

CE EMC TEST REPORT

REPORT NO.: CE120220D03

MODEL NO.: 240LM00010

RECEIVED: Feb. 20, 2012

TESTED: Feb. 21 ~ 29, 2012

ISSUED: Mar. 1, 2012

APPLICANT: TOP VICTORY ELECTRONICS (TAIWAN) CO., LTD.

ADDRESS: 10F., No 230, Liancheng Rd., Zhonghe Dist., New

Taipei City 23553, Taiwan (R.O.C.)

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

LAB LOCATION: No. 47, 14th Ling, Chia Pau Vil., Lin Kou Dist., New

Taipei City, Taiwan (R.O.C.)

This test report consists of 81 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TA or any government agency. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Table of Contents

RELEA	ASE CONTROL RECORD	5
1	CERTIFICATION	6
2 2.1	SUMMARY OF TEST RESULTSMEASUREMENT UNCERTAINTY	
3 3.1 3.2 3.3	GENERAL INFORMATION	9 10 .11
3.4 3.4.1 3.4.2	DESCRIPTION OF SUPPORT UNITSFOR EMISSION TESTFOR HARMONICS / FLICKER / IMMUNITY TESTS	12
4	EMISSION TEST	
4.1 4.1.1	CONDUCTED EMISSION MEASUREMENTLIMITS OF CONDUCTED EMISSION MEASUREMENT	
4.1.2	TEST INSTRUMENTS	
4.1.3	TEST PROCEDURE	
4.1.4 4.1.5	DEVIATION FROM TEST STANDARD TEST SETUP	
4.1.6	EUT OPERATING CONDITIONS	
4.1.7	TEST RESULTS (1)	
4.1.8	TEST RESULTS (2)	20
4.2	RADIATED EMISSION MEASUREMENT	
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	
4.2.2	TEST INSTRUMENTS TEST PROCEDURE	
4.2.3 4.2.4	DEVIATION FROM TEST STANDARD	
4.2.5	TEST SETUP	25
4.2.6	EUT OPERATING CONDITIONS	25
4.2.7	TEST RESULTS (1)	
4.2.8	TEST RESULTS (2)	30
4.3	HARMONICS CURRENT MEASUREMENT	
4.3.1	LIMITS OF HARMONICS CURRENT MEASUREMENT	
4.3.2	TEST INSTRUMENTS	
4.3.3	TEST PROCEDURE DEVIATION FROM TEST STANDARD	
4.3.4 4.3.5		
4.3.6	TEST SETUP EUT OPERATING CONDITIONS	36
4.3.7	TEST RESULTS	
4.4	VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT	
4.4.1	LIMITS OF VOLTAGE FLUCTUATION AND FLICKS	
4.4.2	TEST INSTRUMENTS	
4.4.3	TEST PROCEDURE	
4.4.4	DEVIATION FROM TEST STANDARD	
4.4.5	TEST SETUP	38

4.4.6	EUT OPERATING CONDITIONS	38
4.4.7	TEST RESULTS	39
5	IMMUNITY TEST	40
5.1	GENERAL DESCRIPTION	40
5.2	GENERAL PERFORMANCE CRITERIA DESCRIPTION	41
5.3	PARTICULAR PERFORMANCE CRITERIA DESCRIPTION FOR DATA	
	DISPLAY FUNCTION OF EUT	42
5.4	EUT OPERATING CONDITION	42
5.5	ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)	43
	TEST SPECIFICATION	
	TEST INSTRUMENTS	
5.5.3	TEST PROCEDURE	
5.5.4	DEVIATION FROM TEST STANDARD	
	TEST SETUP	45
5.5.6	TEST RESULTS	46
5.6	RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNI	
F C 1	TEST (RS) TEST SPECIFICATION	41
	TEST SPECIFICATION	
	TEST PROCEDURE	
5.6.4	DEVIATION FROM TEST STANDARD	49 10
	TEST SETUP	
5.6.6	TEST RESULTS	
5.7	ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)	
5.7.1	TEST SPECIFICATION	
5.7.2	TEST INSTRUMENTS	
	TEST PROCEDURE	
5.7.4	DEVIATION FROM TEST STANDARD	
5.7.5	TEST SETUP	
5.7.6	TEST RESULTS	
5.8	SURGE IMMUNITY TEST	
5.8.1	TEST SPECIFICATION	54
5.8.2	TEST INSTRUMENTS	
	TEST PROCEDURE	
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
	TEST RESULTS	
5.9	IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS	
E O 1	(CS)TEST SPECIFICATION	57
	TEST SPECIFICATION	
	TEST PROCEDURE	
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
	TEST RESULTS	
5.10	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	
	TEST SPECIFICATION	
3.1011		52

5.10.2	TEST INSTRUMENTS	62
5.10.3	TEST PROCEDURE	62
5.10.4	DEVIATION FROM TEST STANDARD	62
5.10.5	TEST SETUP	63
5.10.6	TEST RESULTS	64
5.11	VOLTAGE DIP/SHORT INTERRUPTIONS (DIP) IMMUNITY TEST	65
	TEST SPECIFICATION	
5.11.2	TEST INSTRUMENTS	65
5.11.3	TEST PROCEDURE	65
5.11.4	DEVIATION FROM TEST STANDARD	65
	TEST SETUP	
5.11.6	TEST RESULTS	67
6	PHOTOGRAPHS OF THE TEST CONFIGURATION	68
7	APPENDIX - INFORMATION ON THE TESTING LABORATORIES	81

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
CE120220D03	Original release	Mar. 1, 2012

CERTIFICATION 1

PRODUCT: LCD Monitor MODEL NO.: 240LM00010

APPLICANT: ENGINEERING SAMPLE

TEST ITEM: TOP VICTORY ELECTRONICS (TAIWAN) CO., LTD.

TESTED: Feb. 21 ~ 29, 2012

STANDARDS: EN 55022:2010, Class B

CISPR 22:2008, Class B

AS/NZS CISPR 22:2009, Class B

EN 61000-3-2:2006 +A1:2009 +A2:2009

EN 61000-3-3:2008

EN 55024:2010

IEC 61000-4-2:2008 ED.2.0 IEC 61000-4-3:2010 ED.3.2 IEC 61000-4-4:2011 ED.2.1 IEC 61000-4-5:2005 ED.2.0 IEC 61000-4-6:2008 ED.3.0 IEC 61000-4-8:2009 ED.2.0

IEC 61000-4-11:2004 ED.2.0

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: (Claire Yeh / Specialist), DATE: Mar. 1, 2012

_, DATE: Mar / >01> APPROVED BY :

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

EMISSION				
Standard	Remarks			
EN 55022:2010, Class B CISPR 22:2008,	Conducted Test	PASS	Meets Class B Limit Minimum passing margin is –5.51 dB at 1.207 MHz	
Class B AS/NZS CISPR 22:2009, Class B	Radiated Test (30MHz ~ 6GHz)	PASS	Meets Class B Limit Minimum passing margin is –5.23 dB at 217.31 MHz	
EN 61000-3-2:2006 +A1:2009+A2:2009	Harmonic current emissions	PASS	The power consumption of EUT is less than 75W and no limits apply	
EN 61000-3-3:2008	Voltage fluctuations & flicker	PASS	Meets the requirements.	

IMMUNITY (EN 55024:2010)				
Standard	Test Type	Result	Remarks	
IEC 61000-4-2 :2008 ED.2.0	Electrostatic discharge immunity test	PASS	Meets the requirements of Performance Criterion B	
IEC 61000-4-3:2010 ED.3.2	Radiated, radio-frequency, electromagnetic field immunity test	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-4:2011 ED.2.1	Electrical fast transient / burst immunity test.	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-5:2005 ED.2.0	Surge immunity test	PASS	Meets the requirements of Performance Criterion B	
IEC 61000-4-6:2008 ED.3.0	Immunity to conducted disturbances, induced by radio-frequency fields	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-8:2009 ED.2.0	Power frequency magnetic field immunity test.	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-11:2004 ED.2.0	Voltage dips and short interruptions immunity tests	PASS	Meets the requirements of Voltage Dips: i) >95% reduction - Performance Criterion A ii) 30% reduction - Performance Criterion A Voltage Interruptions: i) >95% reduction - Performance Criterion C	

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

[&]quot;This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2."

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz ~ 30MHz	2.41 dB
Dadiated emissions	30MHz ~ 1GHz	3.78 dB
Radiated emissions	Above 1GHz	3.36 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	LCD Monitor
MODEL NO.	240LM00010
	Internal Switching Power Supply
POWER SUPPLY	Rating: 100-240V, 50/60Hz
FOWER SUFFET	Power Cord:
	Non-shielded AC 3-pin (1.8m).
DATA CABLE SUPPLIED	N/A

NOTE:

- 1. The EUT is a LCD Monitor with resolution is up to 1920 x 1080.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

- The EUT is designed with AC power supply of 100-240Vac, 50/60Hz.
 For radiated emission evaluation, 230Vac/50Hz (for EN 55022), 120Vac/60Hz
 (for FCC Part 15) had been covered during the pre-test. The worst radiated
 emission data was founded at 120Vac/60Hz and recorded in the applied test
 report.
- 2. The EUT was pre-tested with resolution 1920 x 1080 (60Hz) of the D-Sub, DVI and HDMI interfaces and the worst emission level was found under the **DVI** interface. Therefore the EUT was pre-testing under the following resolution & refresh rate modes:

Interface	Resolution	Monitor's angle	Base Condition
	1920 x 1080 (60Hz)		
	1680 x 1050 (60Hz)	. Horizontol	Base Lifted up &
	1440 x 900 (60Hz)		
DVI	1280 x 1024 (75Hz)	✦ Horizontal✦ Vertical	
	1024 x 768 (75Hz)	Vertical	Lowered down
	800 x 600 (75Hz)		
	640 x 480 (60Hz)		

3. The worst emission level was found under following mode:

Interface	Resolution	Monitor's angle	Base Condition
DVI	1920 x 1080 (60Hz)	Horizontal	Lowered down

4. Therefore EUT was tested under following modes:

For Conducted & Radiated tests:

Test Mode	Interface	Resolution	Monitor's angle	Base Condition
Mode 1	DVI	4000 4000 (0011-)	l la desantal	
Mode 2	HDMI	1920 x 1080 (60Hz)	Horizontai	Lowered down

For Harmonic Flicker & Immunity tests:

Test Mode	Interface	Resolution	Monitor's angle	Base Condition
Mode 1	DVI	1920 x 1080 (60Hz)	Horizontal	Lowered down

All above test modes were recorded in this report.

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a kind of ITE equipment and, according to the specifications of the manufacturers, must comply with the requirements of the following standards:

EN 55022:2010, Class B

CISPR 22:2008, Class B

AS/NZS CISPR 22:2009, Class B

EN 61000-3-2:2006 +A1:2009 +A2:2009

EN 61000-3-3:2008

EN 55024:2010

IEC 61000-4-2:2008 ED.2.0

IEC 61000-4-3:2010 ED.3.0

IEC 61000-4-4:2011 ED.2.1

IEC 61000-4-5:2005 ED.2.0

IEC 61000-4-6:2008 ED.3.0

IEC 61000-4-8:2009 ED.2.0

IEC 61000-4-11:2004 ED.2.0

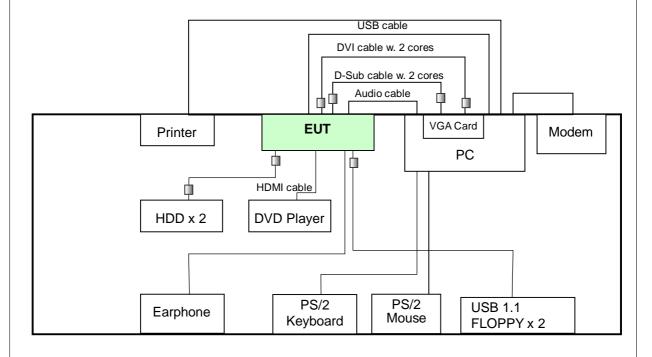
Notes: The above IEC basic standards are applied with latest version if customer has no special requirement

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

3.4.1 FOR EMISSION TEST

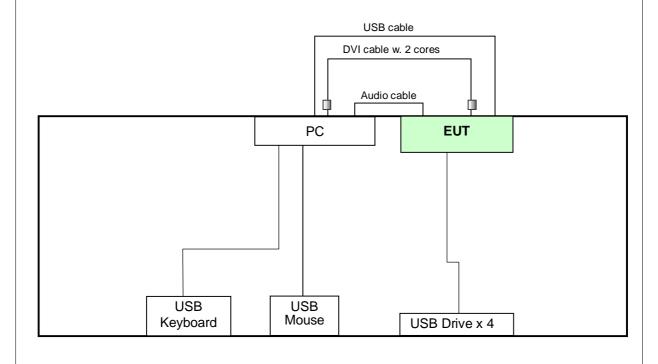
NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	PERSONAL COMPUTER	HP	dx7300MT	SGH72102P4	FCC DoC Approved
2	VGA CARD	ASUS	ENGT440/DI/1G D3	BACVCM03880	FCC DoC Approved
3	DVD player	Pioneer	DV-600AV-S	GHKD003391LS	Verification
4	External Hard Disk drive	DELL	Power Vault RD1000	F2DWZD1	FCC DoC Approved
5	External Hard Disk drive	DELL	Power Vault RD1000	D2DWZD1	FCC DoC Approved
6	MODEM	ACEEX	1414	980020531	IFAXDM1414
7	PRINTER	EPSON	LQ-300+	DCGY038839	FCC DoC Approved
8	EARPHONE	PHILIPS	SBC HL145	N/A	N/A
9	EXTERNAL USB 1.1 FLOPPY	SONY	MPF82E	50042543	FCC DoC Approved
10	EXTERNAL USB 1.1 FLOPPY	SONY	MPF82E	50010131	FCC DoC Approved
11	PS/2 KEYBOARD	HP	KB-0316	BC3520BGAUJ 0U6	FCC DoC Approved
12	PS/2 MOUSE	втс	M851	N/A	E5XMSM860


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
	1.8 m Shielded DVI cable with two ferrite cores;
1	1.8 m Shielded D-Sub cable with two ferrite cores
l I	1.8 m Shielded USB cable;
	1.8 m Shielded Audio cable
2	N/A
3	1.8 m Shielded HDMI cable
4	2.0 M shielded cable, terminated with USB connector, with two core
5	2.0 M shielded cable, terminated with USB connector, with two core
6	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame,
О	w/o core.
7	1.8m braid shielded wire, terminated with DB25 and Centronics connector via metallic
/	frame, w/o core

8	1.2 m wrapped shielded wire, terminated with 3.5mm phone plug via drain wire, w/o
0	core.
9	1.5 m shielded cable, terminated with USB connector, with 1 core.
10	1.5 m shielded cable, terminated with USB connector, with 1 core.
11	1.8 m foil shielded wire, terminated with PS/2 connector via metallic frame, w/o core.
12	1.5 m Non shielded wire, terminated with PS/2 connector via drain wire, w/o core.

NOTE: All power cords of the above support units are non-shielded (1.8 m).

TEST CONFIGURATION


3.4.2 FOR HARMONICS / FLICKER / IMMUNITY TESTS

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	COMPUTER	DELL	OptiPlex GX620	1PPMJ1S	FCC DoC Approved
2	USB Drive x 4	PNY	N/A	N/A	N/A
3	USB KEYBOARD	SiliconGraphis	SK-2502U	M990207294	GYUR58SK
4	USB MOUSE	HP	M-UAE96	F93A90AN3V42 GP7	FCC DoC Approved

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
	1.8 m Shielded DVI cable with two ferrite cores;
1	1.8 m Shielded USB cable;
	1.8 m Shielded Audio cable
2	1.8 m Shielded USB cable
3	2.5 m braid shielded wire, terminated with USB connector via drain wire, w/o core.
4	1.8 m shielded wire, terminated with USB connector via drain wire, w/o core.

NOTE: All power cords of the above support units are non shielded (1.8m).

TEST CONFIGURATION

4 EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

TEST STANDARD: EN 55022

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
PREQUENCT (MINZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

NOTE: (1) The lower limit shall apply at the transition frequencies.

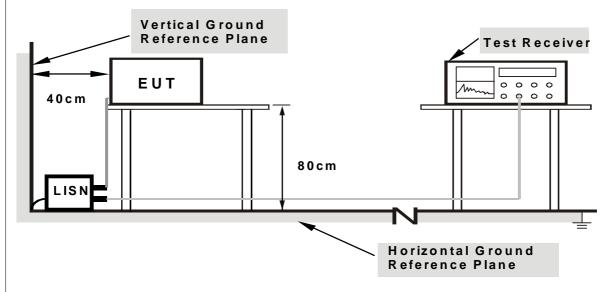
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	100276	Jan. 04, 2012	Jan. 03, 2013
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ESH3-Z5	100219	Nov. 24, 2011	Nov. 23, 2012
LISN With Adapter (for EUT)	AD10	C10Ada-001	Nov. 24, 2011	Nov. 23, 2012
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Dec. 08, 2011	Dec. 07, 2012
Software	ADT_Cond_V7. 3.7	NA	NA	NA
Software	ADT_ISN_V7.3.	NA	NA	NA
RF cable (JYEBAO)	5D-FB	Cable-C10.01	Feb. 20, 2012	Feb. 19, 2013
SUHNER Terminator (For ROHDE & SCHWARZ LISN)	65BNC-5001	E1-010773	Feb. 26, 2011	Feb. 25, 2012

- NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in Shielded Room No. 10.
 - 3. The VCCI Site Registration No. C-1852.
 - 4. Tested Date: Feb. 22, 2012.

4.1.3 TEST PROCEDURE


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit - 20dB) were not recorded.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

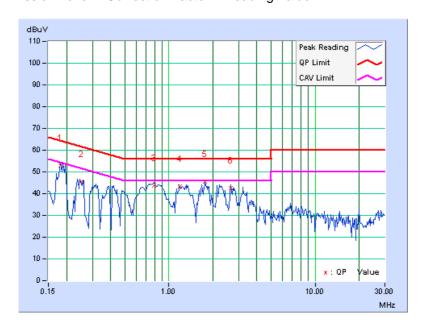
2 Roth of LISNs (AMN) are 80cm from FUT and at le

2.Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units.

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power of all equipment.
- b. PC ran a test program to enable all functions.
- c. PC read and wrote messages from HDD and ext. floppy.
- d. PC sent "H" messages to EUT, and then EUT displayed "H" patterns on its screen. (For Mode 1)
- e. DVD player sent video messages to EUT, and then EUT displayed video messages on its screen. **(For Mode 2)**
- f. PC sent messages to printer and printer printed them out.
- g. PC sent messages to modem.
- h. PC/ DVD player sent audio signal to speakers via EUT
- i. Steps c-i were repeated.

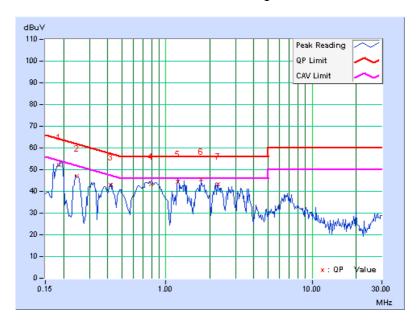


4.1.7 TEST RESULTS (1)

TEST MODE	Mode 1	6DB BANDWIDTH	9 kHz	
INPUT POWER	230Vac, 50 Hz	PHASE	Line (L)	
ENVIRONMENTAL CONDITIONS	26deg. C, 72% RH	TESTED BY: Kent Wang		

	Freq.	Corr.	Readin	g Value		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(d	В)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.183	0.15	52.83	42.39	52.98	42.54	64.37	54.37	-11.39	-11.83
2	0.253	0.16	45.24	34.31	45.40	34.47	61.66	51.66	-16.26	-17.19
3	0.791	0.22	43.51	29.08	43.73	29.30	56.00	46.00	-12.27	-16.70
4	1.185	0.24	43.09	36.61	43.33	36.85	56.00	46.00	-12.67	-9.15
5	1.773	0.28	45.16	32.98	45.44	33.26	56.00	46.00	-10.56	-12.74
6	2.665	0.33	42.32	32.10	42.65	32.43	56.00	46.00	-13.35	-13.57

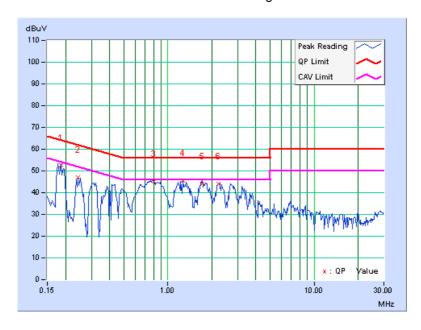
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



TEST MODE	Mode 1	6dB BANDWIDTH	9 kHz
INPUT POWER	230Vac, 50 Hz	PHASE	Neutral (N)
ENVIRONMENTAL CONDITIONS	26deg. C, 72% RH	TESTED BY: Kent Wang	

	Freq.	Corr.	Readin	g Value		ssion vel	Lir	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.187	0.15	52.11	43.53	52.26	43.68	64.19	54.19	-11.93	-10.51
2	0.247	0.16	46.91	35.07	47.07	35.23	61.85	51.85	-14.78	-16.62
3	0.421	0.19	42.71	28.13	42.90	28.32	57.43	47.43	-14.53	-19.11
4	0.789	0.22	43.26	28.86	43.48	29.08	56.00	46.00	-12.52	-16.92
5	1.207	0.24	44.17	40.00	44.41	40.24	56.00	46.00	-11.59	-5.76
6	1.741	0.27	45.35	31.44	45.62	31.71	56.00	46.00	-10.38	-14.29
7	2.270	0.29	43.06	30.87	43.35	31.16	56.00	46.00	-12.65	-14.84

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

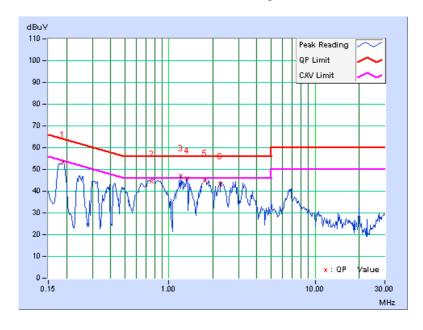


4.1.8 TEST RESULTS (2)

TEST MODE	Mode 2	6DB BANDWIDTH	9 kHz	
INPUT POWER	230Vac, 50 Hz	PHASE	Line (L)	
ENVIRONMENTAL CONDITIONS	26deg. C, 72% RH	TESTED BY: Kent Wang		

	Freq.	Corr.	Corr. Reading Value Emission Limit		Reading Value I		nit	Mar	gin	
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.185	0.15	52.59	43.94	52.74	44.09	64.25	54.25	-11.51	-10.16
2	0.242	0.16	46.89	35.13	47.05	35.29	62.01	52.01	-14.96	-16.72
3	0.802	0.22	45.03	28.42	45.25	28.64	56.00	46.00	-10.75	-17.36
4	1.262	0.25	45.13	31.01	45.38	31.26	56.00	46.00	-10.62	-14.74
5	1.715	0.27	43.70	28.99	43.97	29.26	56.00	46.00	-12.03	-16.74
6	2.215	0.30	43.60	32.82	43.90	33.12	56.00	46.00	-12.10	-12.88

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



TEST MODE	Mode 2	6dB BANDWIDTH	9 kHz
INPUT POWER	230Vac, 50 Hz	PHASE	Neutral (N)
ENVIRONMENTAL CONDITIONS	26deg. C, 72% RH	TESTED BY: Kent Wang	

	Freq.	Corr.	Reading Value		Emission Level		Limit		Margin		
No		Factor	[dB	[dB (uV)])] [dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.188	0.15	53.09	43.90	53.24	44.05	64.12	54.12	-10.88	-10.07	
2	0.766	0.21	44.08	28.57	44.29	28.78	56.00	46.00	-11.71	-17.22	
3	1.207	0.24	46.90	40.25	47.14	40.49	56.00	46.00	-8.86	-5.51	
4	1.332	0.25	45.86	34.59	46.11	34.84	56.00	46.00	-9.89	-11.16	
5	1.773	0.27	44.63	33.46	44.90	33.73	56.00	46.00	-11.10	-12.27	
6	2.234	0.29	43.14	29.95	43.43	30.24	56.00	46.00	-12.57	-15.76	

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

TEST STANDARD: EN 55022

FOR FREQUENCY BELOW 1000 MHz

FREQUENCY	Class A (at 10m)	Class B (at 10m)
(MHz)	dBuV/m	dBuV/m
30 – 230	40	30
230 – 1000	47	37

FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY (GHz)	Class A (dBu	ıV/m) (at 3m)	Class B (dBu	uV/m) (at 3m)
FREQUENCY (GHZ)	PEAK	AVERAGE	PEAK	AVERAGE
1 to 3	76	56	70	50
3 to 6	80	60	74	54

NOTE: (1) The lower limit shall apply at the transition frequencies.

- (2) Emission level (dBuV/m) = 20 log Emission level (uV/m).
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement Range (MHz)
Below 108	1000
108 – 500	2000
500 – 1000	5000
	Up to 5 times of the highest
Above 1000	frequency or 6 GHz, whichever is
	less

4.2.2 TEST INSTRUMENTS

Frequency Range 30MHz~1GHz

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
ROHDE & SCHWARZ					
TEST	ESCI	100744	Apr. 19, 2011	Apr. 18, 2012	
RECEIVER					
CHASE BILOG	CBL6112B	2695	Apr 14 2011	Apr. 13, 2012	
Antenna	CDL0112D	2095	Apr. 14, 2011		
CT Turn Table	TT100	CT-0079	NA	NA	
CT Tower	AT100	CT-0079	NA	NA	
Software	ADT_Radiated	NA	NA	NA	
Sollware	_V7.6.15.9.2	IVA	INA		
ADT RF Switches BOX	EMH-011	08007	Apr. 01, 2011	Mar. 31, 2012	
WOKEN RF cable	8D	CABLE-ST9-01	Apr. 01, 2011	Mar. 31, 2012	

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Open Site No. 9.
- 3. The VCCI Site Registration No. R-1248.
- 4. The Industry Canada Reference No. IC 7450E-9.
- 5. The FCC Site Registration No. 99976.
- 6. Tested Date: Feb. 21, 2012.

Frequency Range above 1GHz

DESCRIPTION & MANUFACTURER	MODEL NO. SERIAL NO.		CALIBRATED DATE	CALIBRATED UNTIL	
Agilent Spectrum	E4446A	MY46180403	Jun. 22, 2011	Jun. 21, 2012	
Agilent Preamplifier	8449B	3008A01201	Mar. 04, 2011	Mar. 03, 2012	
MITEQ Preamplifier	AMF-6F-260400- 33-8P	892164	Mar. 04, 2011	Mar. 03, 2012	
Schwarzbeck Horn Antenna	BBHA-9170	BBHA9170190	Oct. 07, 2011	Oct. 06, 2012	
Schwarzbeck Horn Antenna	BBHA-9120-D1	D130	May 16, 2011	May 15, 2012	
ADT. Turn Table	TT100	0306	NA	NA	
ADT. Tower	AT100	0306	NA	NA	
Software	ADT_Radiated_V 7.6.15.9.2	NA	NA	NA	
SUHNER RF cable	SF102	Cable-CH6	Aug. 19, 2011	Aug. 18, 2012	

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Chamber No. 6.
- 3. The Industry Canada Reference No. IC 7450E-6.
- 4. The VCCI Site Registration No. G-257
- 5. The FCC Site Registration No. 447212.
- 6. The minimum 3dB beamwidth of antenna is 30 degrees for above 1GHz test.
- 7. Tested Date: Feb. 21, 2012.

4.2.3 TEST PROCEDURE

<Frequency Range 30MHz ~ 1GHz>

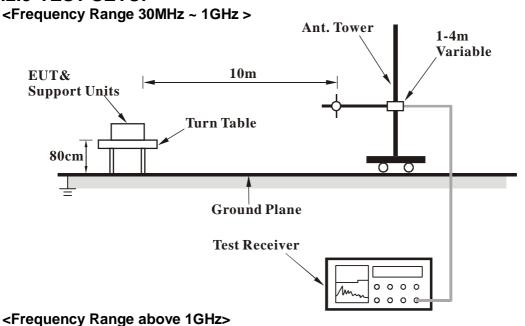
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

NOTE: The resolution bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.

<Frequency Range above 1GHz>

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter Semi-anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter-to four meters, the height of adjustment depends on the EUT height and the antenna 3dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

NOTE:


- 1. The resolution bandwidth is 1MHz and video bandwidth of test receiver/spectrum analyzer is 3MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1GHz.
- 2. For measurement of frequency above 1000 MHz, the EUT was set 3 meters away from the receiver antenna.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

Ant. Tower

1-4m*
Variable

Support Units

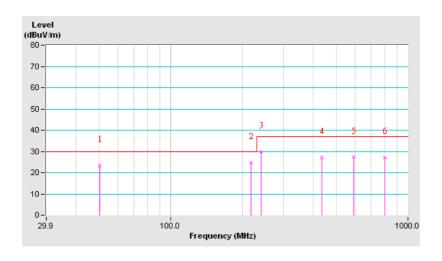
Ground Plane
Spectrum analyzer

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Same as item 4.1.6

^{*:} depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

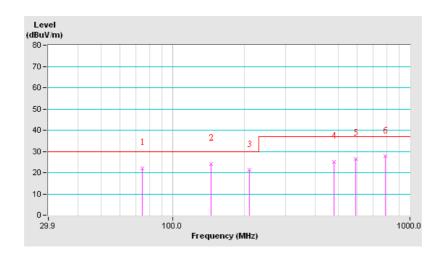


4.2.7 TEST RESULTS (1)

TEST MODE	Mode 1		
FREQUENCY RANGE	30-1000 MHz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	23deg. C, 68% RH,	TESTED BY: Brad Tu	ung

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	50.29	23.40 QP	30.00	-6.60	4.00 H	14	13.83	9.57			
2	217.31	24.77 QP	30.00	-5.23	4.00 H	128	11.85	12.92			
3	240.02	29.78 QP	37.00	-7.22	4.00 H	247	15.18	14.60			
4	432.24	27.18 QP	37.00	-9.82	2.49 H	241	6.48	20.70			
5	589.77	27.31 QP	37.00	-9.69	1.83 H	245	3.24	24.07			
6	796.80	27.26 QP	37.00	-9.74	1.00 H	162	1.17	26.09			

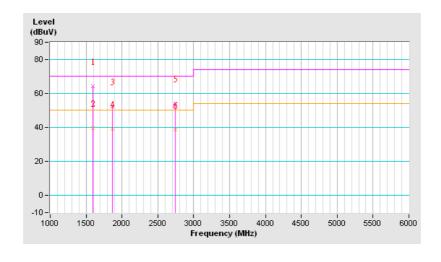
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 1		
FREQUENCY RANGE	30-1000 MHz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	23deg. C, 68% RH,	TESTED BY: Brad To	ung

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M										
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction			
No.	•	Level	(dBuV/m)	_	Height	Angle	Value	Factor			
(MHz)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)				
1	74.37	22.11 QP	30.00	-7.89	1.20 V	296	13.91	8.20			
2	145.55	24.18 QP	30.00	-5.82	1.00 V	167	11.16	13.02			
3	211.12	21.19 QP	30.00	-8.81	1.00 V	49	8.72	12.47			
4	480.01	25.19 QP	37.00	-11.81	2.10 V	109	3.38	21.81			
5	588.72	26.45 QP	37.00	-10.55	2.34 V	321	2.40	24.05			
6	785.52	27.65 QP	37.00	-9.35	2.58 V	13	1.76	25.89			

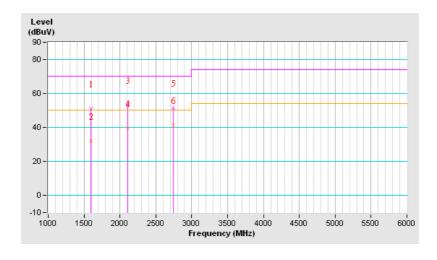
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 1			
FREQUENCY RANGE	1-6 GHz	DETECTOR FUNCTION & BANDWIDTH	Peak/Average, 1MHz	
ENVIRONMENTAL CONDITIONS	21deg. C, 73% RH,	TESTED BY: Kobe Lu		

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1599.43	64.21 PK	70.00	-5.79	1.38 H	175	36.38	27.83	
2	1599.43	39.64 AV	50.00	-10.36	1.38 H	175	11.81	27.83	
3	1865.36	52.31 PK	70.00	-17.69	1.14 H	54	23.94	28.37	
4	1865.36	39.24 AV	50.00	-10.76	1.14 H	54	10.87	28.37	
5	2747.25	53.89 PK	70.00	-16.11	1.15 H	127	22.12	31.77	
6	2747.25	38.56 AV	50.00	-11.44	1.15 H	127	6.79	31.77	

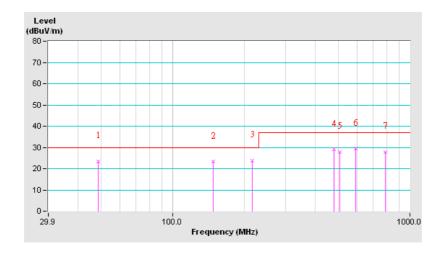
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 1		
FREQUENCY RANGE	1-6 GHz	DETECTOR FUNCTION & BANDWIDTH	Peak/Average, 1MHz
ENVIRONMENTAL CONDITIONS	21deg. C, 73% RH,	TESTED BY: Kobe L	u

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction		
No.	•	Level	(dBuV/m)	J	Height	Angle	Value	Factor		
	(MHz)	(dBuV/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)		
1	1598.95	51.15 PK	70.00	-18.85	2.03 V	15	23.32	27.83		
2	1598.95	31.89 AV	50.00	-18.11	2.03 V	15	4.06	27.83		
3	2106.06	53.25 PK	70.00	-16.75	1.06 V	140	24.26	28.99		
4	2106.06	39.52 AV	50.00	-10.48	1.06 V	140	10.53	28.99		
5	2744.35	51.58 PK	70.00	-18.42	1.00 V	52	19.82	31.76		
6	2744.35	41.33 AV	50.00	-8.67	1.00 V	52	9.57	31.76		

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

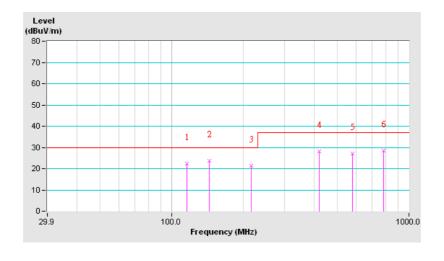


4.2.8 TEST RESULTS (2)

TEST MODE	Mode 2		
FREQUENCY RANGE	30-1000 MHz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	22deg. C, 72% RH,	TESTED BY: lan Cha	ang

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 10 M								
	Freq.	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
No.	(MHz)	Level			Height	Angle	Value	Factor	
	(IVIIIZ)	(dBuV/m)	(ubu v/III)	IBuV/m) (dB)		(Degree)	(dBuV)	(dB/m)	
1	48.37	23.35 QP	30.00	-6.65	4.00 H	14	12.30	11.05	
2	148.49	23.23 QP	30.00	-6.77	4.00 H	207	10.33	12.90	
3	216.52	23.87 QP	30.00	-6.13	4.00 H	201	11.00	12.87	
4	480.01	29.00 QP	37.00	-8.00	2.44 H	214	7.19	21.81	
5	507.28	27.88 QP	37.00	-9.12	2.31 H	265	5.48	22.40	
6	589.23	29.33 QP	37.00	-7.67	1.86 H	165	5.27	24.06	
7	788.56	27.96 QP	37.00	-9.04	1.00 H	90	2.02	25.94	

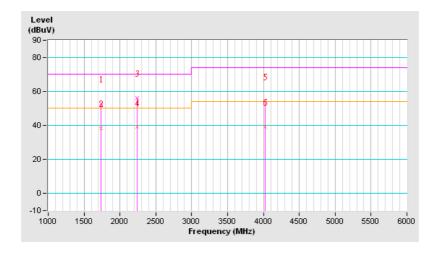
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 2		
FREQUENCY RANGE	30-1000 MHz	DETECTOR FUNCTION & BANDWIDTH	Quasi-Peak, 120 kHz
ENVIRONMENTAL CONDITIONS	22deg. C, 72% RH,	TESTED BY: Ian Cha	ang

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 10 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	115.52	22.35 QP	30.00	-7.65	1.00 V	181	8.64	13.71	
2	144.25	23.86 QP	30.00	-6.14	1.00 V	136	10.79	13.07	
3	216.59	21.34 QP	30.00	-8.66	1.00 V	51	8.47	12.87	
4	417.43	28.27 QP	37.00	-8.73	1.66 V	31	7.94	20.33	
5	580.07	27.06 QP	37.00	-9.94	2.41 V	257	3.17	23.89	
6	784.83	28.42 QP	37.00	-8.58	1.73 V	133	2.55	25.87	

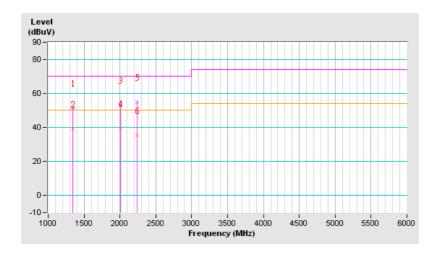
- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 2		
FREQUENCY RANGE	1-6 GHz	DETECTOR FUNCTION & BANDWIDTH	Peak/Average, 1MHz
ENVIRONMENTAL CONDITIONS	21deg. C, 73% RH,	TESTED BY: Kobe L	u

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1731.29	52.88 PK	70.00	-17.12	1.00 H	134	24.72	28.16		
2	1731.29	38.25 AV	50.00	-11.75	1.00 H	134	10.09	28.16		
3	2241.77	56.24 PK	70.00	-13.76	1.19 H	124	26.65	29.59		
4	2241.77	38.96 AV	50.00	-11.04	1.19 H	124	9.37	29.59		
5	4019.97	54.21 PK	74.00	-19.79	1.53 H	349	18.89	35.32		
6	4019.97	39.11 AV	54.00	-14.89	1.53 H	349	3.79	35.32		

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.



TEST MODE	Mode 2		
FREQUENCY RANGE	1-6 GHz	DETECTOR FUNCTION & BANDWIDTH	Peak/Average, 1MHz
ENVIRONMENTAL CONDITIONS	21deg. C, 73% RH,	TESTED BY: Kobe L	u

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	1341.25	51.54 PK	70.00	-18.46	1.00 V	124	24.48	27.06		
2	1341.25	39.21 AV	50.00	-10.79	1.00 V	124	12.15	27.06		
3	2006.24	53.22 PK	70.00	-16.78	1.03 V	132	24.62	28.60		
4	2006.24	39.58 AV	50.00	-10.42	1.03 V	132	10.98	28.60		
5	2241.60	54.95 PK	70.00	-15.05	1.28 V	194	25.36	29.59		
6	2241.60	35.54 AV	50.00	-14.46	1.28 V	194	5.95	29.59		

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

4.3 HARMONICS CURRENT MEASUREMENT

4.3.1 LIMITS OF HARMONICS CURRENT MEASUREMENT

TEST STANDARD: EN 61000-3-2

Limits for Class A equipment						
Harmonics	Max. permissible					
Order	harmonics current					
n	Α					
Odd harmonics						
3	2.30					
3 5 7	1.14					
	0.77					
9	0.40					
11	0.33					
13	0.21					
15<=n<=39 0.15x15/n						
Even harmonics						
2	1.08					
2 4 6	0.43					
6	0.30					
8<=n<=40	0.23x8/n					

7-3- <u>Z</u>					
Limits for Class D equipment					
Harmonics	Max. permissible	Max. permissible			
Order	harmonics current per harmonics cu				
n	watt mA/W A				
Odd Harmonics only					
3	3.4	2.30			
5	1.9	1.14			
7	1.0	0.77			
9	0.5	0.40			
11	0.35	0.33			
13	0.30	0.21			
15<=n<=39	3.85/n	0.15x15/n			

NOTE: 1. Class A and Class D are classified according to section 5 of EN 61000-3-2: 2006.

2. According to section 7 of EN 61000-3-2: 2006, the above limits for all equipment except for lighting equipment are for all applications having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

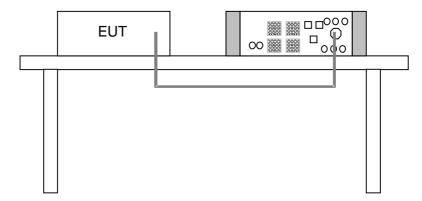
4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
EMC PARTNER	HAR1000-1P	084	Apr. 12, 2011	Apr. 11, 2012
EMC Emission Tester	11AIX1000-11	004	Apr. 12, 2011	Αρι. 11, 2012
Software	HARCS	NA	NA	NA

NOTE: 1. The test was performed in EMS Room No. 1.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. According to IEC 61000-4-7: 2002, the time window shall be synchronized with each group of 10 or 12 cycles (200 ms)for power frequency of 50 or 60Hz.
- 4. Tested Date: Feb. 24, 2012.

4.3.3 TEST PROCEDURE


- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- b. The classification of EUT is according to section 5 of EN 61000-3-2: 2006. The EUT is classified as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class B:Portable tools. ; Arc welding equipment which is not professional equipment
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors.
- c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.3.6 EUT OPERATING CONDITIONS

- a. Turned on the power of all equipment.
- b. PC ran a test program to enable all functions.
- c. PC read and wrote messages from HDD & USB Drives via EUT..
- d. PC sent "full white screen pattern" to EUT, and then EUT displayed them on its screen.
- e. PC sent audio signal to speaker of EUT.
- f. Steps c-f were repeated.

4.3.7 TEST RESULTS

TEST MODE	Mode 1			
FUNDAMENTAL VOLTAGE/AMPERE	230.1Vrms/ 0.271Arms	POWER FREQUENCY	49.987Hz	
POWER CONSUMPTION	28.96W	POWER FACTOR	0.464	
ENVIRONMENTAL CONDITIONS	21deg. C, 75% RH	TESTED BY: Ted Huang		

NOTE: Limits are not specified for equipment with a rated power of 75W or less (other than lighting equipment).

4.4 VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT

4.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKS MEASUREMENT

TEST STANDARD: EN 61000-3-3

TEST ITEM	LIMIT	NOTE		
P _{st}	1.0	P _{st} means short-term flicker indicator.		
P _{lt}	0.65	P _{lt} means long-term flicker indicator.		
T _{d(t)} (ms)	500	Td(t) means maximum time that d(t) exceeds 3.3%		
d _{max} (%)	4	d _{max} means maximum relative voltage change.		
dc (%)	3.3	dc means relative steady-state voltage change		

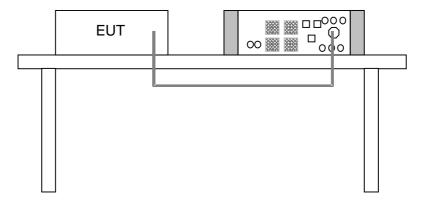
4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
EMC PARTNER	HAR1000-1P	084	Apr. 12, 2011	Apr. 11, 2012
EMC Emission Tester			,	,
Software	HARCS	NA	NA	NA

NOTE: 1. The test was performed in EMS Room No. 1.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Feb. 24, 2012.

4.4.3 TEST PROCEDURE


- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- b. During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation

4.4.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.4.6 EUT OPERATING CONDITIONS

Same as item 4.3.6

4.4.7 TEST RESULTS

TEST MODE	Mode 1			
FUNDAMENTAL VOLTAGE/AMPERE	230.1Vrms/ 0.271 Arms	POWER FREQUENCY	49.987Hz	
OBSERVATION PERIOD (Tp)	10 minutes	POWER FACTOR	0.464	
ENVIRONMENTAL CONDITIONS	21deg. C, 75%RH	TESTED BY: Ted Huang		

TEST PARAMETER	MEASUREMENT LIMIT		REMARKS
P _{st}	0.072	1.0	Pass
P _{lt}	0.072	0.65	Pass
T _{d(t)} (ms)	0	500	Pass
d _{max} (%)	0	4	Pass
dc (%)	0.020	3.3	Pass

NOTE: (1)

- (1) P_{st} means short-term flicker indicator.
- (2) P_{lt} means long-term flicker indicator.
- (3) $T_{d(t)}$ means maximum time that d(t) exceeds 3.3%.
- (4) d_{max} means maximum relative voltage change.
- (5) dc means relative steady-state voltage change.

5 IMMUNITY TEST

5.1 GENERAL DESCRIPTION

Product Standard:	EN 55024:2010			
	IEC 61000-4-2	Electrostatic Discharge – ESD:		
		8kV air discharge,		
		4kV Contact discharge, Performance Criterion B		
	IEC 61000-4-3			
	160 01000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test – RS:		
		80-1000 MHz, 3V/m, 80% AM (1kHz),		
		Performance Criterion A		
	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT		
		AC Power line: 1kV,		
		DC Power line: 0.5kV		
		Signal line: 0.5kV		
		Performance Criterion B		
	IEC 61000-4-5	Surge Immunity Test:		
		AC Power Line: line to line 1 kV,		
		line to earth 2kV		
Racio Standard		DC Power Line: Line to earth 0.5kV		
Basic Standard, specification		Performance Criterion B		
requirement, and		Signal line:		
Performance Criteria:		i) 1 kV without primary protectors, Performance Criteria C		
'		ii) 4 kV with primary protectors, Performance Criterion C		
	IEC 61000-4-6	Conducted Radio Frequency		
		Disturbances Test – CS:		
		0.15-80 MHz, 3Vrms, 80% AM, 1kHz,		
		Performance Criterion A		
	IEC 61000-4-8	Power Frequency Magnetic Field Test,		
		50 Hz, 1A/m,		
	IEO 04000 4 44	Performance Criterion A		
	IEC 61000-4-11	,		
		iii) >95% reduction -0.5 period, Performance Criterion B		
		iv) 30% reduction – 25 period,		
		Performance Criterion C		
		Voltage Interruptions:		
		i) >95% reduction – 250 period,		
		Performance Criterion C		

5.2 GENERAL PERFORMANCE CRITERIA DESCRIPTION

According to Clause 7.1 of EN 55024:2010 standard, the following describes the general performance criteria.

CRITERION A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION B	After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.
OKITEKION B	During the test, degradation of performance is allowed. However, no change of operating state if stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

5.3 PARTICULAR PERFORMANCE CRITERIA DESCRIPTION FOR DATA DISPLAY FUNCTION OF EUT

CRITERION A	When seen from normal viewing distance, the EUT shall operate with no change beyond the manufacturer's specification, in flicker, color, focus and jitter (except for the power magnetic field test).
CRITERION B	Screen disturbances during the application of the test are permissible.
CRITERION C	Failures which are not self-recovered after removal of the external disturbance, but which can be recovered to normal operation by reset or reboot are permissible.

5.4 EUT OPERATING CONDITION

- a. Turned on the power of all equipment.
- b. PC ran a test program to enable all functions.
- c. PC read and wrote messages from HDD & USB Drives via EUT.
- d. PC sent "H" messages to EUT, and then EUT displayed them on its screen.
- e. PC sent audio signal to speaker of EUT.
- f. Steps c-f were repeated.

5.5 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

5.5.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-2 **Discharge Impedance:** 330 ohm / 150 pF

Discharge Voltage: Air Discharge : 2kV/ 4kV/ 8kV (Direct)

Contact Discharge: 2kV/ 4kV (Direct/ Indirect)

Polarity: Positive & Negative

Number of Discharge: Air Discharge: Min. 20 times at each test point

Contact Discharge: Min. 200 times in total

Discharge Mode: Single Discharge **Discharge Period:** 1 second minimum

5.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
EM Test ESD Simulator	Dito	V0707102251	Apr. 01, 2011	Mar. 31, 2012

NOTE: 1. The test was performed in ESD Room No. 3.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Feb. 24, 2012.

5.5.3 TEST PROCEDURE

The discharges shall be applied in two ways:

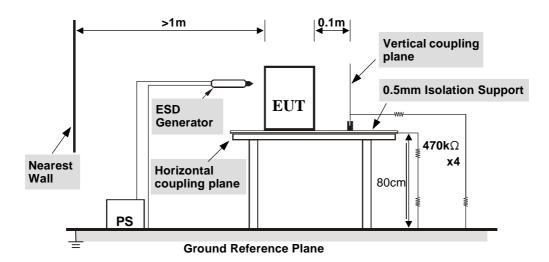
a. Contact discharges to the conductive surfaces and coupling planes:

The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

b. Air discharges at slots and apertures and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:


- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned horizontally at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

5.5.4 DEVIATION FROM TEST STANDARD

No deviation

5.5.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with $940k\Omega$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

5.5.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER 230Vac, 50 Hz		
ENVIRONMENTAL	17deg. C, 57%RH,	TEOTED DV Teddleron		
CONDITIONS	1009hPa	TESTED BY: Ted Huang		

	TEST RESULTS OF DIRECT APPLICATION						
Discharge Level (kV)	Polarity	Test Point	Contact Discharge	Air Discharge	Performance Criterion		
2	+/-	1, 2	Note (1)	N/A	Α		
4	+/-	1, 2	Note (2)	N/A	В		
2, 4	+/-	3 ~ 9	N/A	Note (1)	Α		
8	+/-	4, 5, 9	N/A	Note (1)	А		
8	+/-	3, 6 ~ 8	N/A	Note (2)	В		

Description of test point: Please refer to ESD test photo for representative mark only.

	TEST RESULTS OF INDIRECT APPLICATION					
Discharge Level (kV)	Polarity	Test Point	Horizontal Coupling Plane	Vertical Coupling Plane	Performance Criterion	
2, 4	+/-	1 ~ 4	Note (1)	Note (1)	A	

Description of test point:

- 1. Left side
- 2. Right side
- 3. Front side
- 4. Rear side

NOTE: (1) There was no change compared with initial operation during the test.

(2) There were horizontal bars on the screen during the test, but self-recoverable after the test.

5.6 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

5.6.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-3

Frequency Range: 80 MHz - 1000 MHz

Field Strength: 3 V/m

Modulation: 1 kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of fundamental Polarity of Antenna: Horizontal and Vertical

Antenna Height: 1.5 m

Dwell Time: 3 seconds

5.6.2 TEST INSTRUMENTS

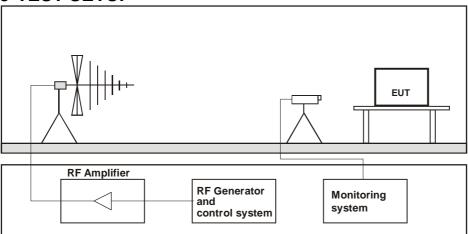
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Signal Generator	E8257D	MY48050465	Jun. 11, 2011	Jun. 10, 2012
PRANA RF Amplifier	AP32DP280	0811-894	NA	NA
AR RF Amplifier	150W1000M3	306601	NA	NA
AR RF Amplifier	35S4G8AM4	0326094	NA	NA
AR RF Amplifier	100S1G4M3	0329249	NA	NA
AR Controller	SC1000M3	305910	NA	NA
Radisense Electric Field Sensor	CTR1001A RadiSense 6	06D00232SN O-02 06D00232SN O39	Jul. 15, 2011	Jul. 14,2012
Radisense Electric Field Sensor	CTR1002A	08D00057SN O-07	Jun. 06, 2011	Jun. 05, 2012
BOONTON RF Voltage Meter	4232A	10180	Jun. 14, 2011	Jun. 13, 2012
BOONTON Power Sensor	51011-EMC	34152	Jun. 14, 2011	Jun. 13, 2012
BOONTON Power Sensor	51011-EMC	34153	Jun. 15, 2011	Jun. 14, 2012
AR Log-Periodic Antenna	AT6080	0329465	NA	NA
EMCO BiconiLog Antenna	3141	1001	NA	NA
AR High Gain Antenna	AT4002A	306533	NA	NA
AR High Gain Horn Antenna	AT4010	0329800	NA	NA
CHANCE MOST Full Anechoic Chamber (9x5x3m)	Chance Most	RS-002	Feb. 10, 2012	Feb. 09, 2013
Software	ADT_RS_V7.6	NA	NA	NA

NOTE: 1. The test was performed in RS Room No.2.

- 3. The transmit antenna was located at a distance of 3 meters from the EUT.
- 4. Tested Date: Feb. 24, 2012.

^{2.} The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.6.3 TEST PROCEDURE


The test procedure was in accordance with IEC 61000-4-3

- The testing was performed in a fully-anechoic chamber.
- b. The frequency range is swept from 80 MHz to 1000 MHz with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0,5s.
- d. The field strength level was 3V/m.
- e. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

5.6.4 DEVIATION FROM TEST STANDARD

No deviation

5.6.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

5.6.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER	230Vac, 50 Hz	
ENVIRONMENTAL	21deg. C, 70%RH	TESTED BY: Ryan Chen		
CONDITIONS	21deg. 0, 70 /61(11			

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Observation	Performance Criterion
	V & H	0	3		
00 4000	V & H	90	3	Note	^
80 - 1000	V & H	180	3	Note	A
	V & H	270	3		

NOTE: There was no change compared with the initial operation during the test.

5.7 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT)

5.7.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-4 **Test Voltage:** Power Line : 1 kV

Signal/Control Line: N/A

Polarity: Positive & Negative

Impulse Frequency: 100 kHz: only for signal lines of xDSL equipment

5 kHz: except for xDSL equipment

Impulse Waveshape :5/50 nsBurst Duration:15 msBurst Period:300 msTest Duration:1 min.

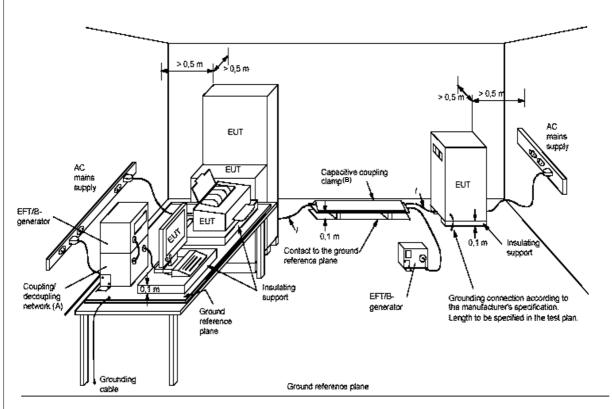
5.7.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Haefely, EFT Generator	PEFT 4010	154954	Apr. 19, 2011	Apr. 18, 2012
Haefely,Capacitive Clamp	IP4A	155173	NA	NA

NOTE: 1. The test was performed in EFT Room

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Feb. 23, 2012.

5.7.3 TEST PROCEDURE


- a. Both positive and negative polarity discharges were applied.
- b. The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter ± 0.05 meter.
- c. The duration time of each test sequential was 1 minute.
- d. The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

5.7.4 DEVIATION FROM TEST STANDARD

No deviation

5.7.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

1: length between clamp and the EUT to be tested (should be 0.5 ± 0.05 m)

(A): location for supply line coupling

(B): location for signal lines coupling

NOTE:

EUTs, whether stationary floor-mounted or table top, and equipment designed to be mounted in other configurations, shall be placed on a ground reference plane and shall be insulated from it by an insulating support $0.1 \text{ m} \pm 0.01 \text{ m}$ thick. A minimum distance of 0.5 m was provided between the EUT and the walls of the laboratory or any other metallic structure.

5.7.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER	230Vac, 50 Hz		
ENVIRONMENTAL	21deg. C, 65%RH	TECTED DV: Tod Hugan			
CONDITIONS	2 rueg. 0, 05 /61(11	TESTED BY: Ted Huang			

Test Point	Polarity	Test Level (kV)	Observation	Performance Criterion
L1	+/-	1	Note	А
L2	+/-	1	Note	Α
PE	+/-	1	Note	Α
L1-L2-PE	+/-	1	Note	А

NOTE: There was no change compared with the initial operation during the test.

5.8 SURGE IMMUNITY TEST

5.8.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-5

Wave-Shape: Combination Wave for power lines

1.2/50 us Open Circuit Voltage 8 /20 us Short Circuit Current 10/700 us Wave for signal lines 10/700 us Open Circuit Voltage

Test Voltage: Power Line: 0.5kV/ 1 kV/ 2 kV

Surge Input/Output: L1-L2, L1-PE, L2-PE

Generator Source 2 ohm between networks

Impedance: 12 ohm between network and ground

Polarity: Positive/Negative
Phase Angle: 0°/90°/180°/270°
Pulse Repetition Rate: 1 time / 20 sec.

Number of Tests: 5 positive and 5 negative at selected points

5.8.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
KeyTek, Surge	E-Class	9508347	Jun. 30, 2011	Jun. 29, 2012
Coupler/Decoupler	Series 100	9506547	Juli. 30, 2011	Juli. 29, 2012
Coupling Decoupling Network	CDN-UTP8	028	Jul. 18, 2011	Jul. 17, 2012
KeyTek I/O Signal				
Line	CM-I/OCD	9907177	NA	NA
Coupler/Decoupler				
Surge Cable	WE-4	SU1Cab-001	NA	NA
Surge Adapter WONPRO	WA-9	SU1ADA-002	NA	NA
Software	E500	NA	NA	NA

NOTE: 1. The test was performed in Surge Room.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Feb. 23, 2012.

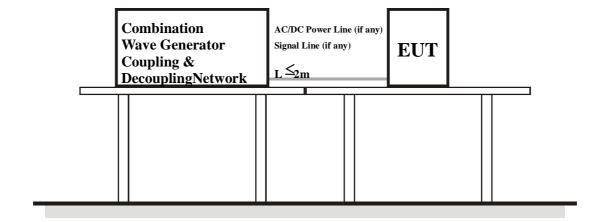
5.8.3 TEST PROCEDURE

a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT:

The surge is applied to the lines via the capacitive coupling. The coupling / decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).


c. For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

5.8.4 DEVIATION FROM TEST STANDARD

No deviation

5.8.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

5.8.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER	230Vac, 50 Hz		
ENVIRONMENTAL	21deg. C, 64%RH	TECTED BY: Ted Hueng			
CONDITIONS	21deg. 0, 04701(11	TESTED BY: Ted Huang			

Voltage	Toot Doint	Dolority	Phase Angle			Performance	
(kV)	Test Point	Polarity	0°	90°	180°	270°	Criterion
0.5, 1	L1-L2	+/-	Note	Note	Note	Note	В
0.5.4.2	L1-PE	+/-	Note	Note	Note	Note	В
0.5, 1, 2	L2-PE	+/-	Note	Note	Note	Note	В

NOTE: The USB R/W function was stopped during the test, but self-recoverable after the test.

5.9 IMMUNITY TO CONDUCTED DISTURBANCES INDUCED BY RF FIELDS (CS)

5.9.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-6

Frequency Range: 0.15 MHz - 80 MHz

Field Strength: 3 V_{r.m.s.}

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of fundamental

Coupled Cable: Power Mains, Signal cable

Coupling Device: CDN-M3 (3 wires)

Report No.: CE120220D03 57 Report Format Version 4.1.0

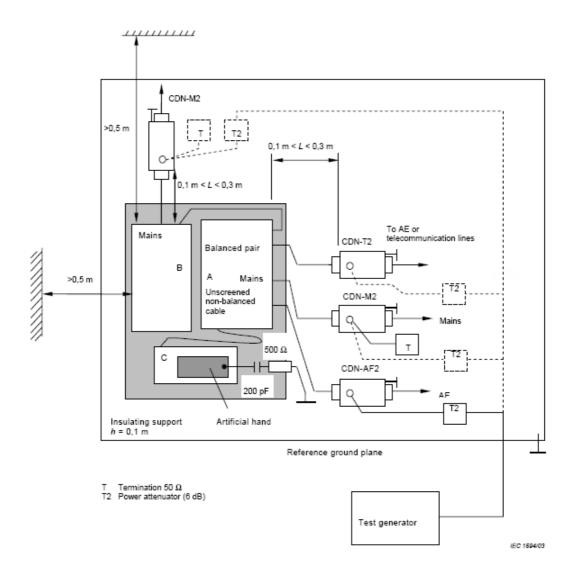
5.9.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Signal Generator	SMY01	841104/033	Nov. 23, 2011	Nov. 22, 2012
Digital Sweep Function Generator	8120	984801	NA	NA
AR Power Amplifier	75A250AM1	312196	NA	NA
FCC Coupling Decoupling Network	FCC-801-M3 -25A	48	Aug. 19, 2011	Aug. 18, 2012
FCC Coupling Decoupling Network	FCC-801-M3 -25A	01022	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-M2 -16A	01047	Aug. 19, 2011	Aug. 18, 2012
FISCHER CUSTOM COMMUNICATIONS EM Injection Clamp	FCC-203I	50	NA	NA
FISCHER CUSTOM COMMUNICATIONS Current Injection Clamp	F-120-9A	361	NA	NA
EM TEST Coupling Decoupling Network	CDN M1/32A	306508	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-T8	02038	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-T4	02031	Feb. 24, 2012	Feb. 23, 2013
FCC Coupling Decoupling Network	FCC-801-T2	02021	Feb. 24, 2012	Feb. 23, 2013
R&S Power Sensor	NRV-Z5	837878/038	Nov. 15, 2011	Nov. 14, 2012
R&S Power Sensor	NRV-Z5	837878/039	Nov. 14, 2011	Nov. 13, 2012
R&S Power Meter	NRVD	837794/040	Nov. 15, 2011	Nov. 14, 2012
Software	ADT_CS_V7. 4.2	NA	NA	NA

NOTE: 1. The test was performed in CS Room No. 1.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Feb. 24, 2012.

5.9.3 TEST PROCEDURE


- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- c. One of the CDNs not used for injection was terminated with $50\,\Omega$, providing only one return path. All other CDNs were coupled as decoupling networks.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- e. The dwell time of the amplitude modulated carrier at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0,5 s. The sensitive frequencies (e.g. clock frequencies) shall be analyzed separately.
- f. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

5.9.4 DEVIATION FROM TEST STANDARD

No deviation

5.9.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

Note: 1.The EUT clearance from any metallic obstacles shall be at least 0,5 m.

- 2. Interconnecting cables (≤ 1 m) belonging to the EUT shall remain on the insulating support.
- 3. The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

5.9.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER	230Vac, 50 Hz	
ENVIRONMENTAL	21deg. C, 72%RH	TECTED DV: Ted Hugge		
CONDITIONS	21deg. 0, 72/01(11	TESTED BY: Ted Huang		

FREQUENCY (MHz)	FIELD STRENGTH (V _{r.m.s.})	CABLE	INJECTION METHOD	RETURN PATH	OBSER- VATION	PERFORMANCE CRITERION
0.15 – 80	3	AC power line	CDN-M3	CDN-M3	Note	А

NOTE: There was no change compared with the initial operation during the test.

5.10 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST

5.10.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-8

Frequency Range: 50Hz
Field Strength: 1 A/m
Observation Time: 1 minute

Inductance Coil: Rectangular type, 1 m x 1 m

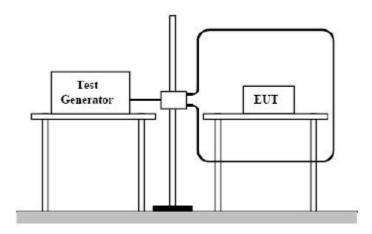
5.10.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL NO	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
HAEFELY Magnetic	MAC 400 4	002704.00	NIA	NIA
Field Tester	MAG 100.1	083794-06	NA	NA
COMBINOVA				
Magnetic	MFM10	224	Mar. 02, 2011	Mar. 01, 2012
Field Meter				

NOTE: 1. The test was performed in EMS Room No. 1.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Feb. 23, 2012.

5.10.3 TEST PROCEDURE


- a. The equipment is configured and connected to satisfy its functional requirements.
- b. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- c. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

5.10.4 DEVIATION FROM TEST STANDARD

No deviation

5.10.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

5.10.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER	230Vac, 50 Hz
ENVIRONMENTAL	21deg. C, 62%RH	TESTED BY: Ted Huang	
CONDITIONS	21deg. 0, 02/61(11		

Direction	Field Strength (A/m)	Observation	Performance Criterion
X - Axis	1	Note	А
Y - Axis	1	Note	Α
Z - Axis	1	Note	А

NOTE: There was no change compared with the initial operation during the test.

5.11 VOLTAGE DIP/SHORT INTERRUPTIONS (DIP) IMMUNITY TEST

5.11.1 TEST SPECIFICATION

Basic Standard: IEC 61000-4-11

Test Duration Time: Minimum three test events in sequence

Interval between Event: Minimum ten seconds

Phase Angle: $0^{\circ}/180^{\circ}$ Test Cycle: 3 times

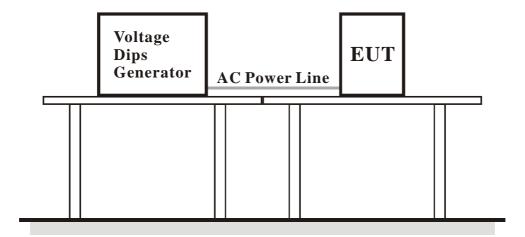
5.11.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER	WODEL NO.	SERIAL NO.	DATE	UNTIL
HAEFELY Mains				
Interference	PLINE1610	083690-17	Jun 02, 2011	Jun 01, 2012
Simulator				

NOTE: 1. The test was performed in EMS Room No. 1.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Feb. 23, 2012.

5.11.3 TEST PROCEDURE


The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

5.11.4 DEVIATION FROM TEST STANDARD

No deviation

5.11.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

5.11.6 TEST RESULTS

TEST MODE	Mode 1	INPUT POWER	230Vac, 50 Hz & 100Vac, 50 Hz
ENVIRONMENTAL CONDITIONS	22deg. C, 71%RH	TESTED BY: Ted Huang	

Input Power for testing: 230Vac, 50 Hz			
VOLTAGE % REDUCTION	PERIODS	OBSERVATION	PERFORMANCE CRITERION
>95	0.5	Note (1)	A
30	25	Note (1)	A
>95	250	Note (2)	С

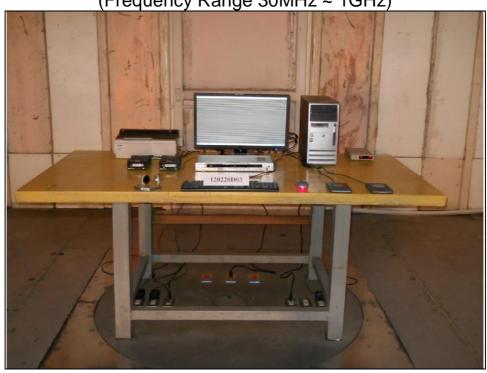
Input Power for testing: 100Vac, 50 Hz			
VOLTAGE % REDUCTION	PERIODS	OBSERVATION	PERFORMANCE CRITERION
>95	0.5	Note (1)	A
30	25	Note (1)	A
>95	250	Note (2)	С

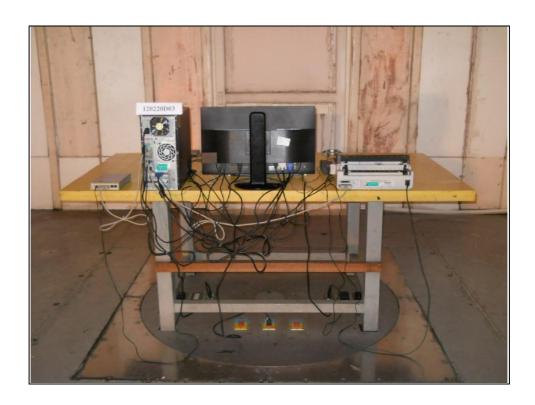
NOTE: (1) There was no change compared with the initial operation during the test.

(2) The EUT power off during the test, but could be restored by the operator.

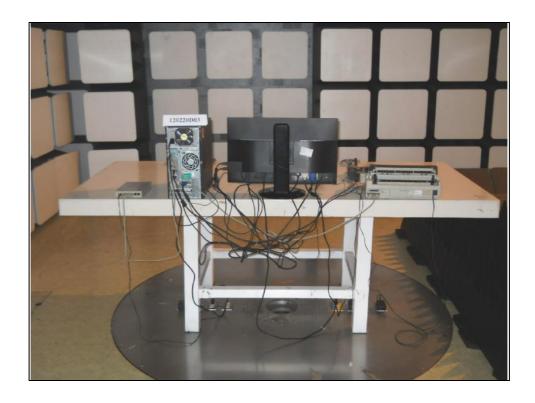
6 PHOTOGRAPHS OF THE TEST CONFIGURATION

CONDUCTED EMISSION TEST - For Mode 1

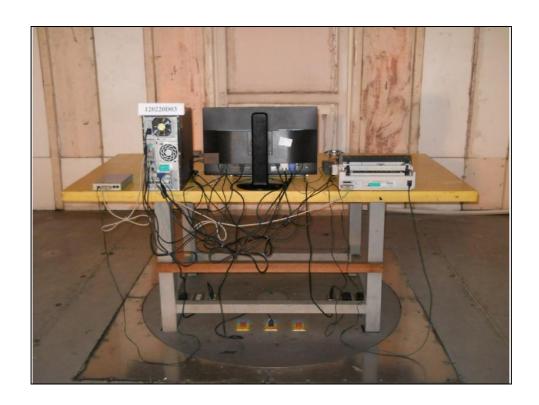

CONDUCTED EMISSION TEST – For Mode 2

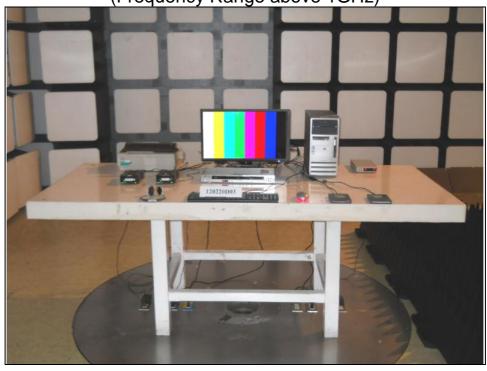


RADIATED EMISSION TEST – For Mode 1 (Frequency Range 30MHz ~ 1GHz)



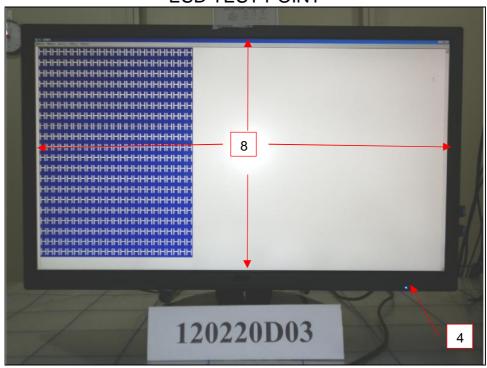
RADIATED EMISSION TEST – For Mode 1 (Frequency Range above 1GHz)



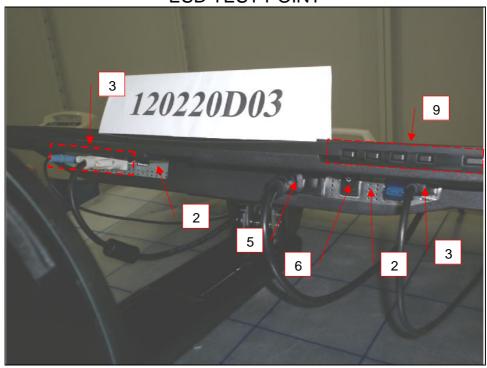

RADIATED EMISSION TEST – For Mode 2 (Frequency Range 30MHz ~ 1GHz)

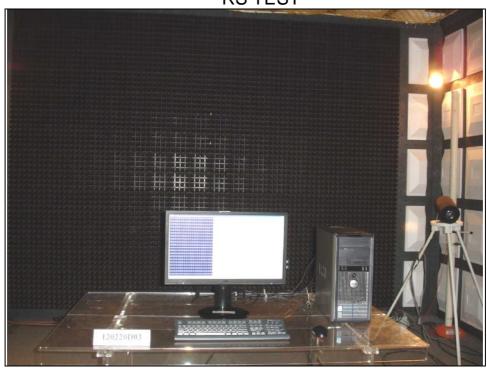
RADIATED EMISSION TEST – For Mode 2 (Frequency Range above 1GHz)

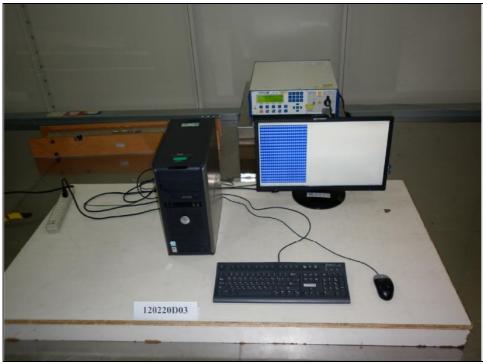
HARMONICS EMISSION TEST & VOLTAGE FLUCTUATIONS AND FLICKER TEST



ESD TEST

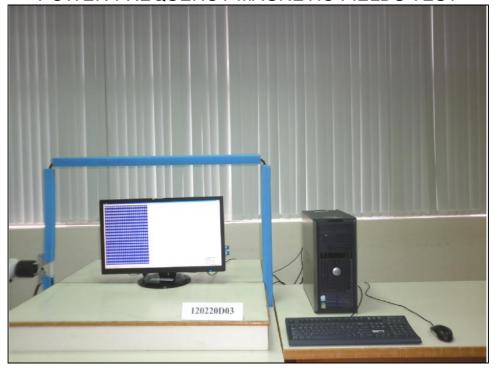

ESD TEST POINT


ESD TEST POINT

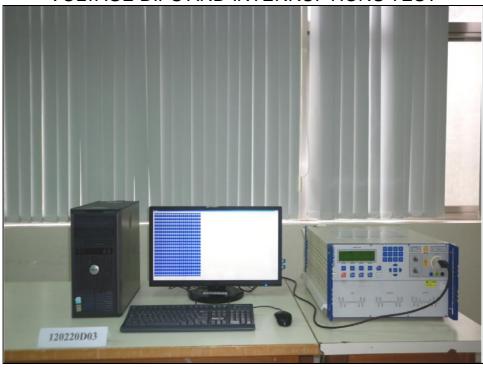

RS TEST

EFT TEST

SURGE TEST



CONDUCTED SUSCEPTIBILITY TEST



POWER-FREQUENCY MAGNETIC FIELDS TEST

VOLTAGE DIPS AND INTERRUPTIONS TEST

7 APPENDIX - INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

www.adt.com.tw/index.5.phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---