

FCC& ISED EMC Test Report

Project No. Equipment Model Name Applicant Address		1806C005 LCD Monitor **32G1******* (*=A-Z,a-z,0-9,/,or blank) TPV Electronics (Fujian) Co., Ltd. Rongqiao Economic and Technological Development Zone, Fuqing City, Fujian Province, P.R. China
Date of Receipt Date of Test Issued Date Tested by	:	Jun. 02, 2018 Jun. 25, 2018 ~ Jul. 18, 2018 Jul. 23, 2018 BTL Inc.
Testing Enginee Technical Manag	ge	(Bill Zhang)

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents	Page
REPORT ISSUED HISTORY	4
1. CERIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 EUT OPERATING CONDITIONS	10
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTEI	D 10
3.5 DESCRIPTION OF SUPPORT UNITS	11
4 . EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSION 4.1.2 MEASUREMENT INSTRUMENTS LIST	12 12
4.1.3 TEST PROCEDURE	13
4.1.4 DEVIATION FROM TEST STANDARD	13
4.1.5 TEST SETUP	13
4.1.6 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	22
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 4.2.2 MEASUREMENT INSTRUMENTS LIST	22 23
4.2.3 TEST PROCEDURE	23 24
4.2.4 DEVIATION FROM TEST STANDARD	24
4.2.5 TEST SETUP	25
4.2.6 TEST RESULTS-BELOW 1GHZ	25
4.2.7 TEST RESULTS-ABOVE 1GHZ	34
5.EUT TEST PHOTO	43

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICE-1-1806C005	Original Issue.	Jul. 23, 2018

1. CERIFICATION

Equipment :	LCD Monitor
Brand Name :	N/A
Model Name :	**32G1******** (*=A-Z,a-z,0-9,/,or blank)
Applicant :	TPV Electronics (Fujian) Co., Ltd.
Date of Test :	Jun. 25, 2018 ~ Jul. 18, 2018
Test Sample :	Engineering Sample No.: D180605122(Mainboard 2), D180605123(Mainboard 1)
Standard(s) :	FCC Part 15, Subpart B ICES-003 Issue 6: 2016 ICES-003 Issue 6, January 2016 (updated April 2017) ANSI C63.4-2014

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICE-1-1806C005) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of NVLAP according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

EMC Emission					
Standard(s)	Test Item	Limit	Judgment	Remark	
FCC Part15, Subpart B	Conducted Emission	Class B	PASS		
ICES-003 Issue 6: 2016 ICES-003 Issue 6, January 2016 (undated April 2017)	Radiated emission Below 1 GHz	Class B	PASS		
2016 (updated April 2017) ANSI C63.4-2014	Radiated emission Above 1 GHz	Class B	PASS	NOTE(2)	

NOTE:

- (1) " N/A" denotes test is not applicable to this device.
- (2) The EUT's max operating frequency exceeds 108 MHz, so the test will be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. BTL's test firm number for FCC: 854385

BTL's test designation number for FCC:CN5020

BTL's test firm number for IC:4428B-3

2.2MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95**%.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C01	CISPR	150 kHz ~ 30MHz	3.16

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		30MHz ~ 200MHz	V	4.68
DG-CB08 (3m)	CISPR	30MHz ~ 200MHz	Н	4.68
		200MHz ~ 1,000MHz	V	4.90
		200MHz ~ 1,000MHz	Н	4.90

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-CB08	CISPR	1 ~ 6 GHz	4.26
(3m)	CISER	6 ~18 GHz	5.30

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LCD Monitor	LCD Monitor		
Brand Name	N/A	N/A		
Model Name	**32G1******	* (*=A-Z,a-z,0-9	,/,or blank)	
Model Difference(s	 Only differ in n 	nodel name due f	o marketing pur	pose.
Power Source	AC Mains.			
Power Rating	100-240V~ 50	0/60Hz		
Connecting I/O Po	For mainboar 1* AC port 2* HDMI port 1* Display po 1* D-SUB por 1* Earphone For mainboar 1* AC port 2* HDMI port 1* Display po 1* Earphone	rt t port d 2: rt		
Cable Type	Shielded Type	Ferrite Core	Length(m)	Note
D-SUB	Shielded	YES	1.2/1.5/1.8	Bonded two Ferrite

Cable Type	Shielded Type	Ferrite Core	Length(m)	Note
D-SUB	Shielded	YES	1.2/1.5/1.8	Bonded two Ferrite Cores
Display	Shielded	NO	1.2/1.5/1.8	
HDMI	Shielded	NO	1.2/1.5/1.8	
AC Power Cord	Non-shielded	NO	1.2/1.5/1.8	1.8m is worst case Detachable (3 Pin)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Power cable 1.8m, 1.5m and 1.2m length, worst case is Power cable 1.8m with Display+HDMI+D-SUB 1.8m length testing and recording in test report.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

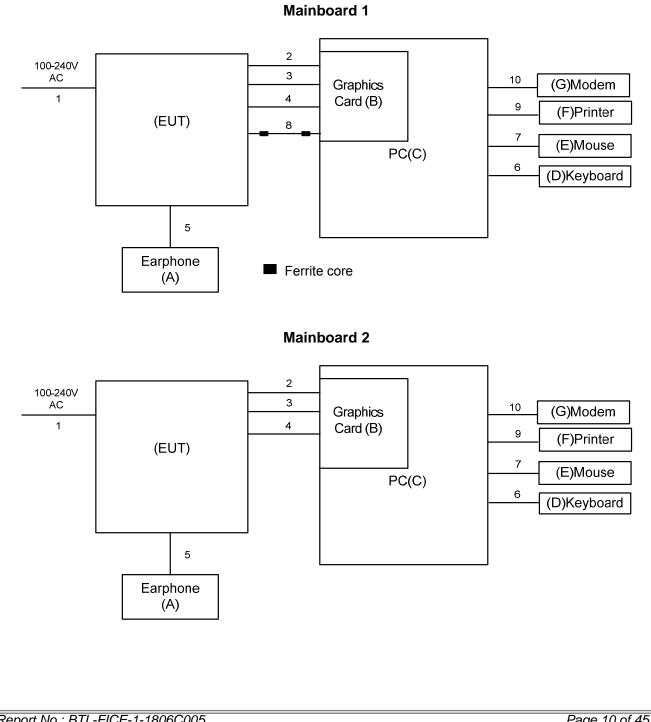
Pretest Mode	Description
Mode 1	Display 1920*1080/144Hz
Mode 2	D-SUB 1920*1080/60Hz
Mode 3	HDMI 1 1920*1080/144Hz
Mode 4	HDMI 2 1920*1080/144Hz
Mode 5	HDMI 1 1080P
Mode 6	HDMI 2 1080P
Mode 7	HDMI 2 1280*1024/75Hz
Mode 8	HDMI 2 640*480/75Hz

For Conducted Test		
Final Test Mode	Description	
Mode 2	D-SUB 1920*1080/60Hz	
Mode 4	HDMI 2 1920*1080/144Hz	
Mode 6	HDMI 2 1080P	

	For Radiated Test					
Final Test Mode	Description					
Mode 2	D-SUB 1920*1080/60Hz					
Mode 4	HDMI 2 1920*1080/144Hz					
Mode 6	HDMI 2 1080P					

Evaluation description:

- 1. The maximum resolution is evaluated Mode 1-6. The worst case is Mode 4 and evaluated the middle and low resolution Mode 7 and mode 8.
- 2. According to the client's requirement, choose Mode 2, Mode 4 and Mode 6 recording in test report.
- 3. Mainboard 2 evaluated mainboard 1's worst case and recorded in test report. Mode 2 is only for mainboard 1.



3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. EUT connected to PC via Display & HDMI & D-SUB cable.
- 2. EUT connected to earphone via earphone cable.
- 3. PC connected to mouse and keyboard via USB cable.
- 4. PC connected to printer via parallel cable.
- 5. PC connected to modem via RS232 cable.

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.
А	Earphone	Apple	N/A	VER	N/A
В	Graphics Card	DELL	ATI 3650	DOC	260832000932
С	PC	DELL	Vostro 470	DOC	28747261333
D	Keyboard	DELL	KB212-B	DOC	CN0HTXH97158125004 DXA01
Е	Mouse	DELL	MS111-P	DOC	CN011D3V71581279OL OT
F	Printer	SII	DPU-414	DOC	3018507 B
G	Modem	ACEEX	DM-1414V	IFAXDM1414	0603002131

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	1.8m/1.5m/1.2m	AC Cable
2	YES	NO	1.8m/1.5m/1.2m	HDMI Cable
3	YES	NO	1.8m/1.5m/1.2m	HDMI Cable
4	YES	NO	1.8m/1.5m/1.2m	Display Cable
5	NO	NO	1.2m	Earphone Cable
6	YES	NO	1.8m	USB Cable
7	YES	NO	1.8m	USB Cable
8	YES	YES	1.8m/1.5m/1.2m	D-SUB Cable
9	YES	NO	1.8m	Parallel Cable
10	YES	NO	1.8m	RS232 Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

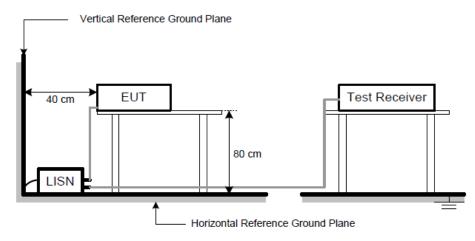
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 11, 2019
2	TWO-LINE V-NETWORK	R&S	ENV216	100526	Mar. 11, 2019
3	EMI Test Receiver	R&S	ESR3	101862	Aug. 15, 2018
4	Artificial-Mains Network	SCHWARZBECK	NSLK 8127	8127685	Aug. 20, 2018
5	Cable	N/A	RG400 12m	N/A	Mar. 06, 2019
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

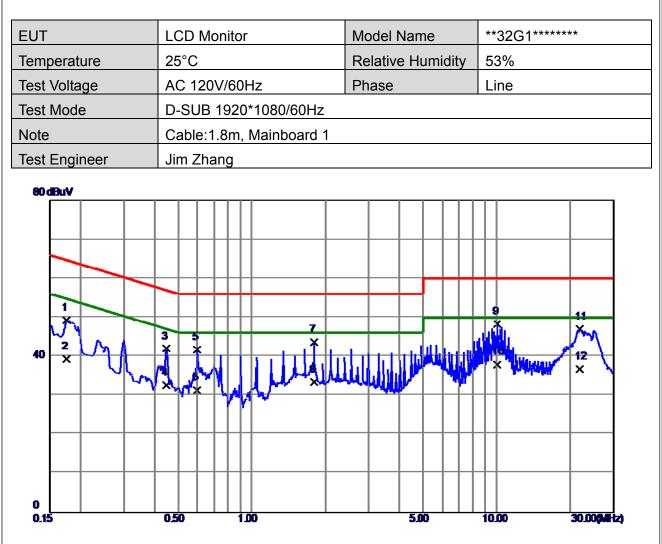

4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. First the whole spectrum of emission caused by equipment under test(EUT) is recorded with Detector set to peak. Peak value recorded in table if the margin from QP Limit is larger than 2dB,otherwise,QP value is recorded, Measuring frequency range from 150KHz to 30MHz.

4.1.4 DEVIATION FROM TEST STANDARD

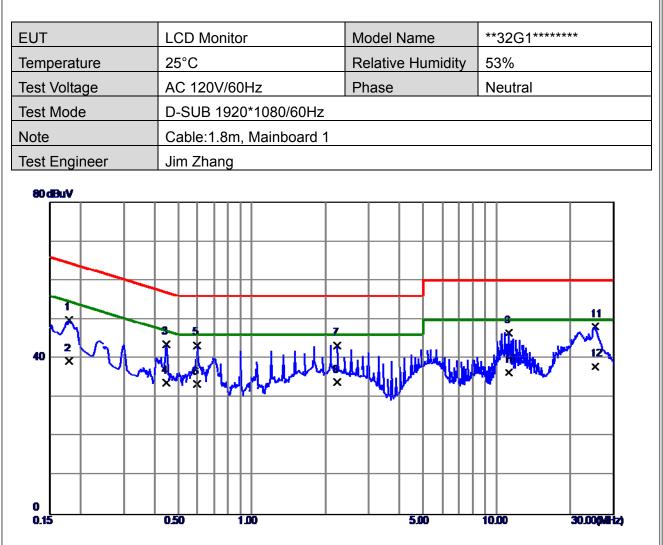
No deviation

4.1.5 TEST SETUP


4.1.6 TEST RESULTS

Remark

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz; SPA setting in RBW=10KHz,VBW =10KHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10KHz,VBW=10KHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1748	39.40	9.82	49.22	64.73	-15.51	QP
2	0.1748	29.50	9.82	39.32	54.73	-15.41	AVG
3	0.4492	32.13	9.87	42.00	56.89	-14.89	QP
4	0.4492	22.80	9.87	32.67	46.89	-14.22	AVG
5	0.5977	31.82	9.89	41.71	56. 00	-14.29	QP
6	0.5977	21.40	9.89	31.29	46.00	-14.71	AVG
7	1.7948	33.69	9.98	43.67	56. 00	-12.33	QP
8	1.7948	23.41	9.98	33. 39	46.00	-12.61	AVG
9 *	10.0229	37.80	10. 50	48.30	60.00	-11.70	QP
10	10.0229	27.50	10.50	38.00	50.00	-12.00	AVG
11	21.8693	35.89	11.18	47.07	60.00	-12 . 9 3	QP
12	21.8693	25.60	11.18	36.78	50.00	-13.22	AVG

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1793	39.96	9.91	49.87	64.52	-14. 65	QP
2	0.1793	29.51	9.91	39.42	54.52	-15. 1 0	AVG
3	0.4492	33.73	10.02	43.75	56.89	-13.14	QP
4	0.4492	23.69	10.02	33.71	46.89	-13. 18	AVG
5	0.6000	33.40	10.04	43.44	56. 00	-12.56	QP
6	0.6000	23.40	10.04	33.44	46.00	-12.56	AVG
7	2.2425	33.23	10.20	43.43	56. 00	-12.57	QP
8	2.2425	23.70	10.20	33.90	46.00	-12.10	AVG
9	11.2200	35.75	10.84	46.59	60.00	-13.41	QP
10	11.2200	25.60	10.84	36.44	50.00	-13.56	AVG
11 *	25. 2330	36.66	11.51	48.17	60.00	-11. 83	QP
12	25. 2330	26.49	11.51	38.00	50.00	-12.00	AVG

EUT	LCD Monite	or	Model Name	**32G1******
Temperature	25°C		Relative Humidity	53%
Test Voltage	AC 120V/6	0Hz	Phase	Line
Test Mode	HDMI 2 19	20*1080/144Hz		
Note	Cable:1.8m	n, Mainboard 1		
Test Engineer	Jim Zhang			
80 dBuV				
40				
0 0.15	0.50	1.00	5.00	10.00 30.00 (MHz)

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1770	40.16	9.82	49.98	64.63	-14. 65	QP
2	0.1770	30.61	9.82	40.43	54.63	-14.20	AVG
3	0.6000	31.55	9.89	41.44	56. 00	-14.56	QP
4	0.6000	21.50	9.89	31.39	46.00	-14.61	AVG
5	1.7990	35.43	9.98	45.41	56.00	-10. 59	QP
6 *	1.7992	26.22	9.98	36.20	46.00	-9.80	AVG
7	4.9470	32.61	10.20	42.81	56.00	-13. 19	QP
8	4.9470	22.50	10.20	32.70	46.00	-13. 30	AVG
9	8.8462	36.63	10.44	47.07	60.00	-12.93	QP
10	8.8462	26.51	10.44	36.95	50.00	-13. 05	AVG
11	24.2452	35.14	11.16	46.30	60.00	-13.70	QP
12	24.2452	25.90	11.16	37.06	5 0. 00	-12. 94	AVG

EUT	LCD Monito	or	Model Name	**32G1******
Temperature	25°C		Relative Humidity	53%
Test Voltage	AC 120V/6	0Hz	Phase	Neutral
Test Mode	HDMI 2 19	20*1080/144Hz		
Note	Cable:1.8m	n, Mainboard 1		
Test Engineer	Jim Zhang			
80 dBuV				
40				
0 0.15	0.50	1.00	5.00	10.00 30.000/NH tz

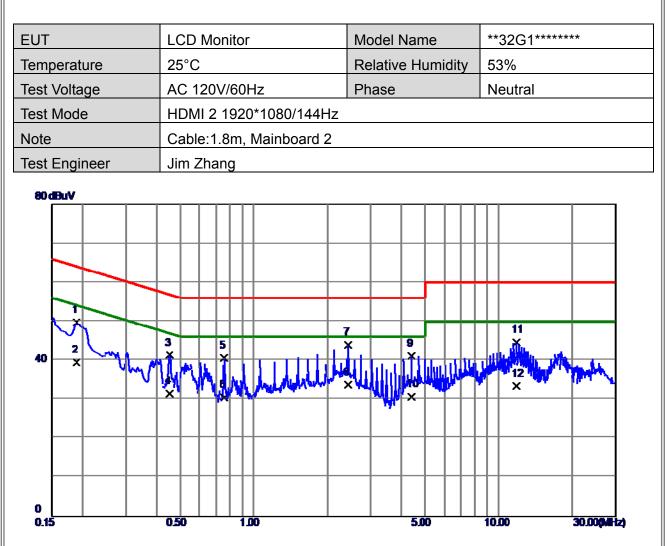
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1725	40.60	9.91	50. 51	64.84	-14.33	QP
2	0.1725	32.50	9.91	42.41	54.84	-12.43	AVG
3	0.6000	33.73	10.04	43.77	56. 00	-12.23	QP
4	0.6000	21.50	10.04	31.54	46.00	-14.46	AVG
5	1.7992	32.98	10.18	43.16	56. 00	-12.84	QP
6	1.7992	22. 50	10.18	32.68	46.00	-13.32	AVG
7	2.0985	33.58	10.19	43.77	56. 00	-12.23	QP
8	2.0985	23.50	10.19	33.69	46.00	-12.31	AVG
9	10.7947	35.98	10.81	46.79	60.00	-13.21	QP
10	10.7947	25.40	10.81	36.21	50.00	-13.79	AVG
11	24.1822	36.14	11.50	47.64	60.00	-12.36	QP
12 *	24.1822	26.71	11. 50	38.21	50.00	-11.79	AVG

EUT	LCD Monitor	Model Name	**32G1******
Temperature	25°C	53%	
Test Voltage	AC 120V/60Hz	Phase	Line
Test Mode	HDMI 2 1080P		
Note	Cable:1.8m, Mainboard 1		
Test Engineer	Jim Zhang		
80 dBuV			
40			• · · · · · · · · · · · · · · · · · · ·
0 <u> </u> 0.15	0.50 1.00	<u> </u>	10.00 30.000MH

Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1725	40.29	9.82	50. 11	64.84	-14.73	QP
0.1725	30.60	9.82	40.42	54.84	-14.42	AVG
0.6000	31.55	9.89	41.44	56. 0 0	-14.56	QP
0.6000	21.50	9.89	31.39	46.00	-14.61	AVG
1.7992	33. 52	9.98	43.50	56. 00	-12. 50	QP
1.7992	24.51	9.98	34.49	46.00	-11.51	AVG
4.9470	32.69	10.20	42.89	56. 00	-13.11	QP
4.9470	22.50	10.20	32.70	46.00	-13. 30	AVG
8.8440	36.62	10.44	47.06	60.00	-12. 94	QP
8.8440	26.81	10.44	37.25	5 0. 00	-12.75	AVG
24.2047	34.98	11.16	46.14	60.00	-13.86	QP
24.2047	24.50	11.16	35.66	50.00	-14.34	AVG
	MHz 0. 1725 0. 1725 0. 6000 0. 6000 1. 7992 1. 7992 4. 9470 4. 9470 8. 8440 8. 8440 24. 2047	Freq. Level MHz dBuV 0.1725 40.29 0.1725 30.60 0.6000 31.55 0.6000 21.50 1.7992 33.52 1.7992 24.51 4.9470 32.69 4.9470 22.50 8.8440 36.62	Freq. Level Factor MHz dBuV dB 0.1725 40.29 9.82 0.1725 30.60 9.82 0.6000 31.55 9.89 0.6000 21.50 9.89 1.7992 33.52 9.98 1.7992 24.51 9.98 4.9470 32.69 10.20 4.9470 22.50 10.20 8.8440 36.62 10.44 8.8440 26.81 10.44 24.2047 34.98 11.16	Freq.LevelFactormentMHzdBuVdBdBuV0.172540.299.8250.110.172530.609.8240.420.600031.559.8941.440.600021.509.8931.391.799233.529.9843.501.799224.519.9834.494.947032.6910.2042.894.947022.5010.2032.708.844036.6210.4447.068.844026.8110.4437.2524.204734.9811.1646.14	Freq.LevelFactormentLimitMHzdBuVdBdBuVdBuV0. 172540. 299. 8250. 1164. 840. 172530. 609. 8240. 4254. 840. 600031. 559. 8941. 4456. 000. 600021. 509. 8931. 3946. 001. 799233. 529. 9843. 5056. 001. 799224. 519. 9834. 4946. 004. 947032. 6910. 2042. 8956. 004. 947022. 5010. 2032. 7046. 008. 844036. 6210. 4447. 0660. 008. 844026. 8110. 4437. 2550. 0024. 204734. 9811. 1646. 1460. 00	Freq.LevelFactormentLimitMarginMHzdBuVdBdBuVdBuVdB0.172540.299.8250.11 64.84 -14.73 0.172530.609.8240.42 54.84 -14.42 0.600031.559.8941.44 56.00 -14.61 1.799233.529.9843.50 56.00 -12.50 1.799224.519.9834.49 46.00 -11.51 4.947032.6910.2042.89 56.00 -13.11 4.947022.5010.2032.70 46.00 -12.94 8.8440 36.62 10.44 47.06 60.00 -12.75 24.204734.9811.16 46.14 60.00 -13.86

EUT	LCD Monitor	Model Name	**32G1******
Temperature	25°C	Relative Humidity	53%
Fest Voltage	AC 120V/60Hz	Phase	Neutral
Test Mode	HDMI 2 1080P		
Note	Cable:1.8m, Mainboard 1		
Test Engineer	Jim Zhang		
80 dBuV			
40 2 X W			
0 <u> </u> 0.15	0.50 1.00	5,00	10.00 30.00(MH z

Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1770	39.92	9.91	49.83	64.63	-14.80	QP
0.1770	29.61	9.91	39.52	54.63	-15.11	AVG
0.6000	32.99	10.04	43.03	56. 00	-12.97	QP
0.6000	22.50	10.04	32.54	46.00	-13.46	AVG
1.7992	32.75	10.18	42.93	56. 00	-13.07	QP
1.7992	22.50	10.18	32.68	46.00	-13.32	AVG
2.2492	33.91	10.20	44.11	56. 00	-11.89	QP
2.2492	23.60	10.20	33.80	46.00	-12.20	AVG
10.7947	35.92	10.81	46.73	60.00	-13.27	QP
10.7947	25.50	10.81	36.31	50.00	-13.69	AVG
24.1125	36.24	11.50	47.74	60.00	-12.26	QP
24.1125	26.40	11. 50	37.90	50.00	-12.10	AVG
	MHz 0. 1770 0. 1770 0. 6000 1. 7992 1. 7992 2. 2492 2. 2492 10. 7947 10. 7947 24. 1125	Freq. Level MHz dBuV 0.1770 39.92 0.1770 29.61 0.6000 32.99 0.6000 22.50 1.7992 32.75 1.7992 22.50 2.2492 33.91	Freq. Level Factor MHz dBuV dB 0.1770 39.92 9.91 0.1770 29.61 9.91 0.6000 32.99 10.04 0.6000 22.50 10.04 1.7992 32.75 10.18 1.7992 22.50 10.18 2.2492 33.91 10.20 2.2492 23.60 10.20 10.7947 35.92 10.81 10.7947 25.50 10.81 24.1125 36.24 11.50	Freq.LevelFactormentMHzdBuVdBdBuV0.177039.929.9149.830.177029.619.9139.520.600032.9910.0443.030.600022.5010.0432.541.799232.7510.1842.931.799222.5010.1832.682.249233.9110.2044.112.249223.6010.2033.8010.794735.9210.8146.7310.794725.5010.8136.3124.112536.2411.5047.74	Freq.LevelFactormentL1mitMHzdBuVdBdBuVdBuV0. 177039. 929. 9149. 8364. 630. 177029. 619. 9139. 5254. 630. 600032. 9910. 0443. 0356. 000. 600022. 5010. 0432. 5446. 001. 799232. 7510. 1842. 9356. 001. 799222. 5010. 1832. 6846. 002. 249233. 9110. 2044. 1156. 002. 249223. 6010. 2033. 8046. 0010. 794735. 9210. 8146. 7360. 0010. 794725. 5010. 8136. 3150. 0024. 112536. 2411. 5047. 7460. 00	Freq.LevelFactormentLimitMarginMHzdBuVdBdBuVdBuVdB0.177039.929.9149.8364.63-14.800.177029.619.9139.5254.63-15.110.600032.9910.0443.0356.00-12.970.600022.5010.0432.5446.00-13.461.799232.7510.1842.9356.00-13.322.249233.9110.2044.1156.00-11.892.249223.6010.2033.8046.00-12.2010.794735.9210.8146.7360.00-13.6924.112536.2411.5047.7460.00-12.26



UT	LCD Monite	or	Model Name	**32G1******	
emperature	25°C		Relative Humidity	53%	
est Voltage	AC 120V/6	0Hz	Phase	Line	
est Mode	HDMI 2 19	20*1080/144Hz			
lote	Cable:1.8m	n, Mainboard 2			
est Engineer	Jim Zhang				
80 dBuV					
40					
0	0.50	1.00	<u> </u>	10.00 30.000MH b	

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1973	40.02	9.82	49.84	63.72	-13.88	QP
2	0.1973	30.50	9.82	40.32	53.72	-13.40	AVG
3	0.4537	33. 52	9.88	43.40	56.81	-13.41	QP
4	0.4537	23.50	9.88	33. 38	46.81	-13.43	AVG
5	0.6045	33. 59	9.89	43.48	56. 00	-12.52	QP
6	0.6045	24.50	9.89	34.39	46.00	-11.61	AVG
7	1.8173	35. 0 9	9.98	45.07	56. 00	-10.93	QP
8 *	1.8173	25.91	9.98	35.89	46.00	-10.11	AVG
9	4.3912	31.97	10.16	42.13	56. 00	-13.87	QP
10	4.3912	21.41	10.16	31.57	46.00	-14.43	AVG
11	9.5393	33.26	10.48	43.74	60.00	-16.26	QP
12	9. 5393	23. 50	10.48	33. 98	5 0. 00	-16. 02	AVG

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1883	39.80	9.91	49.71	64.11	-14.40	QP
2	0.1883	29.60	9.91	39.51	54.11	-14.60	AVG
3	0.4537	31.34	10.02	41.36	56.81	-15.45	QP
4	0.4537	21.51	10.02	31.53	46.81	-15.28	AVG
5	0.7575	30.62	10.08	40.70	56. 00	-15.30	QP
6	0.7575	20.51	10.08	30.59	46.00	-15.41	AVG
7 *	2.4224	33.78	10.21	43.99	56. 00	-12.01	QP
8	2.4224	23.50	10.21	33.71	46.00	-12.29	AVG
9	4.3912	30.78	10.36	41.14	56. 00	-14.86	QP
10	4.3912	20.41	10.36	30.77	46.00	-15.23	AVG
11	11.8118	33.83	10.88	44.71	60.00	-15.29	QP
12	11.8118	22.49	10.88	33. 37	50. 00	-16.63	AVG

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1 GHz

Measurement Method and Applied Limits: ANSI C63.4:

	Class A	(at 10m)	Class B (at 3m)			
Frequency (MHz)	(uV/m) Field strength	(dBuV/m) Field strength	(uV/m) Field strength	(dBuV/m) Field strength		
30 - 88	90	39	100	40		
88 - 216	150	43.5	150	43.5		
216 - 960	210	46.4	200	46		
Above 960	300	49.5	500	54		

Above 1 GHz Measurement Method and Applied Limits: ANSI C63.4:

Frequency		Clas	ss A		Class B		
	(dBuV/m) (at 3m)		(dBuV/m)) (at 10m)	(dBuV/m) (at 3m)		
(MHz)	Peak	Average	Peak	Average	Peak	Average	
Above 1000	80	60	69.5	49.5	74	54	

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:

- The limit for radiated test was performed according to as following: FCC Part 15, Subpart B; ICES-003 Issue 6, January 2016 (updated April 2017).
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

4.2.2 MEASUREMENT INSTRUMENTS LIST

Below 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Attenuator	SHX	TS2-6dB-6G-A	16101101	Nov. 09, 2018
2	Attenuator	SHX	TS2-6dB-6G-A	16101102	Jan. 04, 2019
3	Receiver	Keysight	N9038A	MY54450004	Aug. 15, 2018
4	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 11, 2019
5	Pre-Amplifier	Mini-Circuits	EMC 9135	980284	Mar. 11, 2019
6	Pre-Amplifier	Mini-Circuits	EMC 9135	980283	Mar. 11, 2019
7	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	586	Nov. 09, 2018
8	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	587	Jan. 04, 2019
9	Cable	emci	LMR-400(5m+11m+ 15m)	N/A	Nov. 01, 2019
10	Cable	emci	LMR-400(5m+8m+1 5m)	N/A	Nov. 01, 2019
11	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
12	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Above 1GHz:

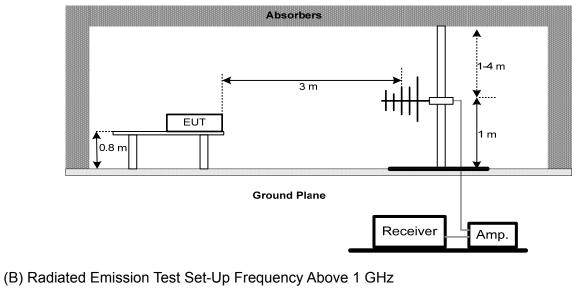
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Horn Antenna	EMCO	3115	9605-4803	Mar. 11, 2019
2	Amplifier	Agilent	8449B	3008A02584	Aug. 20, 2018
3	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 11, 2019
4	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
5	Cable	emci	SUCOFLEX_15m_5 m(0.01GHz - 26.5GHz)	N/A	Dec. 26, 2018
6	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
7	Controller	MF	MF-7802	MF780208159	N/A

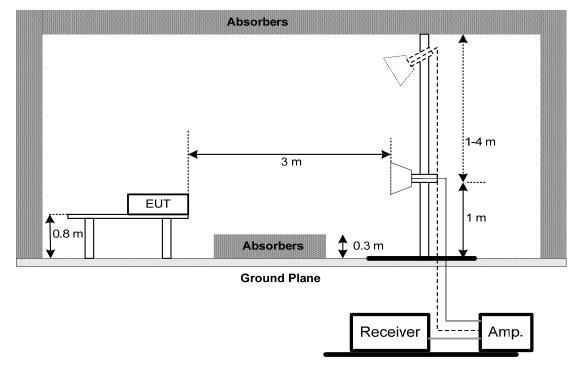
Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

4.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.3).


4.2.4 DEVIATION FROM TEST STANDARD


No deviation

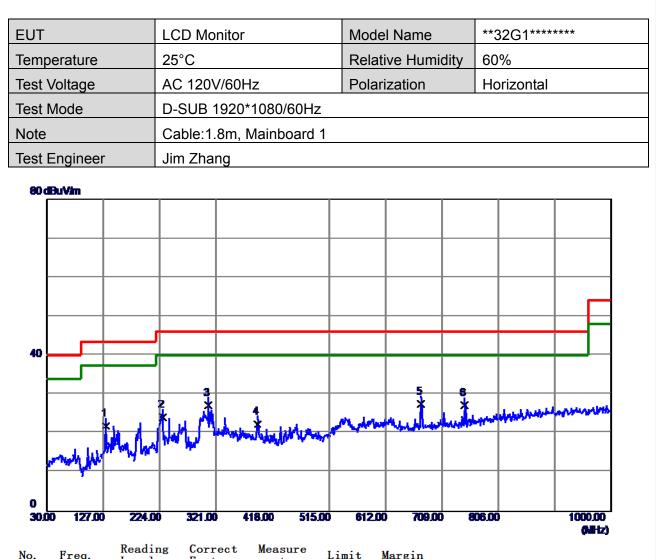
4.2.5 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

4.2.6 TEST RESULTS-BELOW 1GHZ

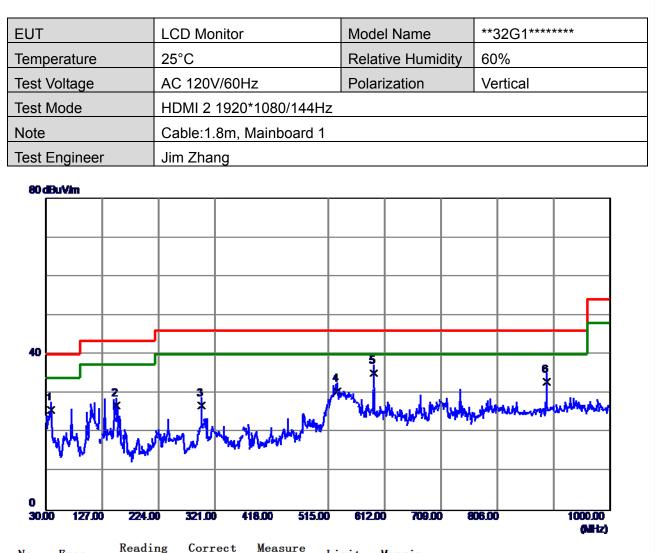
Remark :

- (1) All readings are Peak unless otherwise stated QP in column of "Note]. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz.
- (3) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

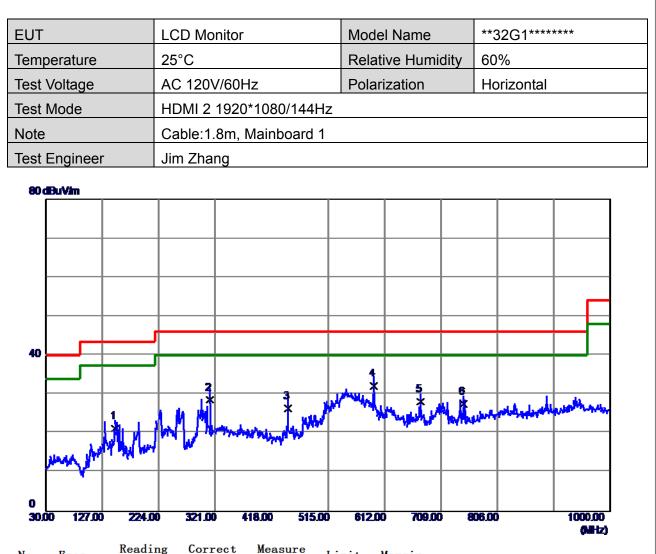


EUT			LCD Mo	nitor		Mod	el Name		**32G1****	****
Temp	perature		25°C			Rela	Relative Humidity 6			
Test	Voltage		AC 120	//60Hz		Pola	rization		Vertical	
Test	Mode		D-SUB [·]	1920*108	0/60Hz					
Note			Cable:1.	8m, Main	board 1					
Test	Engineer		Jim Zha	ng						
80 d	BuVim									
40										
		< .	-			4 5				مريد فلدن
	Ϋ́, Υ	И.				-Wh	martin	miller	and appropriate	An and a second s
	WVY	W	and the second	~~~~~~	Martine					
	-	•							_	
O										
30.0	0 127.00	224.0	0 321.00	418.00	515.00	612)	00 709.0	0 80	6.00	1000.00 (NiHz)
No.	Freq.	Readi Level	ng Corr Fact		usure L	imit	Margin			
	MHz	dBuV/1				BuV/m	dB	Detec	tor	

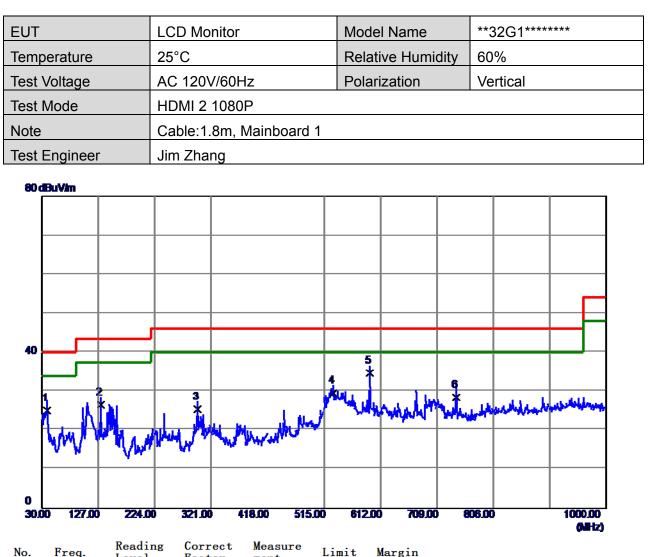
		DOTOI	1 40 001	mono			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1 *	37.7599	44.04	-18.40	25.64	40.00	-14.36	QP
2	131. 3650	45.15	-17.72	27.43	43.50	-16.07	QP
3	306. 9350	37.44	-15 . 0 7	22.37	46.00	-23.63	QP
4	532.9450	36.76	-10.35	26.41	46.00	-19.59	QP
5	587.2650	35.71	- 9. 15	26.56	46.00	-19.44	QP
6	674.5650	35.14	-8.25	26.89	46.00	-19.11	QP



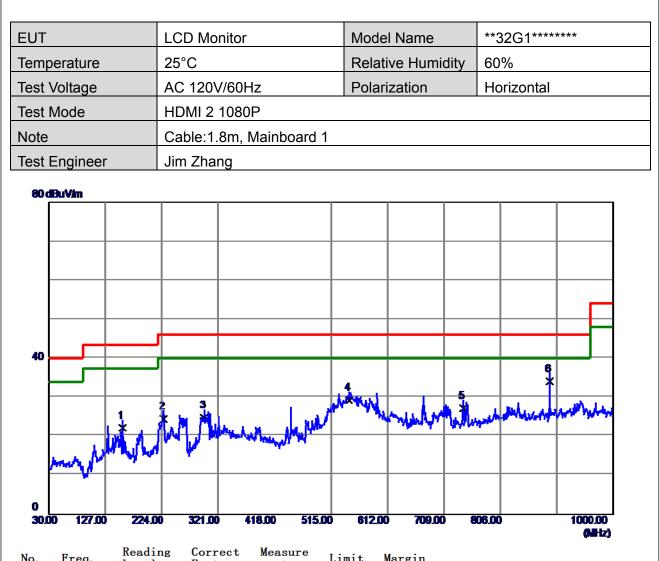
NO.	rreq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	131.3650	39. 59	-17.72	21.87	43.50	-21.63	QP
2	229.3350	41.98	-17.82	24.16	46.00	-21.84	QP
3	306. 9350	42.25	-15. 0 7	27.18	46.00	-18.82	QP
4	392.2950	35. 58	-13.12	22.46	46.00	-23.54	QP
5 *	673. 5949	35.79	-8.26	27.53	46.00	-18.47	QP
6	748.2849	34.47	-7.29	27.18	46.00	-18.82	QP



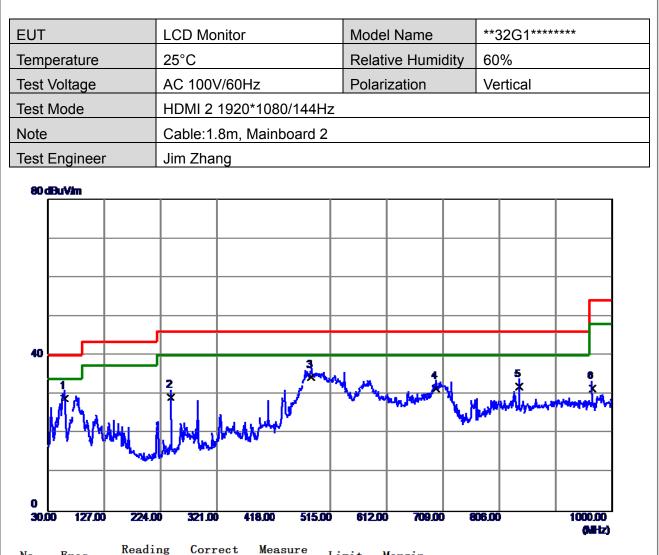
No.	Freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	38.2450	44.03	-18.32	25.71	40.00	-14.29	QP
2	150. 2800	43.42	-16.58	26.84	43.50	-16.66	QP
3	297.2349	42.15	-15.29	26.86	46.00	-19.14	QP
4	531.0050	40.94	-10.39	30.55	46.00	-15.45	QP
5*	594.0550	44.24	-9.00	35.24	46.00	-10.76	QP
6	890.8750	37.85	-4.84	33.01	46.00	-12.99	QP



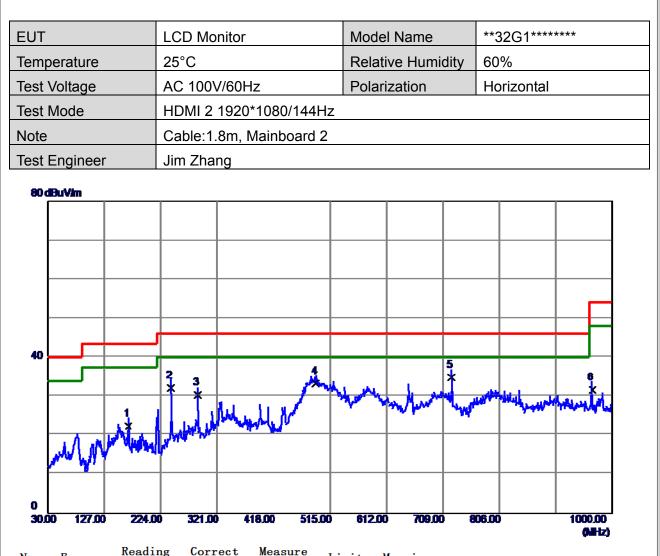
No.	Freq.	Level	Factor	measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	148.3400	37.98	-16.64	21.34	43.50	-22.16	QP
2	311. 3000	43.53	-14.97	28.56	46.00	-17.44	QP
3	445.6450	38. 52	-12.08	26.44	46.00	-19.56	QP
4 *	594.0550	41.19	-9.00	32.19	46.00	-13.81	QP
5	674.5650	36.45	-8.25	28.20	46.00	-17.80	QP
6	748.2849	34.83	-7.29	27.54	46.00	-18.46	QP



no.	Freq.	Level	Factor	ment	LIMIC	margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	38.2450	43.48	-18.32	25.16	40.00	-14.84	QP
2	131. 3650	44.22	-17.72	26.50	43.50	-17.00	QP
3	297.2349	40.72	-15. 29	25.43	46.00	-20. 57	QP
4	531.0050	39.94	-10. 39	29.55	46.00	-16.45	QP
5 *	594.0550	43.76	-9.00	34.76	46.00	-11.24	QP
6	742.4650	35.93	-7.38	28.55	46.00	-17.45	QP



NO.	rreq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	156. 5850	38. 57	-16.41	22.16	43.50	-21.34	QP
2	227.3950	42.41	-17.93	24.48	46.00	-21.52	QP
3	296.7500	40.05	-15. 30	24.75	46.00	-21.25	QP
4	546. 5250	39.38	-10.05	29.33	46.00	-16.67	QP
5	742.4650	34.58	-7.38	27.20	46.00	-18.80	QP
6 *	890.8750	38.93	-4.84	34.09	46.00	-11.91	QP



No.	Freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1 *	57.6450	46.44	-17.55	28.89	40.00	-11.11	QP
2	241.4600	46.48	-17.15	29.33	46.00	-16.67	QP
3	482.9900	45.86	-11. 39	34.47	46.00	-11.53	QP
4	697.3600	39.61	- 8.06	31.55	46.00	-14.45	QP
5	839.9500	37.73	-5.75	31.98	46.00	-14.02	QP
6	966. 0500	35.39	-3.94	31.45	54. 00	-22.55	QP

No.	Freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	168. 2250	39.19	-16.83	22.36	43.50	-21.14	QP
2	241.4600	49.36	-17.15	32.21	46.00	-13.79	QP
3	288.0200	45.84	-15. 50	30.34	46.00	-15. 66	QP
4	490.7500	44.51	-11.25	33.26	46.00	-12.74	QP
5 *	724. 5200	42.47	-7.66	34.81	46.00	-11. 19	QP
6	966. 0500	35. 59	-3.94	31.65	54.00	-22.35	QP

4.2.7 TEST RESULTS-ABOVE 1GHZ

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of Note . Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (3) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

EUT			LCD M	onitor		Mode	el Name		**32G1******			
Temp	perature		25°C			Rela	tive Humi	60%				
Test	Voltage		AC 120)V/60H;	Z		Polarization Vertical					
	Mode				1080/60Hz							
Note					lainboard 1							
lest	Engineer		Jim Zh	ang								
100	dBu₩m											
									_			
50									_			
			5						11			
	1	3	¥	7		×			×			
	البلمين ال	uhadi	man	a starting has a starting to the starting to t	hand	House a		where a	12			
	X X	×	×	×		×			×			
0												
100	0.00 1500.00	2000.0	0 250).00 30	00.00 3500 .	30 4000 .	.00 4500.0	00 5	00.00	6000.00 (NHz)		
No.	Freq.	Readi Level		orrect	Measure ment	Limit	Margin					
	MHz	dBuV/			dBuV/m	dBuV/m	dB	Dete	ctor			
1	1355.0000		-	8.86	31.56	74.00	-42.44	Peak				
2 3	1355.0000 1930.0000			8.86 2.01	21.45 33.30	54.00 74.00	-32.55	AVG Peak				
3 4	1930.0000			2.01	23.28	54.00	-30.72	AVG				
5	2227.5000			. 93	36.74	74.00	-37.26	Peak				
6 *	2227.5000	27.10). 93 71	26. 17 33. 59	54.00	-27.83	AVG				
		32.88				74.00	-40.41	Peak				

2700.0000 22.74

3562. 5000 32. 35

3562. 5000 21. 80

4995.0000 29.53

4995.0000 17.81

8

9

10

11 12 0.71

3.38

3.38

7.55

7.55

23.45

35.73

25.18

37.08

25.36

54.00

74.00

54. **00**

74.00

54.00

-30.55

-38.27

-28.82

-36. 92

-28.64

AVG

AVG

AVG

Peak

Peak

6 *

7

8

9

10

11 12

EUT		L	CD Mo	nitor			Mode	Model Name			**32G1******		
Temp	perature	2	25°C				Relative Humidity			60%			
	Voltage		AC 120V	//60Hz			Polarization Horizor						
						1-				1101			
	Mode		D-SUB 1										
lote		C	Cable:1.	8m, Ma	ainboar	d 1							
Fest E	Engineer	J	Jim Zhang										
400													
ן נוסיי	dBuV/m							1					
ľ													
						-+				\rightarrow			
ļ													
ŀ						+				\rightarrow			
50													
50													
		5	7										
	13	TI	×	¥									
			م معطور ا	-A	Margaret Margaret	-	uderas 12	a margaret	to and		- Andrewsky		
ľ	××	······	×	×			×						
	^	·				-				\rightarrow			
o													
1000	0.00 1500.00	2000.00	2500.0	0 300	0.00 35	00.00	4000.	0 4500.0	0 50	000.000)	6000.00	
												(NHz)	
No.	Freq.	Readin Level		rect	Measure	ə L	imit	Margin					
	MHz dBuV		Fac dB	UT	ment dBuV/m	d	BuV/m	dB	Dete	ctor			
1	1497. 5000		-3. (34.26		4.00	-39.74	Peak				
2	1497. 5000	27.17	-3. (24.15		4.00	- 29. 85	AVG				
3	1612. 5000		-2.7		32.86		4.00	-41.14	Peak				
4	1612.5000		-2. (22.58		4.00	-31.42	AVG				
5	1930. 0000 38. 6		-2. (J1	36.65	7	4.00	-37.35	Peak				

1930.0000 28.70

2227.5000 37.20 2227.5000 27.50

2690.0000 35.30

2690.0000 24.41

3740.0000 30.93

3740.0000 20.41

-2.01

-**0.** 93

-0.93

0.69

0.69

3.90

3.90

26.69

36.27

26.57

35.99

25.10

34.83

24.31

54.00

74.00

54. **00**

74.00

54. **00**

74.00

54.00

-27.31

-37.73

-27.43

-38. **0**1

-28.90

-39.17

-29.69

AVG

AVG

Peak

Peak

Peak

AVG

AVG

7

8

9

10

11

12

6 *

			1					_			_		
EUT			LC	D Mo	nitor			Mod	el Name		**32G1******		
Temp	oerature		25°	,C				Rela	tive Humi	60%			
Test	Voltage		AC	120	V/60H	z		Pola	rization				
	Mode						/144H:				Vertical		
								2					
Note	!		Ca	ole:1.	.8m, N	/lainbo	oard 1						
Test	Engineer	-	Jim	n Zha	ng								
100	dBuWim												
									1				
			-							<u> </u>			
50			+									_	
30													
				5 X	7							11	
				Ĭ	X.				9 X		man		
	when	me hur	(Alan	and the second second	***	- Andrew Co		//?///	10			12	
	•		<u>د</u>		×				×			×	
0													
100	0.00 1500.0	0 2000	.00	2500.0	10 30	00.00	3500.0	00 4000	.00 4500.1	005	000.000	6000.00 (NiHz)	
	-	Read	ling	Сот	rect	Mea	sure						
No.	Freq.	Leve	1	Fac	tor	men	t	Limit	Margin				
1	MHz 1650_0(dBuV 000 33.7		<u>dB</u> −2.	66	dBu 31. (-	dBuV/m 74.00	dB -42.93	Dete Peak	ctor		
2		00 24.1		-2.		21.4		54.00	-32. 52	AVG			
3	1930.00	000 34.7	5	-2.	01	32.7		74.00	-41.26	Peak			
4		000 24.6		-2.		22. 6		54.00	-31.33	AVG			
5		000 38.6		-0.		37.6		74.00	-36.33	Peak	<u> </u>		

2227.5000 28.41

2695.0000 32.42

2695.0000 22.98

3982.5000 27.84

3982.5000 17.97

5640.0000 25.56

5640.0000 15.20

-**0.** 93

0.70

0.70

4.61

4.61

8.28

8.28

27.48

33.12

23.68

32.45

22.58

33.84

23.48

54.00

74.00

54. **00**

74.00

54. **00**

74.00

54.00

-26. 52

-**40.** 88

-**30. 3**2

-41.55

-31.42

-40.16

-30. 52

AVG

AVG

Peak

Peak

Peak

AVG

AVG

EUT				<i>I</i> onitor			Mode	el Name		**32G1**	*****	
Temp	perature		25°C				Relative Humidity 60			60%	60%	
	Voltage		AC 12	20V/60H	-17		Polar	al				
	Mode)*1080/1		i olui	12011011		Horizont		
Note			Cable	:1.8m,	Mainboa	ard 1						
Test I	Engineer		Jim Zl	nang								
100.4	dBu₩m											
]								1				
										_		
ł												
									<u> </u>			
				_						_		
50				1								
		3	7	9				ļ				
	1	×	5 X X	X						Mar Mar	a water and	
ŀ	WWW 2 W	whet	Sub.	w-***	hyman	**************************************						
[^	^ ^	×		×						
ĺ												
0												
	0.00 1500.00	2000.0	0 250	0.00 3	00.000	3500.00	4000.	00 4500.0	0 5	00.00	6000.00	
											(NHz)	
No.	Freq.	Readi Level	-	orrect actor	Meası ment	re L	imit	Margin				
	MHz	dBuV/	m d	В	dBuV/		BuV/m	dB	Dete	ctor		
1	1480.0000			3.13	31.17		4.00	-42.83	Peak			
2 3	1480.0000 1930.0000			3. 13 2. 01	21.46		4.00 4.00	-32.54 -38.86	AVG Peak			
4	1930.0000			2.01	25. 98		4.00	-28.02	AVG	•		
5	2077. 5000	34.68		1.54	33.14		4.00	-40.86	Peak	:		
6 *	2077 E000	97 71	_	1 54	26 17		1 00	-97 93	AVC			

26.17

37.07

25.84

34.37

24.96

34.45

24.85

-1.54

-**0.** 93

-0.93

0.69

0.69

3.33

3.33

54.00

74.00

54. **00**

74.00

54. **00**

74.00

54.00

-27.83

-36. 93

-28.16

-39.63

-29.04

-39.55

-29.15

AVG

AVG

Peak

Peak

Peak

AVG

AVG

2077.5000 27.71

2227.5000 38.00

2227.5000 26.77

2692. 5000 33. 68

2692.5000 24.27

3547.5000 31.12

3547.5000 21.52

6 *

7

8

9

10

11

12

EUT			LCD	Monitor		Mode	el Name		**32G1******		
Temp	perature		25°C			Rela	tive Humi	dity	60%		
Test Voltage AC 120V					Z	Pola	rization		Vertical		
Test	Mode		HDM	2 1080	C						
Note			Cable:1.8m, Mainboard 1								
	Engineer		Jim Z								
TESL	Engineer		JIIIZ	nang							
100	dBuWim										
						<u> </u>	1				
				_					_		
				_		<u> </u>					
						ļ					
}				_					_		
50						<u> </u>	1				
	1		7		9	11	ļ				
	¥	3 X	5 X	1	Ť.	X			A STATE OF THE OWNER OF THE OWNER OF	w. cathaluna	
	Without	tur.	S. S.	man	X	12					
		x	~		^	×					
0											
100	0.00 1500.00	2000 J	JU 23	00.00 30	00.00 3500	.00 4000.	.00 4500.0	JU 31	00.00	6000.00 (NiHz)	
No.	Freq.	Read		Correct	Measure	Limit	Margin				
	MHz	Leve dBuV/		Factor HB	 dBuV/m	dBuV/m	dB	Dete	ctor		
1	1247.500			-4. 49	36. 59	74.00	-37.41	Peak			
2	1247.500			-4.49	25.17	54. 00	-28.83	AVG			
3	1657.500			-2.64	32.92	74.00	-41.08	Peak			
4	1657.500			-2.64	22.48	54.00	-31.52	AVG			
5 6 *	2080.000			-1. 53 -1. 53	33.09 26.39	74.00 54.00	-40.91 -27.61	Peak AVG			
υ *	2080.000	0 21.92		1.00	20. 39	54.00	-21.01	AVG			

36.76

25.85 37.34

25.14

34.24

24.10

-**0.** 93

-**0.** 93

1.53

1.53

3.92

3.92

74.00

54. **00**

74.00

54. **00**

74.00

54.00

-37.24

-28.15

-36.66

-28.86

-39.76

-29.90

Peak

Peak

Peak

AVG

AVG

AVG

2227.5000 37.69

2227.5000 26.78

2995.0000 35.81

2995.0000 23.61

3747.5000 30.32

3747.5000 20.18

7

8

9

10

11 12

EUT		L	.CD Mo	nitor		Мос	Model Name			*****		
Tem	perature	2	25°C			Rela	ative Hum	idity	60%			
Test	Voltage	A	AC 120\	//60H	Z	Pola	arization		Horizont	al		
	Mode	F	IDMI 2	1080	D							
Note			Cable:1.8m, Mainboard 1									
	Engineer		lim Zhai									
1631	Ligineer			ig								
100	dBuV/m						-1					
ſ												
ĺ												
ſ						_			_			
ſ												
						_			_			
50												
	1 3	5	7 X	9			1		-			
	× *	×	, i ,	Å.	-	man	Jourson	man	the presents	- total and the second		
	X X	×	×	X			¥					
0												
_	0.00 1500.00	2000.00	2500.0	0 30	00.00 3	500.00 400	0.00 4500	.00 50	00.00	6000.00 (MHz)		
	_	Readin	g Cor	rect	Measur	e				(annz)		
No.	Freq.	Level	Fac		ment	Limit	Margin					
1	MHz 1332. 5000	dBuV/m 37 13	dB −3.	99	dBuV/m 33.14	dBuV/m 74.00	dB -40.86	Detec Peak	tor			
	1000.0000	3				54.00	-30.83	AVG				
2	1332. 5000	27.16	-3.	99	23.17							
2 3	1500.0000	37.50	-3.	01	34.49	74.00	-39.51	Peak				
2 3 4	1500. 0000 1500. 0000	37.50 27.16	-3. -3.	01 01	34.49 24.15	74.00 54.00	-39. 51 -29. 85	Peak AVG				
2 3	1500.0000	37.50 27.16 37.01	-3.	01 01 01	34.49	74.00	-39.51	Peak				

7	2227.5000 37.68	- 0. 93	36.75	74.00	-37.25	Peak	
8 *	2227.5000 27.25	- 0. 93	26.32	54.00	-27.68	AVG	
9	2665.0000 34.83	0.62	35.45	74.00	-38.55	Peak	
10	2665.0000 24.46	0.62	25. 0 8	54.00	-28.92	AVG	
11	3990.0000 30.43	4.63	35. 0 6	74.00	-38.94	Peak	
12	3990.0000 21.12	4.63	25.75	54.00	-28.25	AVG	

EUT	,	L	CD Mo	nitor		Mode	el Name		**32G1******			
Tem	perature	2	25°C			Relat	tive Humi	dity	60%			
Test	Voltage	A	AC 120V	//60H	z	Pola	rization		Vertical			
Test	Mode	F	IDMI 2	1920'	*1080/144H	z						
Note	;		Cable:1.8m, Mainboard 2									
Test	Engineer	J	im Zhar	ng								
100	dBuWm											
100						1	1					
								<u> </u>				
50												
		3 5	7		9	11						
	X, 3	X X	¥ .	l. h. i	×	X	. And the second se	J. Margar	monagene	and a strategy and		
	and the	Mar she	a Barret		IU IU	12						
		× ×	×		x	×						
_												
0	0.00 1500.00	2000.00	2500.0	0 90	100.00 3500 .	00 4000	00 4500.0	nn 57	00.00	6000.00		
100	00001 0000	2000.00	20000	u 31	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4000.		JI	~~**	(NHz)		
No.	Freq.	Readin Level	g Cor Fac	rect	Measure ment	Limit	Margin					
	MHz	dBuV/m		001	dBuV/m	dBuV/m	dB	Dete	ctor			
1	1247. 500		-4.4	19	35. 59	74.00	-38.41	Peak				
2	1247.500		-4.4	49	25.54	54. 00	-28.46	AVG				
0	1000 500	0 0 7 4	0 /	70	22 04	74 00	40.00	D 1				

	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	1247.5000	40.08	-4.49	35. 59	74.00	-38.41	Peak
2	1247.5000	30.03	-4.49	25.54	54. 00	-28.46	AVG
3	1632. 5000	35.74	-2.70	33.04	74.00	-40.96	Peak
4	1632. 5000	25.94	-2.70	23.24	54. 00	-30.76	AVG
5	1782. 5000	34.52	-2.35	32.17	74.00	-41.83	Peak
6	1782. 5000	24.50	-2.35	22.15	54. 00	-31.85	AVG
7	2227.5000	36.69	-0.93	35.76	74.00	-38.24	Peak
8 *	2227.5000	26.75	-0.93	25.82	54. 00	-28.18	AVG
9	2995.0000	34.31	1.53	35.84	74.00	-38.16	Peak
10	2995.0000	24.16	1.53	25.69	54.00	-28.31	AVG
11	3712. 5000	31.49	3.82	35. 31	74.00	-38.69	Peak
12	3712. 5000	21.38	3.82	25. 20	54.00	-28.80	AVG

5

6

7

8

9

10

11

12

EUT			LCD Mo	nitor			Model Name			**32G1******		
Tem	perature		25°C					tive Humi	dity	60%		
Test	Voltage		AC 120V/60Hz					rization		Horizonta	I	
Test	Mode		HDMI 2	1920*	1080/144	4Hz						
Note	9		Cable:1.8m, Mainboard 2									
	Engineer		Jim Zhai									
1001	Lingineer			ig								
100	dBuV/m							1				
						+						
50												
			5	3								
	11 1	9	¥	¥						×		
			AL DANK	we want	where we we we	~~~~~	when	and where	nm	the short of	- and a second	
	×*	и, чали Х	х	x						×		
0												
100	0.00 1500.00	2000.0	0 2500.0	0 30	00.00 35	00.00	4000.	00 4500.0	0 50	00.00	6000.00	
											(MHz)	
No.	Freq.	Readi Level		rect	Measure ment	Li	imit	Margin				
	MHz	dBuV/		001	dBuV/m	dE	BuV/m	dB	Dete	ctor		
1	5010.0000			8	37.50		L. 00	-36.50	Peak			
2 *	5010.0000				26.19		ł. 00	-27.81	AVG			
3	2725.0000				36.40		1.00	-37.60	Peak			
4	2725.0000	24.70	0.7		25.48		Ł. 00	-28.52	AVG			

2227.5000 37.18

2227.5000 26.03

1492.5000 37.96

1492.5000 27.92

1930.0000 36.01

1930.0000 26.03

1345.0000 37.35

1345.0000 27.29

-**0.** 93

-**0. 9**3

-**3. 0**5

-3.05

-2.01

-2.01

-3.92

-3.92

36.25

25. 1**0**

34.91

24.87

34.00

24.02

33.43

23.37

74**. 00**

54.00

74.00

54. **00**

74.00

54. **00**

74.00

54.00

-37.75

-28. 90

-39.09

-29.13

-40.00

-29.98

-40.57

-30.63

Peak

AVG

AVG

Peak

Peak

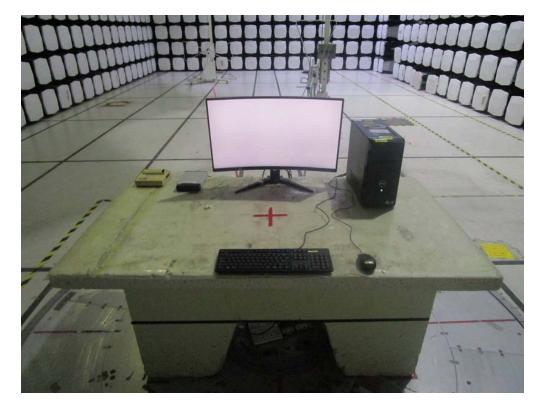
Peak

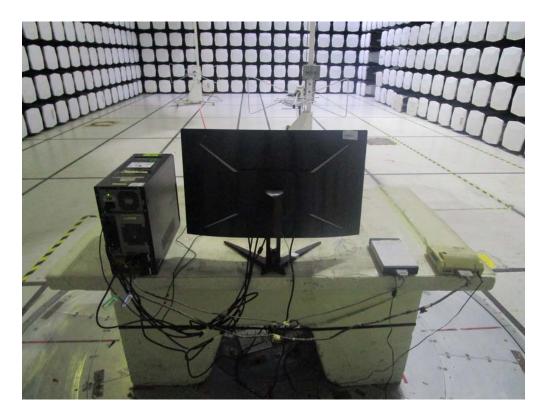
AVG

AVG

5. EUT TEST PHOTO

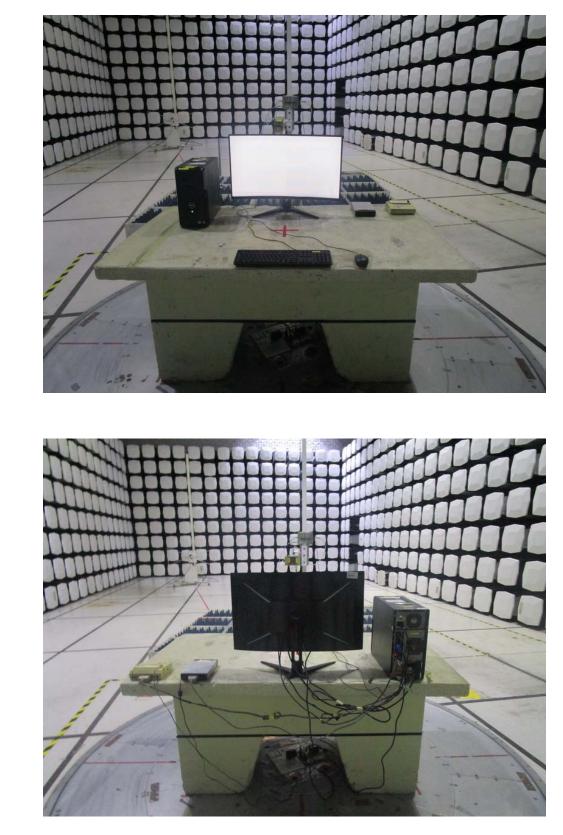
Conducted Emission





ЗĨL

Radiated emission below 1 GHz



Radiated emission above 1 GHz

