE:

(1) The tighter limit applies at the band edges.

- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
- 3m Emission level = 10m Emission level + 20log(10m/3m).
  (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

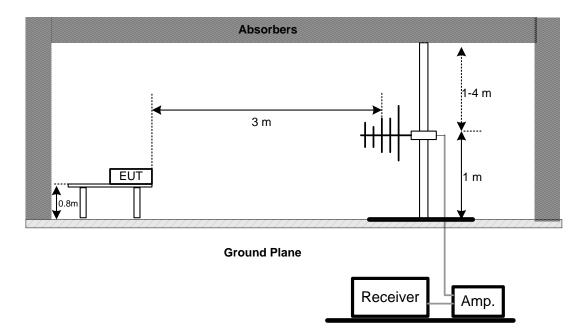
## 3.2.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment           | Manufacturer      | Type No.              | Serial No. | Calibrated until |
|------|-----------------------------|-------------------|-----------------------|------------|------------------|
| 1    | Receiver                    | Keysight          | N9038A                | MY54450004 | Aug. 03, 2020    |
| 2    | Pre-Amplifier               | EMC<br>INSTRUMENT | EMC 9135              | 980284     | Mar. 01, 2021    |
| 3    | Trilog-Broadband<br>Antenna | Schwarzbeck       | VULB9168              | 946        | Oct. 26, 2020    |
| 4    | Cable                       | emci              | LMR-400(5m+11m+15m)   | N/A        | Nov. 22, 2020    |
| 5    | Measurement<br>Software     | Farad             | EZ-EMC Ver.BTL-2ANT-1 | N/A        | N/A              |
| 6    | Multi-Device<br>Controller  | ETS-Lindgren      | 2090                  | N/A        | N/A              |
| 7    | Attenuator                  | EMCI              | EMCI-N-6-06           | N0670      | Dec. 02, 2020    |

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.



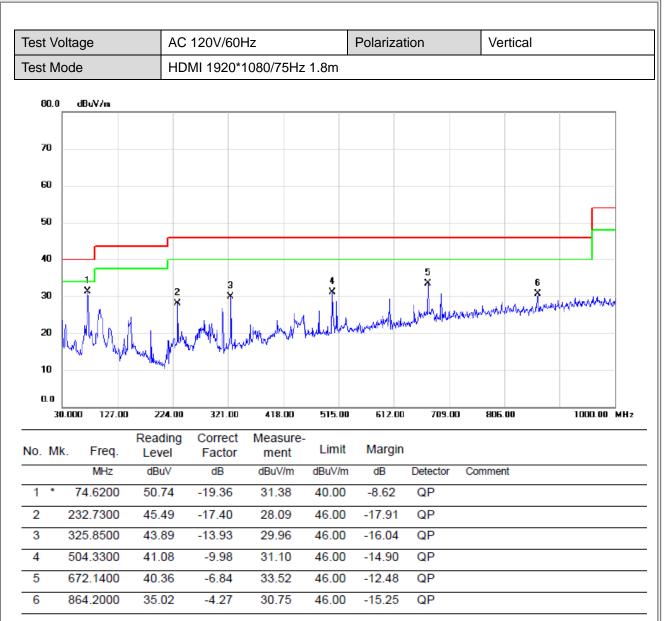

#### 3.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- f. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

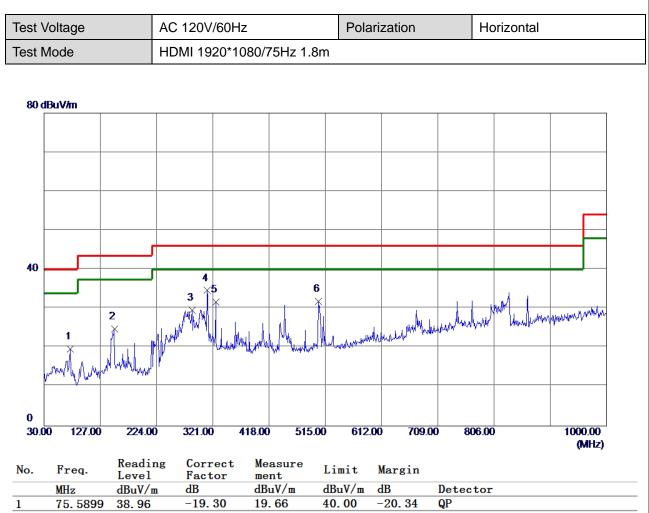
#### 3.2.4 DEVIATION FROM TEST STANDARD

No deviation

#### 3.2.5 TEST SETUP

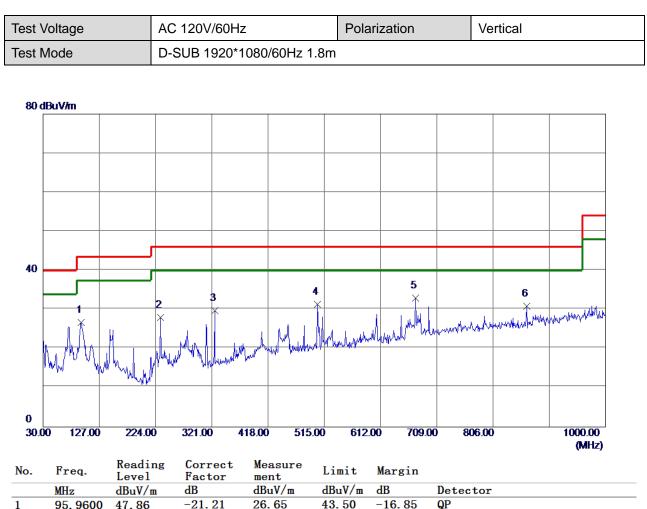



#### 3.2.6 TEST RESULTS-BELOW 1 GHZ


Remark :

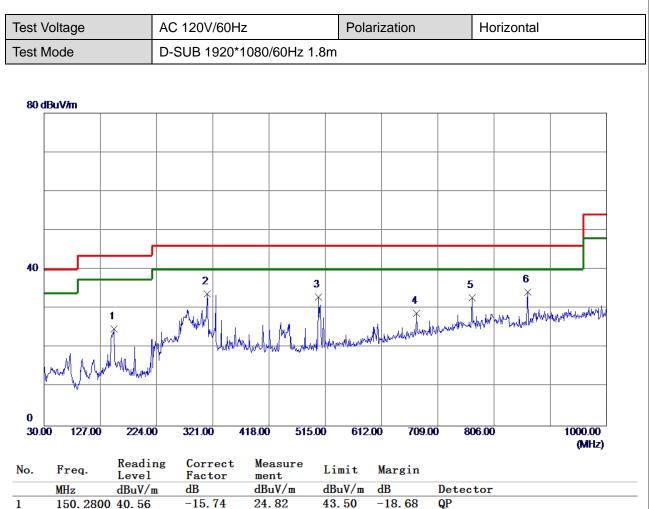
- (1) Measuring frequency range from 30 MHz to 1000 MHz
- (2) If the peak scan value lower limit more than 20 dB, then this signal data does not show in table.





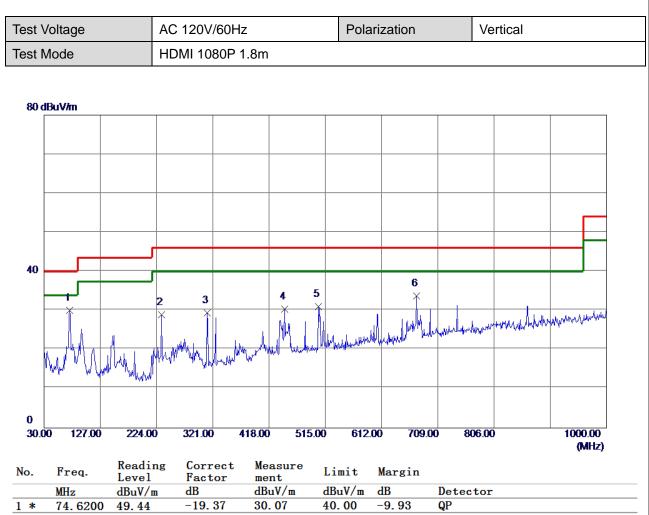






|     | MILL      | uDu v/ m     | uD              | ubu (/ m | ubu (/ m     | ub     | Detector |
|-----|-----------|--------------|-----------------|----------|--------------|--------|----------|
| 1   | 75. 5899  | 38.96        | -19.30          | 19.66    | 40.00        | -20.34 | QP       |
| 2   | 151.2500  | 40.52        | -15.74          | 24.78    | <b>43.50</b> | -18.72 | QP       |
| 3   | 285. 1099 | <b>44.67</b> | -15. <b>0</b> 5 | 29.62    | 46.00        | -16.38 | QP       |
| 4 * | 311. 3000 | <b>48.97</b> | -14.33          | 34.64    | 46.00        | -11.36 | QP       |
| 5   | 325.8500  | <b>45.64</b> | -13.93          | 31.71    | 46.00        | -14.29 | QP       |
| 6   | 503.3600  | 41.76        | -9.99           | 31.77    | 46.00        | -14.23 | QP       |

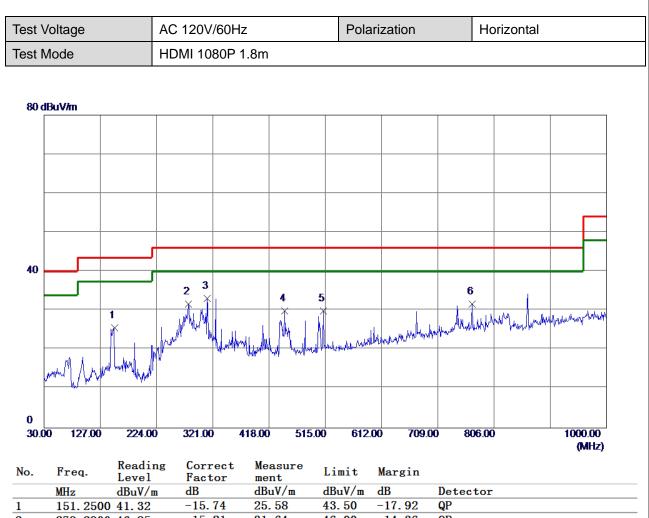





|     | MHz       | dBuV/m | dB     | dBuV/m | dBuV/m | dB             | Detector |
|-----|-----------|--------|--------|--------|--------|----------------|----------|
| 1   | 95. 9600  | 47.86  | -21.21 | 26.65  | 43.50  | -16.85         | QP       |
| 2   | 232.7300  | 45.48  | -17.41 | 28.07  | 46.00  | -17.93         | QP       |
| 3   | 325.8500  | 43.72  | -13.93 | 29.79  | 46.00  | -16.21         | QP       |
| 4   | 503. 3600 | 41.29  | -9.99  | 31.30  | 46.00  | -14.70         | QP       |
| 5 * | 672.1400  | 39.82  | -6.84  | 32.98  | 46.00  | -13. 02        | QP       |
| 6   | 864.2000  | 35.18  | -4.27  | 30.91  | 46.00  | -15. <b>09</b> | QP       |






|     |           | abat/m        |        |       | abar, m |        | 2000001 |
|-----|-----------|---------------|--------|-------|---------|--------|---------|
| 1   | 150. 2800 | 40.56         | -15.74 | 24.82 | 43.50   | -18.68 | QP      |
| 2   | 311. 3000 | <b>48.0</b> 5 | -14.33 | 33.72 | 46.00   | -12.28 | QP      |
| 3   | 503. 3600 | 42.88         | -9.99  | 32.89 | 46.00   | -13.11 | QP      |
| 4   | 672.1400  | 35.64         | -6.84  | 28.80 | 46.00   | -17.20 | QP      |
| 5   | 768.1700  | 37.99         | -5.15  | 32.84 | 46.00   | -13.16 | QP      |
| 6 * | 864.2000  | 38.51         | -4.27  | 34.24 | 46.00   | -11.76 | QP      |





|     | MIIZ      | abuv/m | uD              | uDu V/ III | uDu V/ III | uD              | Derector |
|-----|-----------|--------|-----------------|------------|------------|-----------------|----------|
| 1 * | 74.6200   | 49.44  | -19.37          | 30.07      | 40.00      | -9.93           | QP       |
| 2   | 232.7300  | 46.33  | -17.41          | 28.92      | 46.00      | -17. <b>0</b> 8 | QP       |
| 3   | 311. 3000 | 43.72  | -14.33          | 29.39      | 46.00      | -16.61          | QP       |
| 4   | 445.1600  | 41.48  | -11. <b>0</b> 5 | 30.43      | 46.00      | -15.57          | QP       |
| 5   | 503. 3600 | 40.99  | -9.99           | 31.00      | 46.00      | -15. <b>00</b>  | QP       |
| 6   | 672.1400  | 40.56  | -6.84           | 33.72      | 46.00      | -12.28          | QP       |





| 1   | 151.2500 41.32 | -15.74          | 25.58 | 43.50 | -17.92 | QP |  |
|-----|----------------|-----------------|-------|-------|--------|----|--|
| 2   | 279.2900 46.85 | -15.21          | 31.64 | 46.00 | -14.36 | QP |  |
| 3 * | 311.3000 47.47 | -14.33          | 33.14 | 46.00 | -12.86 | QP |  |
| 4   | 445.1600 40.94 | -11. <b>0</b> 5 | 29.89 | 46.00 | -16.11 | QP |  |
| 5   | 512.0900 39.79 | -9.87           | 29.92 | 46.00 | -16.08 | QP |  |
| 6   | 768.1700 36.85 | -5.15           | 31.70 | 46.00 | -14.30 | QP |  |



### 3.3 RADIATED EMISSIONS ABOVE 1 GHZ

## 3.3.1 LIMIT

#### Above 1 GHz

| Fraguaday          | Cla     | iss B      |
|--------------------|---------|------------|
| Frequency<br>(MHz) | (dBuV/n | n) (at 3m) |
|                    | Peak    | Average    |
| Above 1000         | 74      | 54         |

#### FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

| Highest frequency generated or Upper frequency<br>of measurement used in the device or on which<br>the device operates or tunes (MHz) | Range (MHz)                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Below 1.705                                                                                                                           | 30                                                                                 |
| 1.705 - 108                                                                                                                           | 1000                                                                               |
| 108 - 500                                                                                                                             | 2000                                                                               |
| 500 - 1000                                                                                                                            | 5000                                                                               |
| Above 1000                                                                                                                            | 5 <sup>th</sup> harmonic of the highest frequency or<br>40 GHz, whichever is lower |

#### NOTE:

(1) The tighter limit applies at the band edges.

- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
   3m Emission level = 10m Emission level + 20log(10m/3m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

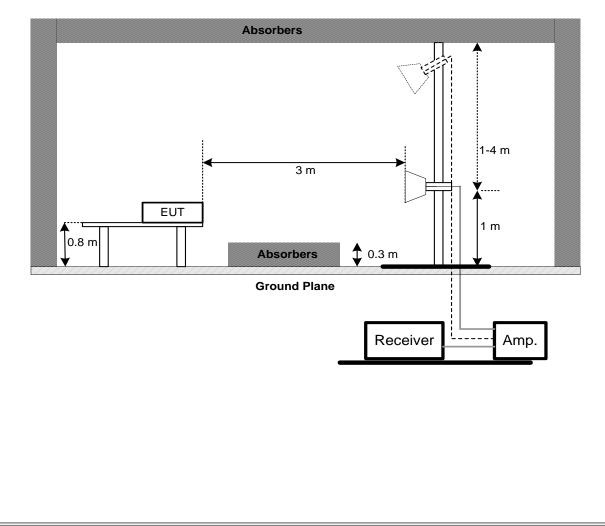
## 3.3.2 MEASUREMENT INSTRUMENTS LIST

| Item | Kind of Equipment              | Manufacturer | Type No.              | Serial No.  | Calibrated until |
|------|--------------------------------|--------------|-----------------------|-------------|------------------|
| 1    | Double Ridged Guide<br>Antenna | ETS          | 3115                  | 75846       | Mar. 19, 2021    |
| 2    | Amplifier                      | Agilent      | 8449B                 | 3008A02333  | Mar. 01, 2021    |
| 3    | MXE EMI Receiver               | Agilent      | N9038A                | MY53220133  | Feb. 28, 2021    |
| 4    | Measurement<br>Software        | Farad        | EZ-EMC Ver.BTL-2ANT-1 | N/A         | N/A              |
| 5    | Multi-Device<br>Controller     | ETS-Lindgren | 2090                  | N/A         | N/A              |
| 6    | Controller                     | MF           | MF-7802               | MF780208159 | N/A              |
| 7    | Cable                          | MIcable Inc. | B10-01-01-5M          | 18047123    | Feb. 28, 2021    |
| 8    | Cable                          | MIcable Inc. | B10-01-01-12M         | 18072743    | Feb. 28, 2021    |
| 9    | Cable                          | RegalWay     | RWLPS50-7.9A-SMSM-1M  | 20200102001 | Feb. 28, 2021    |

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.




## 3.3.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
- g. For the actual test configuration, please refer to the related Item Block Diagram of system tested.

#### 3.3.4 DEVIATION FROM TEST STANDARD

No deviation

## 3.3.5 TEST SETUP





### 3.3.6 TEST RESULTS-ABOVE 1 GHZ

#### Remark :

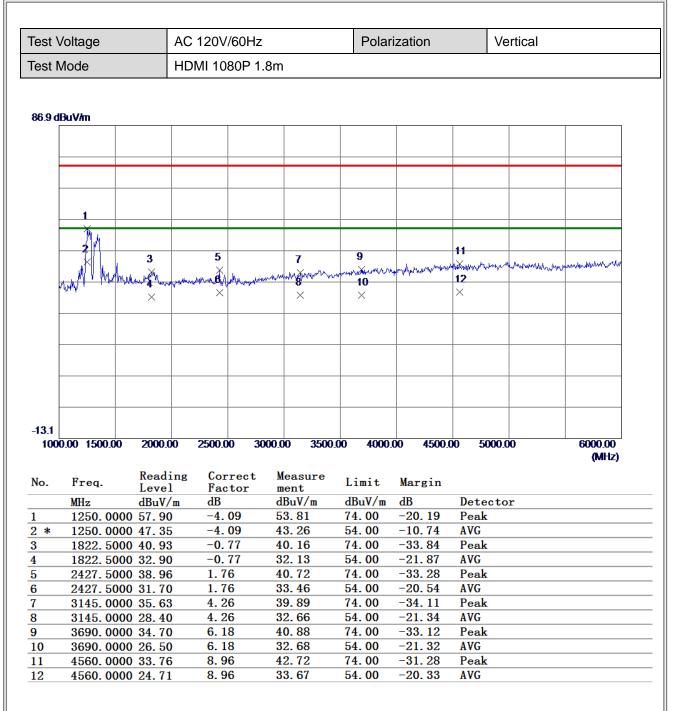
- (1) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (2) Data of measurement within this frequency range shown "\*" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (3) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.



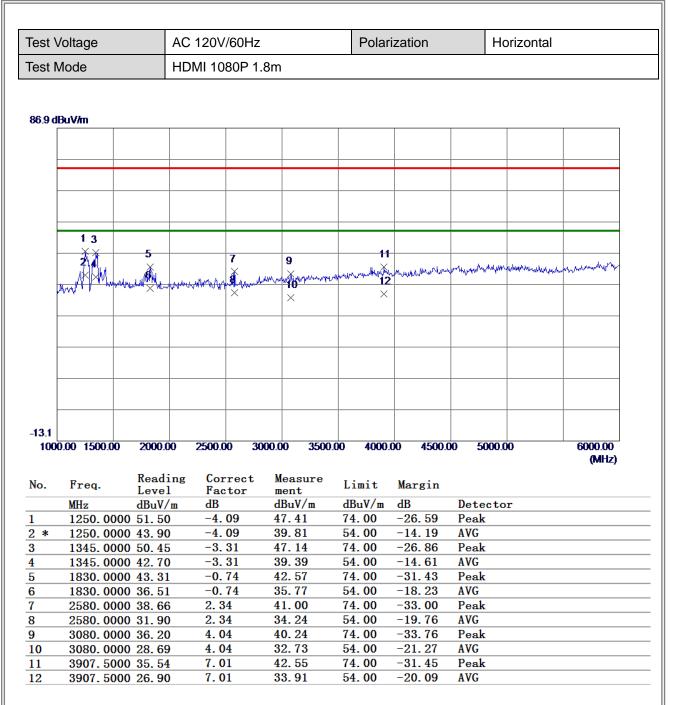
| Test \        | /oltage                      | AC          | 120V/60Hz                |                 | Polar                                                                   | ization            | Vertical      |       |                  |  |
|---------------|------------------------------|-------------|--------------------------|-----------------|-------------------------------------------------------------------------|--------------------|---------------|-------|------------------|--|
| Fest I        | Vode                         | HD          | HDMI 1920*1080/75Hz 1.8m |                 |                                                                         |                    |               |       |                  |  |
| 86.9 d        | BuV/m                        |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               | 1                            |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              | 3           | 5                        | 7               | 9 11                                                                    |                    |               |       |                  |  |
|               | MAM                          | ň.          | ukana a aka sa sa da k   | montherman      | 10 12                                                                   | and have a service | aman          | wind  | unever thank her |  |
|               | AMush 1 1 Martin and a       | <           | ₩. duoleft.dao^utrivedu  | 8               | $\begin{array}{c c} & 10 & 12 \\ \hline \times & \times \\ \end{array}$ |                    |               |       |                  |  |
|               |                              |             |                          | ×               |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
| -13.1         |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
|               | 0.00 1500.00 20              | 00.00       | 2500.00 30               | 00.00 3500.     | 00 4000.                                                                | .00 4500.0         | 00 500        | 00.00 | 6000.00          |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       | (MHz)            |  |
| No.           |                              | eading      | Correct                  | Measure         | Limit                                                                   | Margin             |               |       |                  |  |
|               | - Le                         | evel        | Factor                   | ment            |                                                                         | dB                 |               |       |                  |  |
| 1             | MHz dE<br>1255.0000 52       | BuV/m<br>39 | dB<br>-4.05              | dBuV/m<br>48.34 | dBuV/m<br>74.00                                                         | -25.66             | Detec<br>Peak | tor   |                  |  |
| 2 *           | 1255. 0000 32                |             | -4.05                    | 40.85           | 54.00                                                                   | -13.15             | AVG           |       |                  |  |
| 3             | 1820. 0000 41                |             | -0.78                    | 41.07           | 74.00                                                                   | -32.93             | Peak          |       |                  |  |
| 4             | 1820.0000 35                 |             | -0.78                    | 34.42           | 54.00                                                                   | -19. 58            | AVG           |       |                  |  |
| 5             | 2522. 5000 37                |             | 2.15                     | <b>39.61</b>    | 74.00                                                                   | -34. 39            | Peak          |       |                  |  |
| 6             | 2522. 5000 31                |             | 2.15                     | 34.05           | 54.00                                                                   | -19.95             | AVG           |       |                  |  |
| 7             | 3050.0000 36                 |             | 3.94                     | 40.04           | 74.00                                                                   | -33.96             | Peak          |       |                  |  |
| 8<br>9        | 3050.0000 27<br>3617.5000 35 |             | 3.94<br>5.90             | 31.74<br>41.23  | 54.00<br>74.00                                                          | -22.26<br>-32.77   | AVG<br>Peak   |       |                  |  |
|               | 3617.5000 35                 |             | 5.90                     | 32.80           | 54.00                                                                   | -21. 20            | AVG           |       |                  |  |
|               |                              |             |                          |                 |                                                                         |                    |               |       |                  |  |
| 5<br>10<br>11 | 3785.0000 35                 |             | 6.54                     | 42.40           | 74.00                                                                   | -31.60             | Peak          |       |                  |  |



| Test \        | /oltage                | AC       | 120V/60Hz                |                    | Polarization   |                            |                | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |  |
|---------------|------------------------|----------|--------------------------|--------------------|----------------|----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Test N        | Node                   | HC       | HDMI 1920*1080/75Hz 1.8m |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 5 0 A         | BuV/m                  |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 00.3 U        | Duvin                  |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               | 13                     |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               | 21                     |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        | 5        | 7                        | 9                  | 11             | weller                     |                | A de auror da se de se de se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | In which which was  |  |
|               | A K Mulman             | AND LAND |                          | water and the most | 12             | where where we where where | and the second | a natural second a new second s | Construction of the |  |
|               | ~~~·                   | ×        | $ \times$                | ×                  | X              |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          |                          |                    |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| -13.1         |                        |          | 0500.00                  | 00.00 0500         |                | 00 1500/                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 100           | 0.00 1500.00           | 2000.00  | 2500.00 30               | 00.00 3500.        | 00 4000.       | .00 4500.0                 | 0 50           | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6000.00<br>(MHz)    |  |
|               |                        | Reading  | Correct                  | Measure            |                |                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1411-12.)          |  |
| No.           | Hroa                   | Level    | Factor                   | measure<br>ment    | Limit          | Margin                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        | dBuV/m   | dB                       | dBuV/m             | dBuV/m         | dB                         | Dete           | ctor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |
| 1             | 1255. 0000             | 56.72    | -4.05                    | 52.67              | 74.00          | -21.33                     | Peak           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 2 *           | 1255. 0000             |          | -4.05                    | 45.35              | 54. <b>00</b>  | -8.65                      | AVG            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 3             | 1310.0000              |          | -3.60                    | 51.38              | 74.00          | -22.62                     | Peak           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 4             | 1310.0000              |          | -3.60                    | 41.32              | 54.00          | -12.68                     | AVG            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 5             | 1815.0000              |          | -0.80                    | 41.47              | 74.00          | -32.53                     | Peak           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 6             | 1815.0000              |          | -0.80                    | 35.10              | 54.00          | -18.90                     | AVG            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 7             | 2620.0000              |          | 2.48                     | 41.22              | 74.00          | -32.78                     | Peak<br>AVG    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 8             | 2620.0000<br>3217.5000 |          | 2.48<br>4.50             | 33.78<br>41.28     | 54.00<br>74.00 | -20. 22                    | Peak           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
|               |                        |          | 4.50                     | 33.00              | 54.00          | -21.00                     | AVG            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 9<br>10       | 3/1/ 5000              |          |                          |                    | 01.00          | <b>DI. VV</b>              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |
| 9<br>10<br>11 | 3217.5000<br>3695.0000 |          | 6.19                     | 41.85              | 74.00          | -32.15                     | Peak           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |  |




| Test \         | /oltage              | I       | AC 120V/60Hz Polarization Vertical |             |                  |                |                                 |             |                     |                                                                                                                 |
|----------------|----------------------|---------|------------------------------------|-------------|------------------|----------------|---------------------------------|-------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| Test N         | Node                 | [       | D-SUB 1920*1080/60Hz 1.8m          |             |                  |                |                                 |             |                     |                                                                                                                 |
| 86 Q d         | BuV/m                |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
| 00.3 0         |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                | 1                    |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                | ×                    |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                | <u>An</u>            |         |                                    |             |                  |                |                                 | 11          |                     |                                                                                                                 |
|                | × .                  | 3       |                                    | 5           |                  | <b>9</b>       |                                 | Kanna Me    | and the development | man month they there                                                                                            |
|                | A Walnu              | mal M.  | up my mar                          | my hand and | humand           | 10             | of the providence of the second | 12          | ····                | 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 - 199 |
|                | VWV "                | ×       |                                    | ×           | ×                | ×              |                                 | X           |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
| -13.1          |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
|                | 0.00 1500.00         | 2000.00 | 2500.0                             | 0 3000      | .00 3500.0       | 0 4000         | .00 4500.0                      | 00 50       | 00.00               | 6000.00                                                                                                         |
|                |                      |         |                                    |             |                  |                |                                 |             |                     | (MHz)                                                                                                           |
| NT             | P                    | Readin  | ng Cor                             | rect        | Measure          |                | и .                             |             |                     |                                                                                                                 |
| No.            | Freq.                | Level   |                                    |             | ment             | Limit          | Margin                          |             |                     |                                                                                                                 |
|                | MHz                  | dBuV/n  |                                    |             | dBuV/m           | dBuV/m         | dB                              | Dete        | tor                 |                                                                                                                 |
| 1              | 1287.500             |         | -3.                                |             | 53.13            | 74.00          | -20.87                          | Peak<br>AVG |                     |                                                                                                                 |
| 2 *<br>3       | 1287.500             |         | -3.                                |             | 44.12<br>40.92   | 54.00<br>74.00 | -9.88<br>-33.08                 | Avg<br>Peak |                     |                                                                                                                 |
| <u>3</u><br>4  | 1815.000             |         | -0.                                |             | 40. 92<br>32. 80 | 54.00          | -21.20                          | AVG         |                     |                                                                                                                 |
| 4<br>5         | 2792. 5000           |         | 3.0                                |             | 32.80<br>39.88   | 74.00          | -34.12                          | Peak        |                     |                                                                                                                 |
| 6              | 2792. 500            |         | 3.0                                |             | 31.97            | 54.00          | -22.03                          | AVG         |                     |                                                                                                                 |
| 7              | 2947.500             |         | 3.5                                |             | 41.02            | 74.00          | -32.98                          | Peak        |                     |                                                                                                                 |
| 8              | 2947.500             |         | 3.5                                |             | 33.70            | 54.00          | -20.30                          | AVG         |                     |                                                                                                                 |
| 9              | 3785.000             |         | 6.5                                |             | 41.71            | 74.00          | -32.29                          | Peak        |                     |                                                                                                                 |
|                | 3785.000             | 0 26.79 | 6.5                                | 4           | 33. 33           | 54 <b>. 00</b> | -20.67                          | AVG         |                     |                                                                                                                 |
| 10             |                      |         |                                    |             |                  |                |                                 |             |                     |                                                                                                                 |
| 10<br>11<br>12 | 4510.000<br>4510.000 | 34.37   | 8.8<br>8.8                         |             | 43.20<br>35.23   | 74.00<br>54.00 | -30.80                          | Peak<br>AVG |                     |                                                                                                                 |




| Test \        | /oltage                  | AC               | AC 120V/60Hz Polarization H |                       |                |                               |             |                | Horizontal    |  |  |
|---------------|--------------------------|------------------|-----------------------------|-----------------------|----------------|-------------------------------|-------------|----------------|---------------|--|--|
| Test N        | Mode                     | D-9              | D-SUB 1920*1080/60Hz 1.8m   |                       |                |                               |             |                |               |  |  |
| 96.0.4        | BuV/m                    |                  |                             |                       |                |                               |             |                |               |  |  |
| 00.9 U        |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          | 5                | 7                           | 9                     | 11             |                               |             |                | L A L HA      |  |  |
|               | Mr. Marine               | A .              | . Anthe Manuscher           | por month to have     | Anna Anna Anna | man with the man and a second | www.yww.MW  | malridencerent | mandundunadar |  |  |
|               | WARM B & A MANANA        | X VIII VIII      | ×                           | ×                     | ×              |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
|               |                          |                  |                             |                       |                |                               |             |                |               |  |  |
| -13.1         | 0.00 1500.00             | 2000.00          | 2500.00 30                  | 00.00 3500.           | 00 4000.       | 00 4500.0                     | 0 50        | 00.00          | 6000.00       |  |  |
| 100           | 0.00 1500.00             | 2000.00          | 2300.00 30                  | 00.00 3300.           | 00 4000.       | 00 4500.0                     | JU 30       | 00.00          | (MHz)         |  |  |
| No.           | Freq.                    | Reading<br>Level | Correct<br>Factor           | Measure<br>ment       | Limit          | Margin                        |             |                |               |  |  |
|               | MHz                      | dBuV/m           | dB                          | dBuV/m                | dBuV/m         | dB                            | Dete        |                |               |  |  |
| 1             | 1250.0000                |                  | -4.09                       | 49.09<br>42.71        | 74.00          | -24.91                        | Peak<br>AVG |                |               |  |  |
| 2<br>3        | 1250.0000<br>1362.5000   |                  | -4.09                       | 42.71                 | 54.00<br>74.00 | -24.54                        | Peak        |                |               |  |  |
| 4 *           | 1362. 5000               |                  | -3. 17                      | 44.34                 | 54.00          | -9.66                         | AVG         |                |               |  |  |
| 5             | 1822. 5000               |                  | -0.77                       | 41.23                 | 74.00          | -32.77                        | Peak        |                |               |  |  |
| 6             | 1822. 5000               |                  | -0.77                       | 34.43                 | 54.00          | -19.57                        | AVG         |                |               |  |  |
| 7             | 2262. 5000               |                  | 1.05<br>1.05                | 40.34<br>33.45        | 74.00<br>54.00 | -33.66<br>-20.55              | Peak<br>AVG |                |               |  |  |
| <u>8</u><br>9 | 2262. 5000<br>3302. 5000 |                  | 4.79                        | <u>33.45</u><br>40.99 | 54.00<br>74.00 | -20. 55                       | Peak        |                |               |  |  |
|               | 3302. 5000               |                  | 4.79                        | 33.69                 | 54.00          | -20. 31                       | AVG         |                |               |  |  |
| <u> </u>      | 0002.0000                |                  |                             |                       |                |                               |             |                |               |  |  |
|               | 3687.5000                |                  | 6. 17<br>6. 17              | 42.16                 | 74.00          | -31.84                        | Peak        |                |               |  |  |





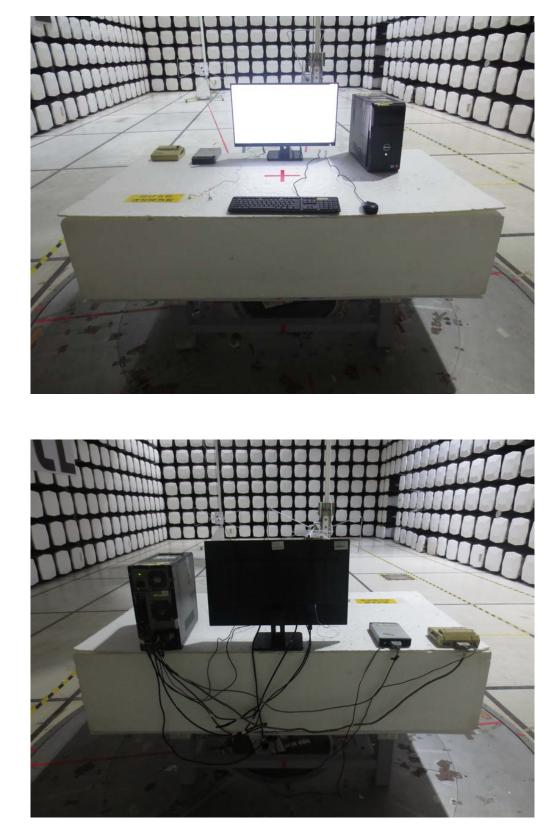






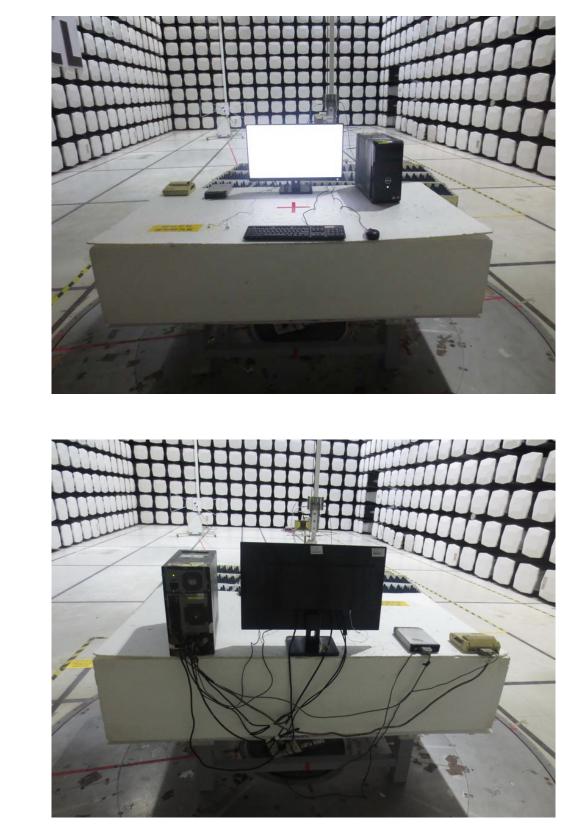
# 4. EUT TEST PHOTO

AC Power Line Conducted Emissions








Radiated Emissions 30 MHz to 1 GHz





Radiated Emissions Above 1 GHz



End of Test Report