

EMC TEST REPORT

Authorized under Declaration of Conformity

According to

EN 55032: 2012 EN 61000-3-2 : 2 EN 61000-3-3 : 2 CISPR 32 : 2015 AS/NZS CISPR 3	2013	EN 55024 : 2010 IEC 61000-4-2 : 2008 IEC 61000-4-3 : 2006+A1:2007+A2:2010 IEC 61000-4-4 : 2012 IEC 61000-4-5 : 2014 IEC 61000-4-6 : 2013 IEC 61000-4-8 : 2009
Applicant	: TPV Electronic	IEC 61000-4-11 : 2004 es (Fujian) Co., Ltd.
Rongqiao Economic and TechnologicalAddress: Development Zone, Fuqing City, Fujian Provi		0

	-	P.R. China
Equipment	:	LCD Monitor
	-	156LM00007,*1601*****
Model No.	:	(The "*" could be any alphanumeric character including blank for marketing differentiation.)

I HEREBY CERTIFY THAT :

The sample was received on Apr 11, 2017 and the testing was carried out on Apr 24, 2017 at Cerpass Technology Corp. The test result refers exclusively to the test presented test model / sample. Without written approval of Cerpass Technology Corp., the test report shall not be reproduced except in full.

EMC TEST REPORT

Issued by:

Cerpass Technology (Suzhou) Co.,Ltd

No.66, Tangzhuang Road, Suzhou Industrial Park, Jiangsu 215006, China

Tel:86-512-6917-5888

Fax:86-512-6917-5666

The test record, data evaluation & Equipment Under Test configurations represented herein are true and accurate accounts of the measurements of the samples EMC characteristics under the conditions specified in this report.

The above equipment was tested by Cerpass Technology Corp. for compliance with the requirements of technical standards specified above under the EMC Directive. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties

Approved by:

Miro Chueh EMC/RF B.U. Manager

Laboratory Accreditation:

Cerpass Technology Corporation Test Laboratory

NVLAP LAB Code:	200954-0
TAF LAB Code:	1439

 \boxtimes

Cerpass Technology(SuZhou) Co., Ltd.

NVLAP LAB Code:	200814-0
CNAS LAB Code:	L5515

Report No.: SECE1704059

Contents

1.		nary of Test Procedure and Test Results	
2.		nity Testing Performance Criteria Definition	
3.		Configuration of Equipment under Test	
	3.1.	Feature of Equipment under Test	
	3.2.	Test Manner	
	3.3.	Description of Support Unit	9
	3.4.	General Information of Test	
	3.5.	Measurement Uncertainty	
4.	Test o	f Conducted Emission	
	4.1.	Test Limit	
	4.2.	Test Procedures	
	4.3.	Typical Test Setup	
	4.4.	Measurement Equipment	
	4.5.	Test Result and Data	
5.		f Radiated Emission	
	5.1.	Test Limit	
	5.2.	Test Procedures	
	5.3.	Typical Test Setup	
	5.4.	Measurement Equipment	
	5.5.	Test Result and Data (30MHz ~ 1GHz)	
	5.6.	Test Result and Data (1GHz ~ 6GHz)	
	5.7.	Test Photographs (30MHz~1GHz)	
	5.8.	Test Photographs (1GHz~6GHz)	
6.	Harmo	onics Test	
	6.1.	Limits of Harmonics Current Measurement	
	6.2.	Measurement Equipment	
	6.3.	Test Result and Data	
7.	-	ge Fluctuations Test	
	7.1.	Test Procedure	
	7.2.	Measurement Equipment	
	7.3.	Test Result and Data	
8.		ostatic Discharge Immunity Test	
	8.1.	Test Procedure	
	8.2.	Test Setup for Tests Performed in Laboratory	
	8.3.	Test Severity Levels	
	8.4.	Measurement Equipment	
	8.5.	Test Result and Data	
	8.6.	Test Photographs	
9.		Frequency electromagnetic field immunity test	
	9.1.	Test Procedure	
	9.2.	Test Severity Levels	

9.	.3. TEST SETUP	
9.	.4. Measurement Equipment	
9.	.5. Test Result and Data	
9.	.6. Test Photographs	41
10. Ele	ectrical Fast Transient/ Burst Immunity Test	
10	0.1. Test Procedure	
10	0.2. Test Severity Levels	
10	0.3. TEST SETUP	43
10	0.4. Measurement Equipment	43
10	0.5. Test Result and Data	
11. Su	Irge Immunity Test	45
11	1.1. Test Procedure	45
11	1.2. Test Severity Level	45
1 1	1.3. TEST SETUP	
1 1	1.4. Measurement Equipment	
44	1.5. Test Result and Data	46
1		•
	onduction Disturbances induced by Radio-Frequency Fields	
12. Co		47
12. Co 12	onduction Disturbances induced by Radio-Frequency Fields	
12. Co 12 12	onduction Disturbances induced by Radio-Frequency Fields	
12. Co 12 12 12	Onduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels	47 47 47 47 48
12. Co 12 12 12 12	Description Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP	47 47 47 47 48 48
12. Co 12 12 12 12 12	Onduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment	47 47 47 48 48 48 48
12. Co 12 12 12 12 12 12 13. Po	Description Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data	47 47 47 48 48 48 49 50
12. Co 12 12 12 12 12 12 12 13. Po 13	Description Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data Dever Frequency Magnetic Field Immunity Test	47 47 47 48 48 48 49 50 50
12. Co 12 12 12 12 12 12 13. Po 13 13	onduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data ower Frequency Magnetic Field Immunity Test 3.1. Test Setup	47 47 47 48 48 48 49 50 50 50
12. Co 12 12 12 12 12 12 13. Po 13 13 13 13	Description Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data Dever Frequency Magnetic Field Immunity Test 3.1. Test Setup 3.2. Test Severity Levels 3.3. Measurement Equipment 3.4. Test Result and Data	47 47 47 48 48 48 49 50 50 50 50 50
12. Co 12 12 12 12 12 12 13. Po 13 13 13 13	onduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data ower Frequency Magnetic Field Immunity Test 3.1. Test Setup 3.2. Test Severity Levels 3.3. Measurement Equipment	47 47 47 48 48 48 49 50 50 50 50 50
12. Co 12 12 12 12 12 13. Po 13 13 13 13 13 14. Vol	onduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data ower Frequency Magnetic Field Immunity Test 3.1. Test Setup 3.2. Test Severity Levels 3.3. Measurement Equipment 3.4. Test Result and Data 3.5. Test Photographs 3.6. Test Photographs	47 47 47 48 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50
12. Co 12 12 12 12 12 13. Pov 13 13 13 13 14. Vol 14. Vol	onduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data ower Frequency Magnetic Field Immunity Test 3.1. Test Setup 3.2. Test Severity Levels 3.3. Measurement Equipment 3.4. Test Result and Data 3.5. Test Photographs 3.6. Test Photographs 3.7. Test Conditions	47 47 47 48 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50
12. Co 12 12 12 12 12 13. Po 13 13 13 13 13 13 14. Vol 14 14	anduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data ower Frequency Magnetic Field Immunity Test 3.1. Test Setup 3.2. Test Severity Levels 3.3. Measurement Equipment 3.4. Test Result and Data 3.5. Test Photographs JItage Dips and Voltage Interruptions Immunity Test Setup 4.1. Test SETUP	47 47 47 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50
12. Co 12 12 12 12 12 13. Pov 13 13 13 14. Vol 14 14 14	anduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data ower Frequency Magnetic Field Immunity Test 3.1. Test Setup 3.2. Test Severity Levels 3.3. Measurement Equipment 3.4. Test Result and Data 3.5. Test Photographs Itage Dips and Voltage Interruptions Immunity Test Setup 4.1. Test Conditions. 4.2. TEST SETUP	47 47 47 48 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50
12. Co 12 12 12 12 12 13. Po 13 13 13 13 13 13 13 13 13 14. Vol 14 14 14 14 14	anduction Disturbances induced by Radio-Frequency Fields 2.1. Test Procedure 2.2. Test Severity Levels 2.3. TEST SETUP 2.4. Measurement Equipment 2.5. Test Result and Data ower Frequency Magnetic Field Immunity Test 3.1. Test Setup 3.2. Test Severity Levels 3.3. Measurement Equipment 3.4. Test Result and Data 3.5. Test Photographs JItage Dips and Voltage Interruptions Immunity Test Setup 4.1. Test SETUP	47 47 47 48 48 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50

History of this test report

■ ORIGINAL.

□ Additional attachment as following record:

Report No	Version	Date	Description
SECE1704059	Rev 01	May 03, 2017	Initial Issue

1. Summary of Test Procedure and Test Results

EMISSION[EN55032: 2012+AC 2013]					
Standard Item Result Remarks					
EN55032: 2012+AC 2013	Conducted (Power Port)	N/A	N/A		
AS/NZS CISPR 32 : 2013	Conducted (Telecom port)	N/A	N/A		
CISPR 32 : 2015	Radiated	PASS	Meets Class B Limit Minimum passing margin(Peak) is -5.87 dB at 31.9400 MHz		
EN 61000-3-2: 2014	Harmonic current emissions	PASS	Meet Class D Limit		
EN61000-3-3:2013	Voltage fluctuations & flicker	PASS	Meets the requirements		

IMMUNITY [EN 55024: 2010]				
Standard	ltem	Result	Remarks	
IEC 61000-4-2: 2008	ESD	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-3: 2006+A1:2007+A2:2010	RS	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-4: 2012	EFT	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-5:2014	Surge	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-6:2013	CS	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-8:2009	PFMF	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-11:2004	Voltage dips & voltage variations	PASS	 Meets the requirements of Voltage Dips: 1) >95% reduction Performance Criterion B 2) 30% reduction Performance Criterion B Voltage Interruptions: 1) >95% reduction Performance Criterion C 	

2. Immunity Testing Performance Criteria Definition

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
Criteria B:	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

3. Test Configuration of Equipment under Test

3.1. Feature of Equipment under Test

Product Name:	LCD Monitor
Model Name:	156LM00007, *1601****** (The "*" could be any alphanumeric character including blank for marketing differentiation.)
Housing material:	Plastic case
EUT Highest Frequency:	148.5MHz
EUT Power Rating:	Input:100-240V, 50-60Hz 3Pin Power Port
AC Power Cord Type:	Non-shielded, 1.5m&1.8m

Note: Please refer to user manual.

I/O PORT:

I/O PORT TYPE	Quantity
1). USB Port	1

3.2. Test Manner

- a. During testing, the interface cables and equipment positions were varied according to Europe Standard .
- b. An executive program, "MyHwin" under Win 7, which generates a complete line of continuously repeating "H" pattern was used as the test software.
 - The program was executed as follows:
 - 1. Turn on the power of all equipment.
 - 2. The EUT reads the test program from the hard disk drive and runs it.
 - 3. PC sends "H" messages to the EUT, and the monitor displays "H" patterns on the screen.
 - 4. Run the Colour bars.
 - 5. Repeat the steps from 2 to 4.
- c. The complete test system included Computer and EUT for EMI&EMS test.
- d. The test modes as follow

Test Mode 1	Full system (TYPE-C mode 1920*1080@60Hz) with 1.5m TYPE-C Cable		
	Signal from PC		
Test Mode 2	Full system (TYPE-C mode 1280*1024@75Hz) with 1.5m TYPE-C Cable		
	Signal from PC		
Test Mode 3	Full system (TYPE-C mode 640*480@60Hz) with 1.5m TYPE-C Cable		
	Signal from PC		
"Test mode 1" was reported as final data.			

e. The maximum operating frequency is above 108MHz, the test frequency range is from 1GHz to 6GHz.

3.3. Description of Support Unit

No.	Device	Manufacturer	Model No.	Description
1	Computer	Apple	A1534	N/A

No.	Cable	Quantity	Description
А	USB 3.1 Cable	1	Shielded, 1.8m

3.4. General Information of Test

		r
	Test Site	Cerpass Technology Corporation Test Laboratory Address: No.10, Ln. 2, Lianfu St., Luzhu Dist., Taoyuan City 33848, Taiwan (R.O.C.) Tel:+886-3-3226-888 Fax:+886-3-3226-881 Address: No.68-1, Shihbachongsi, Shihding Township, New Taipei City 223, Taiwan, R.O.C. Tel: +886-2-2663-8582
	FCC	TW1079, TW1061,390316, 228391, 641184
	IC	4934B-1, 4934E-1, 4934E-2
	VCCI	T-2205 for Telecommunication Test C-4663 for Conducted emission test R-3428, R-4218 for Radiated emission test G-812, G-813 for radiated disturbance above 1GHz
	Test Site	Cerpass Technology (Suzhou) Co.,Ltd Address: No.66,Tangzhuang Road, Suzhou Industrial Park, Jiangsu 215006, China Tel: +86-512-6917-5888 Fax: +86-512-6917-5666
\square	FCC	331395
	IC	7290A-1, 7290A-2
	VCCI	T-1945 for Telecommunication Test C-2919 for Conducted emission test R-2670 for Radiated emission test G-227 for radiated disturbance above 1GHz
Frequency Range Investigated:		Conducted: from 150kHz to 30 MHz Radiation: from 30 MHz to 6000MHz
Test Distance :		The test distance of radiated emission below 1GHz from antenna to EUT is 10 M. The test distance of radiated emission above 1GHz from antenna to EUT is 3 M.

3.5. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions(LINE)	9KHz-30MHz	+/- 0.7738 dB
Conducted emissions(NEUTRAL)	9KHz-30MHz	+/- 0.7886 dB

Measurement	Polarity	Frequency	Uncertainty
	н	30MHz ~ 200MHz	+/- 3.8909dB
Radiated emissions (below 1GHz)	н	200MHz ~1000MHz	+/- 3.6555dB
	V	30MHz ~ 200MHz	+/- 3.8948dB
		200MHz ~1000MHz	+/- 3.6538dB
	н	1000MHz ~18000MHz	+/- 3.8948 dB
Radiated emissions (above 1GHz)	п	18000MHz ~40000MHz	+/-3.8844dB
	V	1000MHz ~18000MHz	+/- 3.8906dB
	v	18000MHz ~40000MHz	+/- 3.8744dB

Measurement	Uncertainty
ESD—Rise time tr	10%
ESD—Peak current lp	6%
ESD—Current at 30 ns	6%
ESD—Current at 60 ns	6%
ESD- Charging voltage	1%
RS above 1GHz	±2.37dB
RS under 1GHz	±3.83dB
EFT—Rise time tr	4%
EFT—Peak current lp	4%
EFT—Current	4%
Surge—Rise time tr	4%

Surge—Peak current lp	4%
Surge—Current	4%
CS-CND	±0.80dB
CS-Clamp	±1.06dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2008, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

4. Test of Conducted Emission

4.1. Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 kHz and return leads of the EUT according to the methods defined in European Standard EN 55032.

Table A.8 – Requirements for conducted emissions from the AC mains power ports of Class A equipment

1. AC mai	ns power ports (3.1.1)			
Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class A limits dB(μV)
A8.1	0,15 - 0,5	AMN Quasi Peak / 9 kHz	Oursel Death (O bills	79
	0,5 - 30		Quasi Peak / 9 kHz	73
A8.2	0,15 - 0,5			66
	0,5 - 30	AMN	Average / 9 kHz	60

Table A.9 – Requirements for conducted emissions from the AC mains power ports of Class B equipment

. AC mai	ns power ports (3.1.1)			
Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class B limits dB(μV)
A9.1	0,15 - 0,5			66 – 56
-	0,5 - 5	AMN	Quasi Peak / 9 kHz	56
	5 - 30			60
A9.2	0,15 - 0,5	AMN		56 - 46
-	0,5 - 5		Average / 9 kHz	46
	5 - 30			50

Table A.10 – Requirements for asymmetric mode conducted emissions from Class A equipment

Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class A voltage limits dB(µV)	Class A current limit: dB(μA)
A10.1	0,15-0,5	AAN	Quasi Peak / 9 kHz	97 – 87	
	0,5 - 30		Quasi Feak / 5 kilz	87	- 1-
	0,15 - 0,5	AAN Average / 9 kHz	84 - 74	n/a	
	0,5 - 30	AAN	Average / 9 kHz	74	
A10.2	0,15 - 0,5	CVP	Quesi Beek / 0 kHz	97 – 87	53 - 43
0,5 -	0,5 - 30	and current probe	Quasi Peak / 9 kHz	87	43
	0,15 - 0,5	CVP	Average / 9 kHz	84 – 74	40 - 30
	0,5 - 30	and current probe		74	30
A10.3	0,15 - 0,5	Current Probe Quasi Peak / 9 kHz		53 - 43	
	0,5 - 30	Current Frobe	Quasi reak / 5 kHz	2/2	43
	0,15 - 0,5	Current Probe		n/a	40 - 30
	0,5 - 30	Current Probe	Average / 9 kHz		30
NOTE 1	The choice of	coupling device and measu	rement procedure is define	d in Annex C.	
OTE 2	AC mains pow	er ports shall meet the limit	s given in Table A.8.		
OTE 3	The test shall	cover the entire frequency r	ange.		
	The application Table C.1 for application	on of the voltage and/or cu oplicability.	rrent limits is dependent	on the measuremen	t procedure use
		lired at only one EUT suppl			

Table A.11 – Requirements for asymmetric mode conducted emissions	
from Class B equipment	

2. optical 3. broado	network ports (3. fibre ports (3.1.2 cast receiver tune na ports (3.1.3)	24) with metallic shield or t	ension members		
Table clause	Frequency range MHz	Coupling device (see Table A.7)	Detector type / bandwidth	Class B voltage limits dB(µV)	Class B current limits dB(μA)
A11.1	0,15 - 0,5	AAN	Quasi Peak / 9 kHz	84 - 74	n/a
	0,5 - 30	AAN	Quasi Peak / 9 kmz	74	
	0,15 - 0,5	AAN	Average / 9 kHz	74 – 64	
	0,5 - 30		/Wenage / 5 KHZ	64	
A11.2	0,15 - 0,5	CVP and current probe	Quasi Peak / 9 kHz	84 - 74	40 - 30
	0,5 - 30		Quasi Peak / 9 km2	74	30
	0,15 - 0,5	CVP		74 - 64	30 – 20
	0,5-30	and current probe	Average / 9 kHz	64	20
A11.3	0,15 - 0,5	Querent Decks	Ouesi Bask (0 kHz		40 - 30
	0,5 - 30	Current Probe	Quasi Peak / 9 kHz		30
	0,15 - 0,5	Ourseast Database		n/a	30 – 20
	0.5 - 30	Current Probe	Average / 9 kHz		20

and mea ure is defined in Annex C.

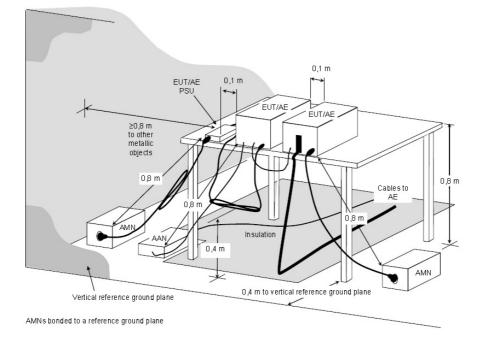
NOTE 2 Screened ports including TV broadcast receiver tuner ports are tested with a common-mode impedance of 150 $\Omega.$ This is typically accomplished with the screen terminated by 150 Ω to earth.

NOTE 3 AC mains power ports shall meet the limits given in Table A.9.

NOTE 4 The test shall cover the entire frequency range.

NOTE 5 The application of the voltage and/or current limits is dependent on the measurement procedure used. Refer to Table C.1 for applicability.

NOTE 6 Testing is required at only one EUT supply voltage and frequency.


NOTE 7 Applicable to ports listed above and intended to connect to cables longer than 3 m.

4.2. Test Procedures

- a. The EUT was placed on a desk 0.8 meters height from the metal ground plane and 0.4 meter from the conducting wall of the shielding room and it was kept at least 0.8 meters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The CISPR states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

4.3. Typical Test Setup

NOTE The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be \ge 0.8 m.

Figure D.2 – Example measurement arrangement for table-top EUT (Conducted emission measurement – alternative 1)

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
Test Receiver	R&S	ESCI	100565	2016.07.07	2017.07.06
AMN	R&S	ESH2-Z5	100182	2016.08.31	2017.08.30
Two-Line V-Network	R&S	ENV216	100325	/	/
ISN	FCC	FCC-TLISN-T2-02	20379	2017.03.22	2018.03.22
ISN	FCC	FCC-TLISN-T4-02	20380	2016.06.24	2017.06.24
ISN	FCC	FCC-TLISN-T8-02	20381	2016.11.29	2017.11.29
ISN	TESEQ	ISN ST08	30175	2016.08.31	2017.08.30
LISN	FCC	FCC-LISN-50-200-2-02	112087	2016.08.31	2017.08.30
Current Probe	R&S	EZ-17	100303	2017.03.22	2018.03.22
Passive Voltage Probe	R&S	ESH2-Z3	100026	2017.03.22	2018.03.22
Pulse Limiter	R&S	ESH3-Z2	100529	2017.03.22	2018.03.22
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-004	2017.03.28	2018.03.28
EZ-EMC	Fala	Ver CT3A1	N/A	N/A	N/A

4.4. Measurement Equipment

4.5. Test Result and Data

4.5.1 Conducted Emission for Power Port Test Data

Because the computer power supply, this need not test.

5. Test of Radiated Emission

5.1. Test Limit

The EUT shall meet the limits of below Table when measured at the measuring distance R in accordance with the methods described in European Standard EN 55032. If the reading on the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the highest reading shall be recorded, with the exception of any brief isolated high reading, which shall be ignored.

Highest internal frequency	Highest measured frequency		
(F _x)			
$F_{\rm x} \le 108 \rm MHz$	1 GHz		
108 MHz $<$ $F_x \le$ 500 MHz	2 GHz		
500 MHz < $F_x \le 1$ GHz	5 GHz		
$F_x > 1 \text{ GHz}$ 5 × F_x up to a maximum of 6 GHz			
NOTE 1 For FM and TV broadcast receivers, F_x is used excluding the local oscillator and tuned freque	s determined from the highest frequency generated or ncies.		
NOTE 2 F_x is defined in 3.1.19.			

Table 1 – Required highest frequency for radiated measurement

Where the F_x is unknown, the radiated emission measurements shall be performed up to 6 GHz.

Table A.2 – Requirements for radiated emissions at frequencies	up to 1 GHz
for Class A equipment	

Table clause	Frequency range	Me	easurement	Class A limits dB(μV/m)
	MHz	Distance m	Detector type/ bandwidth	OATS/SAC (see Table A.1)
A2.1	30 - 230	- 10 - 3		40
	230 - 1 000		Quasi Peak /	47
A2.2	30 - 230		120 kHz	50
	230 - 1 000			57

Table A.3 – Requirements for radiated emissions at frequencies above 1 GHz for Class A equipment

MHz			
MHz	Distance m	Detector type/ bandwidth	FSOATS (see Table A.1)
000 - 3 000		Average /	56
3 000 - 6 000		1 MHz	60
000 - 3 000	3	Peak /	76
3 000 - 6 000		1 MHz	80
3	000 - 6 000 000 - 3 000	000 - 3 000 000 - 6 000 000 - 3 000 000 - 6 000	000 - 3 000 Average / 000 - 6 000 3 3 Peak / 000 - 6 000 1 MHz

Table clause	Frequency range	Measurement		Class B limits dB(µV/m)	
	MHz	Distance m	Detector type/ bandwidth	OATS/SAC (see Table A.1)	
A4.1	30 - 230	10		30	
	230 - 1 000	10	Quasi Peak /	37	
A4.2	30 - 230	3	120 kHz	40	
	230 - 1 000			47	

Table A.4 – Requirements for radiated emissions at frequencies up to 1 GHz for Class B equipment

Table A.5 – Requirements for radiated emissions at frequencies above 1 GHz for Class B equipment

Table clause	Frequency range	Ме	asurement	Class B limits dB(μV/m)	
	MHz	Distance m	Detector type/ bandwidth	FSOATS (see Table A.1)	
A5.1	1 000 – 3 000		Average/	50	
	3 000 - 6 000	2	1 MHz	54	
A5.2	1 000 – 3 000	3	Peak/	70	
	3 000 - 6 000		1 MHz	74	

NOTE Apply A5.1 and A5.2 across the frequency range from 1 000 MHz to the highest required frequency of measurement derived from Table 1.

Table A.6 -	Requirements	for	radiated	emissions	from F	M receivers
	ne qui entente		i a a la co a			

Table clause	Frequency range	Me	asurement	Class B lim	t dB(μV/m)		
	MHz	Distance	Detector type/	Fundamental	Harmonics		
		m	bandwidth	OATS/SAC (see Table A.1)	OATS/SAC (see Table A.1)		
A6.1	30 - 230		Quasi peak/ 120 kHz		42		
	230 - 300	10		50	42		
	300 - 1 000				46		
A6.2	30 - 230			60	52		
	230 - 300	3			52		
	300 - 1 000				56		

Table A.12 – Requirements for conducted differential voltage emissions from Class B equipment

Table clause	Frequency range	e bandwidth		Class B limi dB(μV) 75 ۵	Applicability				
	MHz		Other	Local Oscillator Fundamental	Local Oscillator Harmonics				
A12.1	30 - 950		46	46	46	See NOTE 1			
	950 – 2 150	For frequencies ≤1 GHz	46	54	54				
A12.2	950 – 2 150	Quasi Peak/	46	54	54	See NOTE 2			
A12.3	30 - 300	120 kHz	46	54	50	See NOTE 3			
	300 - 1 000				52				
A12.4	30 - 300	For frequencies	46	66	59	See NOTE 4			
	300 - 1 000	≥1 GHz			52				
A12.5	30 - 950	Peak/ 1 MHz	46	76	46	See NOTE 5			
	950 - 2 150			n/a	54				
NOTE 2 NOTE 3 NOTE 4	Tuner units (no Frequency mod Frequency mod	een 30 MHz and 1 GHz, t the LNB) for satellite sig ulation audio receivers a ulation car radios. EUTs with RF modulat	gnal recepti nd PC tune	on. r cards.	e DVD equipmen	t video recorder			
camcorde	rs and decoders	s etc.) designed to conne	ct to TV bro	adcast receiver tu					
NOTE 6	lesting is requi	red at only one EUT sup	ply voltage	and frequency.					
NOTE 7	The term 'other	' refers to all emissions of	other than th	ne fundamental and	the harmonics of	f the local oscillato			
	The test shall h	e performed with the dev	vice operatir	ng at each receptio	n channel.				
NOTE 8	The lest shall b	e perferined with the det	iee operation	g at each recepte					

5.2. Test Procedures

- a. The EUT was placed on a rotatable table top 0.8 meter above ground.
- b. The EUT was set 3/10 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- c. The table was rotated 360 degrees to determine the position of the highest radiation.
- d. The antenna is a half wave dipole and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- e. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- f. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.

5.3. Typical Test Setup

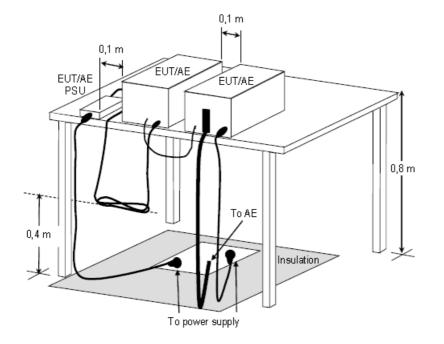
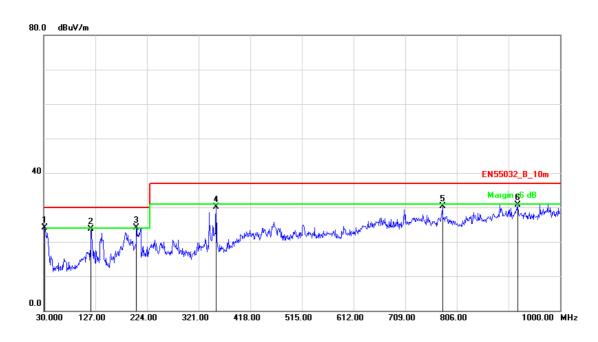
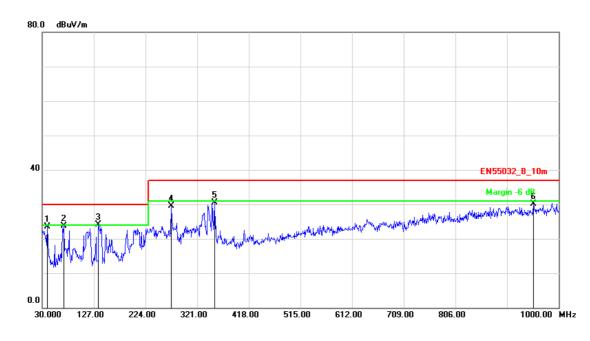


Figure D.8 – Example measurement arrangement for table-top EUT (Radiated emission measurement)


Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
EMI Test Receiver	R&S	ESCI7	100968	2016.07.21	2017.07.20
Preamplifier	Agilent	87405B	My39500554	2017.03.22	2018.03.22
Preamplifier	Agilent	8449B	3008A02342	2017.03.22	2018.03.22
Bilog Antenna	Sunol Science	JB1	A072414-1	2017.04.16	2018.04.15
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-618	2017.04.16	2018.04.15
Spectrum Analyzer	R&S	FSP40	100324	2016.08.02	2017.08.01
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-001	2017.03.28	2018.03.28
EZ-EMC	Fala	Ver CT3A1	N/A	N/A	N/A

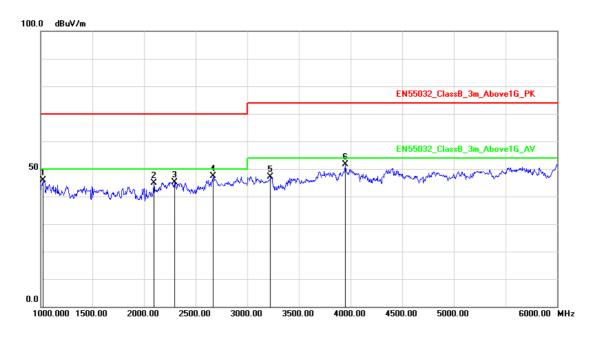
5.4. Measurement Equipment

5.5. Test Result and Data (30MHz ~ 1GHz)


Test Mode :	Mode 1: Full system (TYPE-C mode 1920*1080@60Hz) with 1.5m TYPE-C						
Test Mode .	Cable Signal from PC						
DC Power :	DC 5V	Ant. Polarization: Horizontal					
Equipment :	LCD Monitor	Model No :	156LM00007				
Temperature :	22°C	Humidity :	53%				
Pressure(mbar) :	1001	Date:	2017/04/29				

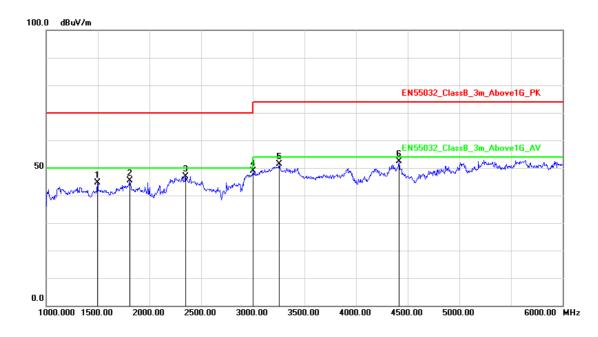
No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	31.9400	-4.66	28.79	24.13	30.00	-5.87	peak	100	225
2	119.2399	-9.71	33.49	23.78	30.00	-6.22	peak	100	130
3	204.5999	-10.38	34.47	24.09	30.00	-5.91	peak	400	100
4	353.9800	-7.12	37.21	30.09	37.00	-6.91	peak	100	36
5	778.8400	1.77	28.60	30.37	37.00	-6.63	peak	100	99
6	920.4600	3.71	26.94	30.65	37.00	-6.35	peak	200	117

Test Mode :	Mode 1: Full system (TYPE-C mode 1920*1080@60Hz) with 1.5m TYPE-C					
Test Mode .	Cable Signal from PC					
DC Power :	DC 5V	C 5V Ant. Polarization: Vertical				
Equipment :	LCD Monitor	Model No :	156LM00007			
Temperature :	22°C	Humidity :	53%			
Pressure(mbar) :	1001	Date:	2017/04/29			



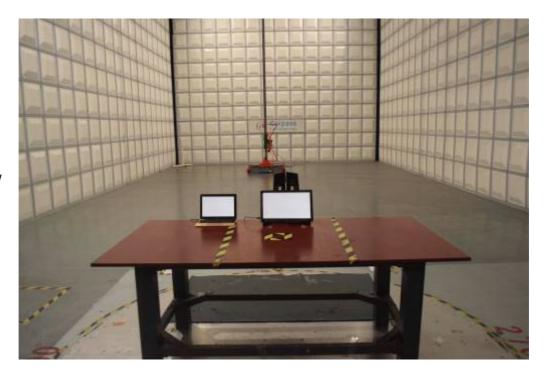
No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	39.7000	-10.26	33.67	23.41	30.00	-6.59	peak	100	111
2	70.7399	-15.76	39.40	23.64	30.00	-6.36	peak	100	116
3	135.7298	-10.23	34.35	24.12	30.00	-5.88	peak	200	360
4	272.5000	-9.28	38.85	29.57	37.00	-7.43	peak	200	200
5	353.9800	-7.12	37.68	30.56	37.00	-6.44	peak	100	1
6	952.4700	4.19	25.99	30.18	37.00	-6.82	peak	100	177

5.6. Test Result and Data (1GHz ~ 6GHz)

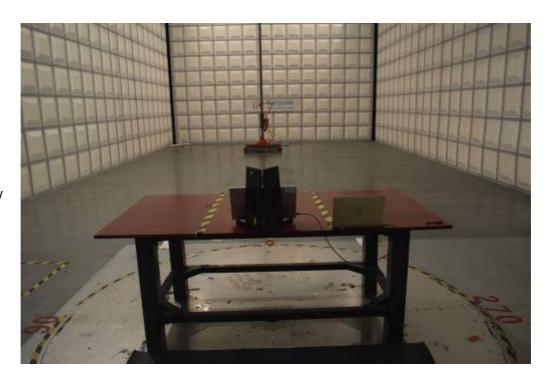

Test Mode :	Mode 1: Full system (TYPE-C mode 1920*1080@60Hz) with 1.5m TYPE-C						
Test Mode .	Cable Signal from PC						
DC Power :	DC 5V	Ant. Polarization: Horizontal					
Equipment :	LCD Monitor	Model No :	156LM00007				
Temperature :	22°C	Humidity :	53%				
Pressure(mbar) :	1001	Date:	2017/04/29				

No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	1025.000	-5.81	51.62	45.81	70.00	-24.19	peak	100	269
2	2095.000	-0.72	45.50	44.78	70.00	-25.22	peak	100	169
3	2295.000	0.30	44.90	45.20	70.00	-24.80	peak	200	310
4	2670.000	2.29	45.04	47.33	70.00	-22.67	peak	200	47
5	3225.000	4.81	42.39	47.20	74.00	-26.80	peak	100	123
6	3950.000	7.20	44.32	51.52	74.00	-22.48	peak	100	226

Test Meda :	Mode 1: Full system (TYPE-C mode 1920*1080@60Hz) with 1.5m TYPE-C						
Test Mode :	Cable Signal from PC						
DC Power :	DC 5V	Ant. Polarization:	Vertical				
Equipment :	LCD Monitor	Model No :	156LM00007				
Temperature :	22°C	Humidity :	53%				
Pressure(mbar) :	1001	Date:	2017/04/29				

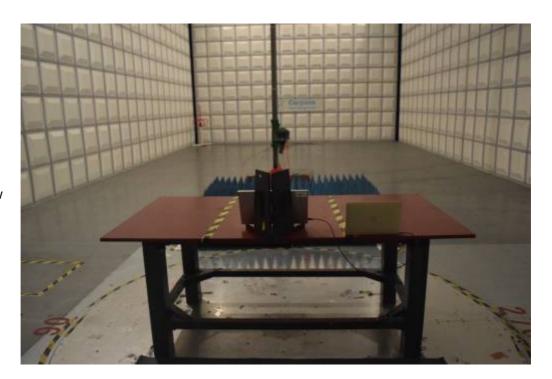


No.	Frequency	Factor	Reading	Level	Limit	Margin	Det.	Height	Azimuth
	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		(cm)	(deg)
1	1495.000	-2.67	47.33	44.66	70.00	-25.34	peak	100	125
2	1810.000	-1.75	47.05	45.30	70.00	-24.70	peak	100	169
3	2350.000	0.59	46.31	46.90	70.00	-23.10	peak	100	226
4	3005.000	4.14	44.76	48.90	74.00	-25.10	peak	200	330
5	3255.000	4.91	46.57	51.48	74.00	-22.52	peak	200	129
6	4415.000	9.63	42.78	52.41	74.00	-21.59	peak	100	187


Test engineer: Sun. Zhoung

5.7. Test Photographs (30MHz~1GHz)

Front View


Rear View

5.8. Test Photographs (1GHz~6GHz)

Front View

Rear View

6. Harmonics Test

6.1. Limits of Harmonics Current Measurement

Limits for Class A equipment

Harmonics Order n	Max. permissible harmonics current A	Harmonics Order n	Max. permissible harmonics current A
Odd h	armonics	Even h	narmonics
3	2.30	2	1.08
5	1.14	4	0.43
7	0.77	6	0.30
9	0.40	8<=n<=40	0.23x8/n
11	0.33		
13	0.21		
15<=n<=39	0.15x15/n		

(b) Limits for Class B equipment

For Class B equipment, the harmonics of the input current shall not exceed the values given in Table that is the limit of Class A multiplied by a factor of 1,5.

(c) Limits for Class C equipment

Harmonics Order n	Maximum permissible harmonic current expressed as a percentage of the input current at the fundamental frequency %
2	2
3	$30 \cdot \lambda^*$
5	10
7	7
9	5
11 <n<39 (odd harmonics only)</n<39 	3
* λ is the circuit power factor	·

(d) Limits for Class D equipment

Harmonics Order n	Maximum permissible harmonic current per watt mA/W	Maximum permissible harmonic current A
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
11 < n < 39 (odd harmonics only)	3.85/n	See limit of Class A

NOTE: According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

6.2. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
EMC Emission Tester	EMCPARTNE R	Harmonics-1000	159	2017.03.28	2018.03.28
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-004	2017.03.28	2018.03.28
HARCS	EMC Partner	Ver 4.18	N/A	N/A	N/A
HARUS	AG	vei 4.10	IN/A	IN/A	IN/A

6.3. Test Result and Data

Because the computer power supply, this need not test.

7. Voltage Fluctuations Test

7.1. Test Procedure

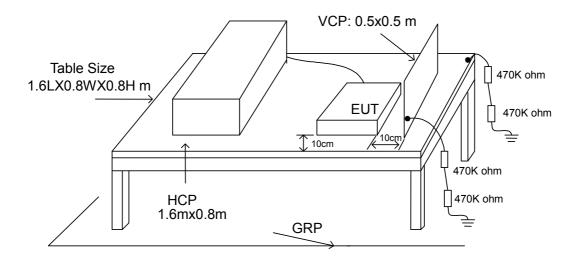
The equipment shall be tested under the conditions of **Clause 5**. The total impedance of the test circuit, excluding the appliance under test, but including the internal impedance of the supply source, shall be equal to the reference impedance. The stability and tolerance of the reference impedance shall be adequate to ensure that the overall accuracy of $\pm 8\%$ is achieved during the whole assessment procedure.

7.2. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
EMC Emission Tester	EMCPARTNE R	Harmonics-1000	159	2017.03.28	2018.03.28
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-004	2017.03.28	2018.03.28
HARCS	EMC Partner	Ver 4.18	N/A	N/A	N/A
	AG	Ver 4.10	IN/A	IN/A	N/A

7.3. Test Result and Data

Because the computer power supply, this need not test.



8. Electrostatic Discharge Immunity Test

8.1. Test Procedure

- a. In the case of air discharge testing the climatic conditions shall be within the following ranges:
 - ambient temperature: 15℃ to 35℃;
 - relative humidity : 30% to 60%;
 - atmospheric pressure : 86 KPa (860 mbar) to 106 KPa (1060 mbar).
- b. Test programs and software shall be chosen so as to exercise all normal modes of operation of the EUT. The use of special exercising software is encouraged, but permitted only where it can be shown that the EUT is being comprehensively exercised.
- c. The test voltage shall be increased from the minimum to the selected test severity level, in order to determine any threshold of failure. The final severity level should not exceed the product specification value in order to avoid damage to the equipment.
- d. The test shall be performed with both air discharge and contact discharge. On reselected points at least 10 single discharges (in the most sensitive polarity) shall be applied on air discharge. On reselected points at least 25 single discharges (in the most sensitive polarity) shall be applied on contact discharge.
- e. For the time interval between successive single discharges an initial value of one second is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.
- f. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
- g. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted :
 - If the coating is not declared to be an insulating coating by the equipment manufacturer, then the pointed tip of the generator shall penetrate the coating so as to make contact with the conducting substrate.
 - Coating declared as insulating by the manufacturer shall only be submitted to the air discharge.
 - The contact discharge test shall not be applied to such surfaces.
- h. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT.
 After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.

8.2. Test Setup for Tests Performed in Laboratory

The test setup consists of the test generator, EUT and auxiliary instrumentation necessary to perform DIRECT and INDIRECT application of discharges to the EUT as applicable, in the follow manner :

- a. Contact Discharge to the conductive surfaces and to coupling plane;
- b. Air Discharge at insulating surfaces.

The preferred test method is that of type tests performed in laboratories and the only accepted method of demonstrating conformance with this standard. The EUT was arranged as closely as possible to arrangement in final installed conditions.

A ground reference plane was provided on the floor of the test site. It was a metallic sheet (copper or aluminum) of 0.25 mm, minimum thickness; other metallic may be used but they shall have at least 0.65 mm thickness. In the Cerpass Technology Corp., we provided 1 mm thickness stainless steel ground reference plane. The minimum size of the ground reference plane is 2.5 m x 2.5 m, the exact size depending on the dimensions of the EUT. It was connected to the protective grounding system.

The EUT was arranged and connected according to its functional requirements. A distance of 1m minimum was provided between the EUT and the wall of the lab. and any other metallic structure. In cases where this length exceeds the length necessary to apply the discharges to the selected points, the excess length shall, where possible, be placed non-inductively off the ground reference plane and shall not come closer than 0.2m to other conductive parts in the test setup.

Where the EUT is installed on a metal table, the table was connected to the reference plane via a cable with a 470k ohm resister located at each end, to prevent a build-up of charge. The test setup was consist a wooden table, 0.8m high, standing on the ground reference plane. A HCP, 1.6 m x 0.8 m, was placed on the table. The EUT and cables was isolated from the HCP by an insulating support 0.5 mm thick. The VCP size, 0.5 m x 0.5 m.

8.3. Test Severity Levels

	Contact Discharge	Air Discharge						
Level	Test Voltage (KV) of	Level	Test Voltage (KV) of					
	Contact discharge		Air Discharge					
1	±2	1	±2					
2	±4	2	±4					
3	±6	3	±8					
4	±8	4	±15					
Х	Specified	Х	Specified					
Remark: "X" is an open level.								

8.4. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.	
ESD Simulator	EM Test	Dito	P1645186902	2017.02.16	2018.02.16	
Tonometer	shanghaifengyun	DYM3	3251	2016.12.21	2017.12.20	
Dehumidifier	ZEDO	ZD-220LB	CEP-TH-01	N/A	N/A	
Humidifier	YADU YZ-DS2510		CEP-TH-02	N/A	N/A	
Temperature/ Humidity Meter	feiyan	N/A	102	2017.03.28	2018.03.28	
ESD Simulator	NoiseKen	ESS-B3011A	AEC00315-00 C-0A	2016.12.12	2017.12.11	

8.5. Test Result and Data

Final Test Result	:	PASS
Pass performance criteria	:	В
Basic Standard	:	IEC 61000-4-2
Model No.	:	156LM00007
Test Voltage	:	± 2 / ± 4 / ± 8 KV for air discharge, ± 2 / ± 4 KV for contact discharge
Temperature	:	23°C
Relative Humidity	:	49 %
Atmospheric Pressure	:	100 kPa
Test Date	:	Apr 27, 2017

Test Mode : Mode 1

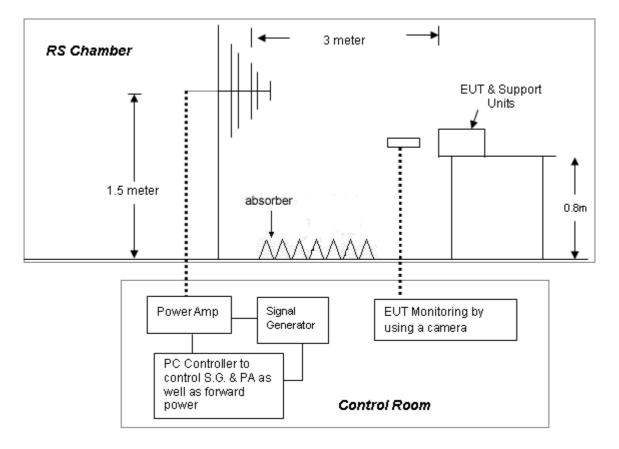
	Contact Discharge								Air Discharge							
	25 times / each							<u>10</u> times / each								
Voltage	2 kV 4 kV			6	6 kV 8 kV		2 kV		4 kV		8 kV		10 kV			
HCP	А	А	А	А												
VCP	А	А	А	А												
Case									А	А	А	А	А	А		
Panel									А	А	А	А	А	А		
Type-C Port	А	А	А	А												
Power Port									А	А	А	А	А	А		
Button									А	А	А	А	А	А		

Test engineer: Sun. Zhoung

8.6. Test Photographs

9. Radio Frequency electromagnetic field immunity test

9.1. Test Procedure


- a. The equipment to be tested is placed in the center of the enclosure on a wooden table. The equipment is then connected to power and signal leads according to pertinent installation instructions.
- b. The antenna which is enabling the complete frequency range of 80-1000 MHz is placed 3m away from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the applicable antennae.
- c. The test is normally performed with the antenna facing the most sensitive side of the EUT. The polarization of the field generated by the bucolical antenna necessitates testing each position twice, once with the antenna positioned vertically and again with the antenna positioned horizontally. The circular polarization of the field from the log-spiral antenna makes a change of position of the antenna unnecessary.
- d. At each of the above conditions, the frequency range is swept 80-1000 MHz, pausing to adjust the R.F. signal level or to switch oscillators and antenna. The rate of sweep is in the order of 1.5*10-3 decades/s. The sensitive frequencies or frequencies of dominant interest may be discretely analyzed.

Frequency Band : 80-1000 MHz				
Level	Test field strength (V/m)			
1	1			
2	3			
3	10			
X	Specified			
Remark: "X" is an open class.				

9.2. Test Severity Levels

9.3. TEST SETUP

 For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

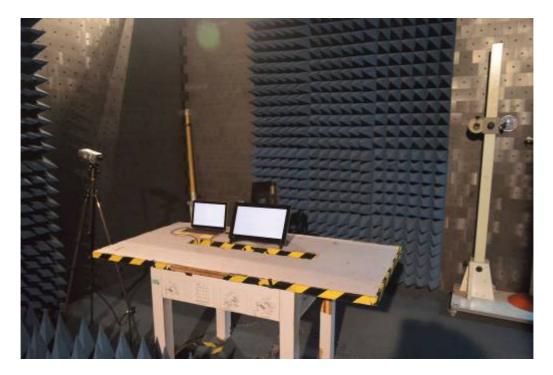
The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

9.4. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.	
Signal Generator	R&S	SML03	103287	2017.03.22	2018.03.22	
Power Sensor	R&S	NR P-Z91	100383	2017.03.22	2018.03.22	
Power Meter	R&S	NRP	101206	2017.03.22	2018.03.22	
	DONN	BLWA0830-16	076659	2017.03.22	2010 02 22	
Power Amplifer	BONN	0/100/40D			2018.03.22	
Istropic Electric Field	EST.LINDGRE	111 6105	107445	2016 11 20	2017 11 10	
Probe	N	HI-6105	137445	2016.11.20	2017.11.19	
EMS Antenna	R&S	HL046E	100028	N/A	N/A	
Temperature/	fairea	N/A 101	404	0047 00 00	0010 00 00	
Humidity Meter	feiyan		2017.03.28	2018.03.28		
	Rohde&Schwa		N1/A	N/A	N1/A	
EMC-32	rz	ver 6.10.0	Ver 6.10.0 N/A		N/A	

9.5. Test Result and Data

Final Test Result	:	PASS
Pass performance criteria	:	А
Basic Standard	:	IEC 61000-4-3
Model No.	:	156LM00007
Frequency Range	:	80~1000 MHz
Temperature	:	22°C
Relative Humidity	:	54%
Atmospheric Pressure	:	100 kPa
Test Date	:	Apr 27, 2017


Test Mode: Mode 1

Modulation : AM 80%, 1KHz sine wave , Dwell time: 3.0 S					
Frequency Step Size : 1	% of preceding frequen	cy value			
Frequency (MHz)	Antenna Polarization face Field strength (V/m) Result				
80~1000	Vertical	Front	3 V/m	А	
80~1000	Vertical	Rear	3 V/m	А	
80~1000	Vertical	Left	3 V/m	А	
80~1000	Vertical	Right	3 V/m	А	
80~1000	Horizontal	Front	3 V/m	А	
80~1000	Horizontal	Rear	3 V/m	А	
80~1000	Horizontal	Left	3 V/m	А	
80~1000	Horizontal	Right	3 V/m	А	

Test engineer: Sun. Zhomg

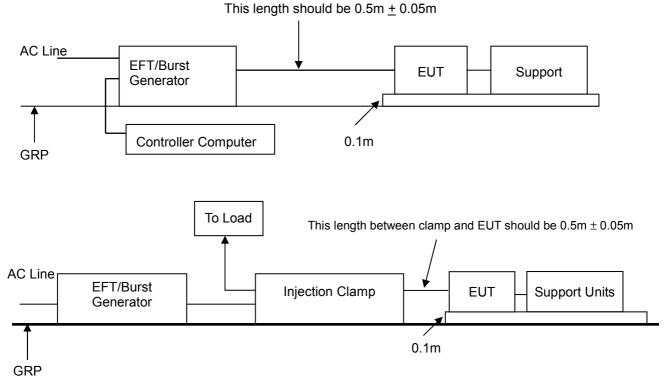
9.6. Test Photographs

10. Electrical Fast Transient/ Burst Immunity Test

10.1. Test Procedure

- a. In order to minimize the effect of environmental parameters on test results, the climatic conditions when test is carrying out shall comply with the following requirements:
 - ambient temperature: 15° C to 35° C;
 - relative humidity : 45% to 75%;
 - Atmospheric pressure: 86 Kpa (860 mbar) to 106 Kpa (1060 mbar).
- b. In order to minimize the effect of environmental parameters on test results, the electromagnetic environment of the laboratory shall not influence the test results.
- c. The variety and diversity of equipment and systems to be tested make it difficult to establish general criteria for the evaluation of the effects of fast transients/bursts on equipment and systems.
- d. Test on Power Line:
 - The EFT/B-generator was located on the GRP. For floor standing equipment 1,0 m For table top equipment 0,5 m
 - The EFT/B-generator provides the ability to apply the test voltage in a non-symmetrical condition to the power supply input terminals of the EUT.
- e. Test on Communication Lines
 - The coupling clamp is composed of a clamp unit for housing the cable (length more than 3 m), and was placed on the GRP.
 - The coupling clamp provides the ability of coupling the fast transient/bursts to the cable under test.
- f. The test results may be classified on the basic of the operating conditions and the functional specification of the equipment under test, according to the following performance criteria :
 - Normal performance within the specification limits.
 - Temporary degradation or loss of function or performance which is self-recoverable.
 - Temporary degradation or loss of function or performance which requires operator intervention or system reset.
 - Degradation or loss of function which is not recoverable due to damage of equipment (components).

10.2. Test Severity Levels


The following test severity levels are recommended for the fast transient/burst test :

Open circuit output test voltage \pm 10%					
Level	On Power Supply	On I/O signal, data and control line			
1	0.5 KV	0.25 KV			
2	1.0 KV	0.50 KV			
3	2.0 KV	1.00 KV			
4	4.0 KV	2.00 KV			
Х	Specified	Specified			

Remark : " X " is an open level. The level is subject to negotiation between the user and manufacturer or is specified by the manufacturer.

10.3. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.1m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

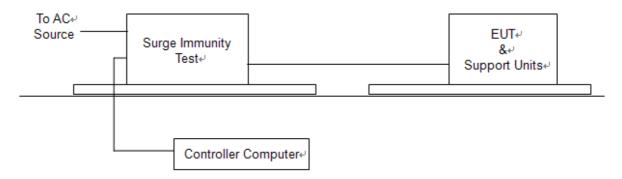
10.4. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
TRANSIENT	EMCPARTNER	TRA2000IN6	901	2016.06.26	2017.06.25
CDN	EMCPARTNER	CDN2000-06-32	121	2017.03.22	2018.03.22
Coupling clamp	EMCPARTNER	CN-EFT1000	547	2017.03.22	2018.03.22
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-005	2017.03.28	2018.03.28

10.5. Test Result and Data

11. Surge Immunity Test

11.1. Test Procedure


- a. Climatic conditions
 - The climatic conditions shall comply with the following requirements :
 - ambient temperature : 15 $^\circ\!\!\!C$ to 35 $^\circ\!\!\!C$
 - relative humidity : 10 % to 75 %
 - atmospheric pressure : 86 kPa to 106 kPa (860 mbar to 1060 mbar)
- b. Electromagnetic conditions
 - the electromagnetic environment of the laboratory shall not influence the test results.
- c. The test shall be performed according the test plan that shall specify the test set-up with
 - generator and other equipment utilized;
 - test level (voltage/current);
 - generator source impedance;
 - internal or external generator trigger;
 - number of tests : at least five positive and five negative at the selected points;
 - repetition rate : maximum 1/min.
 - inputs and outputs to be tested;
 - representative operating conditions of the EUT;
 - sequence of application of the surge to the circuit;
 - phase angle in the case of AC. power supply;
 - actual installation conditions, for example :
 - AC : neutral earthed,
 - DC : (+) or () earthed to simulated the actual earthing conditions.
- d. If not otherwise specified the surges have to be applied synchronized to the voltage phase at the zero-crossing and the peak value of the AC. voltage wave (positive and negative).
- e. The surges have to be applied line to line and line(s) and earth. When testing line to earth, the test voltage has to be applied successively between each of the lines and earth, if there is no other specification.
- f. The test procedure shall also consider the non-linear current-voltage characteristics of the equipment under test. Therefore the test voltage has to be increased by steps up to the test level specified in the product standard or test plan.
- g. All lower levels including the selected test level shall be satisfied. For testing the secondary protection, the output voltage of the generator shall be increased up to the worst-case voltage breakdown level (let-through level) of the primary protection.
- h. If the actual operating signal sources are not available, that may be simulated. Under no circumstances may the test level exceed the product specification. The test shall be carried out according to a test plan.
- i. To find all critical points of the duty cycle of the equipment, a sufficient number of positive and negative test pulses shall be applied. For acceptance test previously unstressed equipment shall be used to the protection devices shall be replaced.

11.2. Test Severity Level

Level	Open-circuit test voltage, ± 10%, KV		
1	0.5		
2	1.0		
3 2.0			
4 4.0			
Х	Specified		
NOTE: "X" is an open class. This level can be specified in the product specification.			

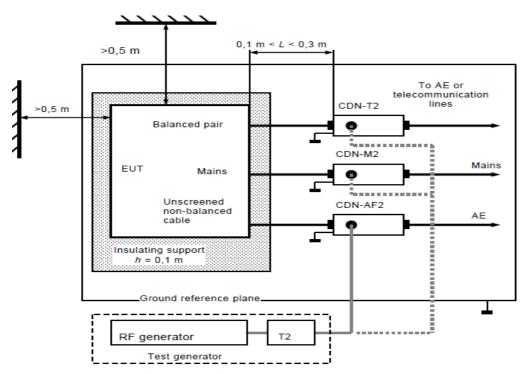
11.3. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

11.4. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
TRANSIENT	TESEQ	NSG 3060	1830	2017.02.22	2018.02.21
CDN	TESEQ	CDN 3061	1575	2017.02.22	2018.02.21
CDN	TESEQ	CNV508T5	P 1546167499	2017.02.22	2018.02.21
CDN	TESEQ	CDN HSS-2	41020	2017.02.22	2018.02.21
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-005	2017.03.28	2018.03.28

11.5. Test Result and Data


12. Conduction Disturbances induced by Radio-Frequency Fields

12.1. Test Procedure

- a. The EUT shall be operated within its intended climatic conditions. The temperature and relative humidity should be recorded.
- b. This test method test can be performed without using a sell shielded enclosure. This is because the disturbance levels applied and the geometry of the setups are not likely to radiated a high amount of energy, especially at the lower frequencies. If under certain circumstances the radiated energy is too high, a shielded enclosure has to be used.
- c. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF-input ports of the coupling devices are terminated by a 50 ohm load resistor.
- d. The frequency range is swept from 150 KHz to 80 MHz, using the signal levels established during the setting process, and with the disturbance signal 80% amplitude modulated with a 1KHz sign wave, pausing to adjust the RF-signal level or to switch coupling devices as necessary. The rate of sweep shall no exceed 1.5 x 10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall no exceed 1% of the start and thereafter 1% of the preceding frequency value.
- e. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies e.g. clock frequency (ies) and harmonics or frequencies of dominant interest shall be analyzed separately.
- f. An alternative test procedure may be adopted, wherein the frequency range is swept incrementally, with a step size not exceeding 4% of the start ad thereafter 4% of the preceding frequency value. The test level should be at least twice the value of the specified test level.
- g. In cases of dispute, the test procedure using a step size not exceeding 1% of the start and thereafter 1% of preceding frequency value shall take precedence.
- h. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.
- i. The use of special exercising programs is recommended.
- j. Testing shall be performed according to a Test Plan, which shall be included in the test report.
- k. It may be necessary to carry out some investigatory testing in order to establish some aspects of the test plan.

Level	Voltage Level (e.m.f.)			
1	1 V			
2	3 V			
3	10 V			
X	Specified			
NOTE - x is an open cla	ass. This level can be specified in the product specification.			

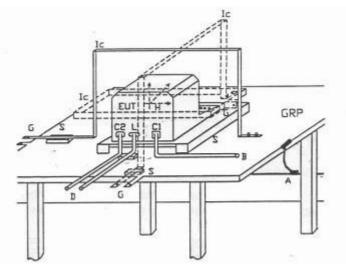
12.2.Test Severity Levels

12.3.TEST SETUP

- Note: 1. The EUT is setup 0.1m above Ground Reference Plane
 - 2. The CDNs and / or EM clamp used for real test depends on ports and cables configuration of EUT.
 - 3. For the actual test configuration, please refer to the related item Photographs of the Test Configuration.

12.4.Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
Conducted immunity test system	FRANKONIA	CIT-10/75	102D1294	2017.03.22	2018.03.22
EM Injection clamp	FCC	F-203I-23MM	536	2017.03.22	2018.03.22
CDN	FRANKONIA	CDN-M2+M3	A3011102	2017.03.22	2018.03.22
CDN	FCC	CDN-M5/32	A3013024	2017.03.22	2018.03.22
CDN	TESEQ	CDN T8-10	43767	2016.09.08	2017.09.07
CDN	TESEQ	CDN T2-10	43762	2016.08.30	2017.08.29
CDN	TESEQ	CDN T4-10	43754	2016.09.08	2017.09.07
CDN	TESEQ	CDN M016	44025	2016.09.12	2017.09.11
6 dB Attenuator	FRANKONIA	N/A	N/A	2017.03.22	2018.03.22
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-005	2017.03.28	2018.03.28
EN61000-4-6	Hubert GmbH	Ver 2.21	N/A	N/A	N/A



12.5. Test Result and Data

13. Power Frequency Magnetic Field Immunity Test

13.1. Test Setup

GPR	:	Ground plane	C1	:	Power supply circuit
А	:	Safety earth	C2	:	Signal circuit
S	:	Insulating support	L	:	Communication line
EUT	:	Equipment under test	В	:	To power supply source
Lc	:	Induction coil	D	:	To signal source, simulator
Е	:	Earth terminal	G	:	To the test generator

13.2. Test Severity Levels

Level	Magnetic field strength (A/m)				
1	1				
2	3				
3	10				
4	30				
5	100				
X ¹⁾ special					
NOTE 1 "X" is an open level. This level can be given in the product specification.					

13.3. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
TRANSIENT	EMCPARTNER	TRA2000IN6	901	2016.06.26	2017.06.25
H-Filed-Loop	EMCPARTNER	MF1000-1	144	2017.03.28	2018.03.28
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-005	2017.03.28	2018.03.28

13.4. Test Result and Data

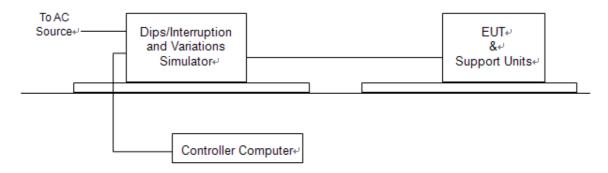
Final Test Result	:	PASS
Pass performance criteria	:	А
Basic Standard	:	IEC 61000-4-8
Model No.	:	156LM00007
Temperature	:	22°C
Relative Humidity	:	53 %
Atmospheric Pressure	:	100 kPa
Test Date	:	Apr 27, 2017

Test Mode: Mode 1

Power Frequency Magnetic Field : <u>50 Hz</u> , <u>1 A/m</u>				
Coil Orientation	Testing duration	Results		
X-axis	1.0 Min	A		
Y-axis	1.0 Min	A		
Z-axis	1.0 Min	А		
Power Frequency Magnetic Field : <u>60</u> Hz, <u>1</u> A/m				
Coil Orientation	Testing duration	Results		
X-axis	1.0 Min	A		
Y-axis	1.0 Min	A		
Z-axis 1.0 Min		А		

Sun. Zhong Test engineer:

13.5. Test Photographs


14. Voltage Dips and Voltage Interruptions Immunity Test Setup

14.1. Test Conditions

- 1. Source voltage and frequency : AC 100/230/240V / 50Hz, Single phase.
- 2. Test of interval : 10 sec.
- 3. Level and duration : Sequence of 3 dips/interrupts.
- 4. Voltage rise (and fall) time : 1 \sim 5 $\mu s.$
- 5. Test severity :

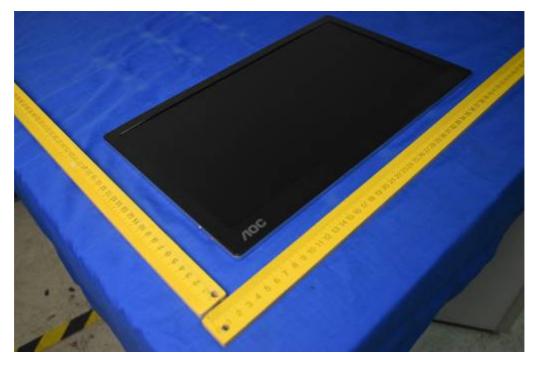
Voltage dips and Interrupt	Test Duration		
reduction (%)	(period)		
>95%	250		
30%	25		
>95%	0.5		

14.2. TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

14.3. Measurement Equipment

Instrument/Ancillary	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date.
TRANSIENT	EMCPARTNER	TRA2000IN6	901	2016.06.26	2017.06.25
Temperature/ Humidity Meter	Zhicheng	ZC1-11	CEP-TH-005	2017.03.28	2018.03.28



14.4. Test Result and Data

15. Photographs of EUT

1) EUT Photo

2) EUT Photo

3) EUT Photo

