

Page 1 of 61

CE EMC Test Report

at the first

For Electromagnetic Interference

Of

Product : LCD Monitor

Trade Name : AOC

Model Number : 215LM00056

Prepared for

Wuhan Hengfa Technology Co., Ltd.

Zhuankou Development of Economic Technological Development Zone Wuhan City, P.R.China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website: http://www.ntek.org.cn

Page 2 of 61

Report No.: NTEK- 2016NT09108872E

TEST RESULT CERTIFICATION

Applicant's name:	Wuhan Hengfa Technology Co., Ltd.
Address:	Zhuankou Development of Economic Technological Development Zone Wuhan City, P.R.China.
Manufacturer's Name:	Wuhan Hengfa Technology Co., Ltd.
Address:	Zhuankou Development of Economic Technological Development Zone Wuhan City, P.R.China.
Product description	
Product name:	LCD Monitor
Model and/or type reference :	215LM00056
	EN 55022:2010+AC:2011
Standards	EN 55024:2010+A1:2015
Standards	EN 61000-3-2:2014
	EN 61000-3-3:2013
This second all all all the second second	

This report shall not be reproduced except in full, without the written approval of NTEK, this document may be altered or revised by NTEK, personal only, and shall be noted in the revision of the document.

10 Sep. 2016~27 Sep. 2016
27 Sep. 2016
Pass

Testing Engineer

Krang. Hu

(Mary Hu)

Technical Manager

Authorized Signatory :

Sam. 12:1

(Sam Chen)

Page 3 of 61 Report No.: NTEK- 2016NT09108872E

to to	Table of Contents	Page
1	. TEST SUMMARY	
	1.1 TEST FACILITY	5 52 2
x	1.2 MEASUREMENT UNCERTAINTY	* 7
2	. GENERAL INFORMATION	8
-	2.1 GENERAL DESCRIPTION OF EUT	
	2.2 DESCRIPTION OF TEST MODES	9
	2.3 DESCRIPTION OF TEST SETUP	
	2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	11
	2.5 MEASUREMENT INSTRUMENTS LIST	12 -
3	. EMC EMISSION TEST	14
	3.1 CONDUCTED EMISSION MEASUREMENT	L L L
t	3.1.1 POWER LINE CONDUCTED EMISSION	14-
	3.1.2 TELECOMMUNICATION PORT CONDUCTED EMISSION(VOLT 3.1.3 TEST PROCEDURE	AGE LIMITS) 14 15
x	3.1.4 TEST SETUP	15
	3.1.5 EUT OPERATING CONDITIONS	15
	3.1.6 TEST RESULTS	
S.	3.2 RADIATED EMISSION MEASUREMENT	18
	3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT 3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT	
5	3.2.3 TEST PROCEDURE	18
	S 3.2.4 TEST SETUP	ے 19 کے
x	3.2.5 EUT OPERATING CONDITIONS 3.2.6 TEST RESULTS	19
× ·	3.2.0 TEST RESULTS 3.2.7 TEST RESULTS (1000-6000MHz)	20
al-	3.3 HARMONICS CURRENT	28
	3.3.1 LIMITS OF HARMONICS CURRENT(CLASS A)	28
	3.3.1.1 TEST PROCEDURE	28
\$	3.3.1.2 EUT OPERATING CONDITIONS 3.3.1.3 TEST SETUP	28
	3.3.2 TEST RESULTS	-30
t	3.4 VOLTAGE FLUCTUATION AND FLICKERS	31
	3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS	<u></u> 31
x	3.4.1.2 EUT OPERATING CONDITIONS	31
S.	3.4.1.3 TEST SETUP 3.4.2 TEST RESULTS	31
5		

-Si

-sr

Table of Contents	Page
4. EMC IMMUNITY TEST	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA	3
4.2 GENERAL PERFORMANCE CRITERIA	× 4
4.3 GENERAL PERFORMANCE CRITERIA TEST SETUP	3
4.4 ESD TESTING	3
4.4.1 TEST SPECIFICATION	3
4.4.2 TEST PROCEDURE	3
4.4.3 TEST SETUP	÷ ÷3
4.4.4 TEST RESULTS	3
4.5 RS TESTING 4.5.1 TEST SPECIFICATION	
4.5.2 TEST PROCEDURE	3
4.5.3 TEST SETUP	4
4.5.4 TEST RESULTS	7 74
4.6 EFT/BURST TESTING	4
4.6.1 TEST SPECIFICATION	<u> </u>
4.6.2 TEST PROCEDURE	- 4
4.6.3 TEST SETUP 4.6.4 TEST RESULTS	
4.7 SURGE TESTING	
4.7.1 TEST SPECIFICATION	
4.7.2 TEST PROCEDURE	~ ~4
4.7.3 TEST SETUP	4
4.7.4 TEST RESULTS	4
4.8 CONTINUOUS RADIO FREQUENCY DISTURBANCES TESTING	4
4.8.1 TEST SPECIFICATION 4.8.2 TEST PROCEDURE	4
4.8.3 TEST SETUP	
4.8.4 TEST RESULTS	4
4.9 POWER FREQUENCY MAGNETIC FIELD TESTING	5
4.9.1 TEST SPECIFICATION	5
4.9.2 TEST PROCEDURE	5
4.9.3 TEST SETUP	
4.10 VOLTAGE INTERRUPTION/DIPS TESTING	5
4.10.2 TEST PROCEDURE	- 5
4.10.3 TEST SETUP	5
4.10.4 TEST RESULTS	5

Page 5 of 61 Report No.: NTEK- 2016NT09108872E

Table of Contents

Page

55

57

5 . EUT TEST PHOTO ATTACHMENT PHOTOGRAPHS OF EUT

Page 6 of 61 Rep

1. TEST SUMMARY

Test procedures according to the technical standards:

	EMC Emission			
Standard	Test Item	Limit	Judgment	Remark
the states	Conducted Emission On AC And Telecom Port 150kHz to 30MHz	Class B	PASS	in t
EN 55022:2010+AC:2011	Radiated Emission 30MHz to 1000MHz	Class B	PASS	22
t to to to	Radiated Emission 1GHz to 6GHz	Class B	PASS	NOTE (1)
EN 61000-3-2:2014	Harmonic Current Emission	Class A	N/A	4 4
EN 61000-3-3:2013	Voltage Fluctuations & Flicker	4	PASS	22
	EMC Immunity			
Section EN 55024:2010+A1:2015	Test Item	Performance Criteria	Judgment	Remark
EN 61000-4-2	Electrostatic Discharge	В	PASS	5 5
EN 61000-4-3	RF electromagnetic field	- A-	PASS	L.
EN 61000-4-4	Fast transients	 	PASS	2 3

	i dot transformo		17100	
EN 61000-4-5	Surges	В	PASS	
EN 61000-4-6	Continuous radio frequency disturbances	H AL	PASS	A C
EN 61000-4-8	Power Frequency Magnetic Field	A A	PASS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EN 61000-4-11	Volt. Interruptions Volt. Dips	B / C / C NOTE (3)	PASS	A A

NOTE:

- (1) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.
- If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.
- If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, measurement shall only be made up to 5 GHz.
- If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less. (2) The power consumption of EUT is less than 75W and no Limits apply.
- (3) Voltage dip: 100% reduction Performance Criteria B
 - Voltage dip: 30% reduction Performance Criteria C
 - Voltage Interruption: 100% Interruption Performance Criteria C
- (4)" N/A" denotes test is not applicable in this Test Report
- (5) For client's request and manual description, the test will not be executed.

Page 7 of 61

1.1 TEST FACILITY

NTEK Testing Technology Co., Ltd. Add. : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen P.R. China.

FCC Registration Number: 238937; IC Registration Number: 9270A-1 CNAS Registration Number: L5516

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty **U** is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Measurement Frequency Range	к	U(dB)
AC Mains Conducted Emission	0.009kHz ~ 0.15MHz	2	2.66
AC Mains Conducted Emission	0.15MHz ~ 30MHz	2	2.80
Telecom Conducted Emission (Cat 3)	0.15MHz ~ 30MHz	L 2	2.40
Telecom Conducted Emission (Cat 5)	0.15MHz ~ 30MHz	2	2.58
Radiated Emission	30MHz ~ 1000MHz	2	2.64
Radiated Emission	1000MHz ~ 6000MHz	2	2.40
Radiated Emission	6000MHz ~ 18000MHz	2	2.52
Power Clamp	30MHz ~ 300MHz 🔷	2	2.20

-ST

Arich .

25

AN CH

5

2

2

2

2

2

2

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	LCD Monitor
Model Name	215LM00056
Additional Model	N/A ~ ~ ~ ~ ~ ~ ~
Number(s)	
Model Difference	N/A ST ST ST ST ST
Product Description	Operating frequency: 148.5MHz Connecting I/O port: VGA Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.
Power Source	AC Voltage
Power Rating	Input: AC 100-240V, 50/60Hz
	Output: DC 19VDC,1.3A

AN CH

1. Cont

Li Ch

Page 9 of 61

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Description
VGA(800*600 1280*800 1920*1080)
For Conducted Test
Description
VGA VGA
For Radiated Test
Description
VGA(800*600 1280*800 1920*1080)
For EMS Test
Description
VGA (VGA

Page 10 of 61 Report No.: NTEK- 2016NT09108872E

2.3 DESCRIPTION OF TEST SETUP

Mode CE: VGA

Page 11 of 61

2.4 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

4	Item	Equipment	Brand	Model/Type No.	Series No.	Note
	E-1	LCD Monitor	AOC	215LM00056	N/A ^S <	EUT
4	E-2	Adapter	N/A	ADS-25FSG-19	N/A	Y.
•	E-3	Personal computer	DELL	🔷 D06S 🚄	34531671097	1.
2	E-4	Printer	Canon	L11121E	LBP2900	Y.
-	E-5	Keyboard	DELL	SK-8185	OY526KUS	1
2	E-6	Mouse	DELL	MS111-P	cn-011d3v-71581-11e-1th7	T.
	1					1.5
	t	x x x	x x	* *	x x x	Y.
	3	N SN SN	ST ST	St St S		
	+	* * *	* *		x x x	t,

١,						_								-
	Item	Sł	hielded T	ype	Ferrite C	ore		Length			Nc	ote		
4	C-1	Ł.	NO	A.	NO	4	ST.	80cm	K	交	A.	A.	A.	
	C-2		YES	~	NO	~		120cm	2	5	2º	~	4	5
2	C-3	t	NO	t	NO		5	80cm	6	t t	A	A	A	
	14		S	SI	-	12		2	12	2	5	2	J.	1
2	t	A	A	A	A		A	A	1	t t	A	A	A	
	1		<u>s</u>	SIV	S'Y	5	~	S'	S	SIL	S'	SI	ST.	-
/	T,	A	t	· At-	t	*	×	t		t t	A	t	t	
X	1	. V.	and in	and the second s			V.		X			A.C.		. Di

Note:

- The support equipment was authorized by Declaration of Confirmation. (1)
- For detachable type I/O cable should be specified the length in cm in ^[] Length ^[] column. (2) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core".
- (3)

Г

2.5.1	CONDUCT	ED TEST SIT	E C	4 4	2 7	4 4	0 111
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calib tion perio
H	LISN	R&S	ENV216	101490	Nov. 19, 2015	Nov. 18, 2016	1 yea
2	LISN	R&S	ENV216	101313	Nov. 19, 2015	Nov. 18, 2016	1 yea
3	50Ω Switch	Anritsu	MP59B	6200983704	Jun. 26, 2016	Jun. 25, 2017	1 yea
4	Low frequency cable	N/A	C-01	N/A	Jun. 26, 2016	Jun. 25, 2017	1 yea
5	EMI Test Receiver	R&S	ESCI	101160	Jun. 26, 2016	Jun. 25, 2017	1 yea
2.5.2	RADIATED	TEST SITE	to the	t t	t d	t at	at .
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calib tion perio
1	Bilog Antenna	TESEQ	CBL6111D	31216	Aug. 23, 2016	Aug. 22, 2017	1 yea
2	2Test CableN/A3Test CableN/A4EMI Test ReceiverR&S		R-03	N/A	Jun. 26, 2016	Jun. 25, 2017	1 yea
3			R-01	S N/AS	Jun. 26, 2016	Jun. 25, 2017	1 yea
4			ESPI7	101318	Jun. 26, 2016	Jun. 25, 2017	1 yea
5	Antenna Mast	EM SEM	SC100_1	N/A	<`N/A <`	N/A	N/A
6	Turn Table	EM	SC100	060531	N/A	N/A	N/A
7	50Ω Switch	Anritsu	MP59B	6200983705	Jun. 26, 2016	Jun. 25, 2017	1 yea
8	8 Broadband 8 Horn EM Antenna		EM-AH-10180	2011071402	Aug. 23, 2016	Aug. 22, 2017	1 yea
9	Power Amplifier	EMC	EMC051835SE	980246	Aug. 09, 2016	Aug. 09, 2017	1 yea
2.5.3	HARMONIC	CS AND FLICI	KERS	5 5	5 5	2 2	
Item	Kind of	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibi tion perio
F1	Harmonic & Flicker	EM TEST	DPA500	0303-04	Jun. 24, 2016	Jun. 23, 2017	1 yea
2	AC Power Source	EM TEST	ACS500S1	0203-01	Jun. 24, 2016	Jun. 23, 2017	1 yea
2. <u>5</u> .4	ESD _	STV S	N Stor	Str Str	St St	×	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibi tion perio
T	ESD TEST GENERAT OR	Lioncel	ESD-203B	ESD203B0150 402	Nov. 20, 2015	Nov. 19, 2016	1 yea

Page 13 of 61

Report No.: NTEK- 2016NT09108872E

4	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
	£1 8	Signal Generator	R&S	SMT 06	832080/007	Jul. 23, 2016	Jul. 22, 2017	1 year
	2	Log-Bicon Antenna	Schwarzbeck	VULB9161	4022	Aug. 14, 2016	Aug. 13, 2017	1 year
4	3	Power Amplifier	AR	150W1000M1	320946	Sep. 20, 2016	Sep. 19, 2017	1 year
5	4	Microwave Horn Antenna	AR	AT4002A	321467	Jun. 15, 2016	Jun. 14, 2017	1 year
	5	Power Amplifier	AR	25S1G4A	308598	Sep. 20, 2016	Sep. 19, 2017	1 year

2.5.6 SURGE, EFT/BURST, VOLTAGE INTERRUPTION/DIPS

	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration		Calibra tion period
	1	Surge Generator	EVERFINE	EMS61000-5A	1101002	Jun. 26, 2016	Jun. 25, 2017	1 year
1	2	DIPS Generator	EVERFINE	EMS61000-11 K-V2	1011002	Jun. 26, 2016	Jun. 25, 2017	1 year
	3	EFT/B Generator	EVERFINE	EMS61000-4A- V2	1012005	Jun. 26, 2016	Jun. 25, 2017	1 year

2.5.7 CONTINUOUS RADIO FREQUENCY DISTURBANCES

1	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
4	Ť	Signal Generator	R&S	SML03	100954	Jun. 27, 2016	Jun. 26, 2017	1 year
1	2	Power Amplifier	EMC	EMC051835SE	980246	Aug. 09, 2016	Aug. 09, 2017	1 year
N.	3	Coupling and Decoupling Network	TESEQ	CDN M016	38722	Nov. 19, 2015	Nov. 18, 2016	1 year
	4	Attenuator	TESEQ	ATN 6075	38411	N/A	N/A	N/A
	5	RF Cable	TESEQ	RF Cable	N/A	N/A	N/A	N/A

2.5.8 MF

1	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration		Calibra tion period
	1	Generator	EVERFINE	EMS61000-8K	1007001	Jun. 26, 2016	Jun. 25, 2017	1 year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150kHz-30MHz)

FREQUENCY (MHz)	Class /	A (dBµV)	⊠Class B (dBµV)		
FREQUENCT (IVITZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50-5.0	73.00	60.00 🔶	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- 3.1.2 TELECOMMUNICATION PORT CONDUCTED EMISSION(VOLTAGE LIMITS) (Frequency Range 150kHz-30MHz)

FREQUENCY (MHz)	Class /	Α (dBμV)	⊠Class B (dBµV)		
FREQUENCT (IVITIZ)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	97 - 87 *	84 - 74 *	84 - 74 *	74 - 64 *	
0.5 -30.0	87.00	74.00	74.00	64.00	
Noto	4	4	1 1	1 1 1	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) When the EUT has the telecommunication terminal, this test is performed.

The following table is the setting of the receiver

~	Receiver Parameters	5. 5		2	Setting	2	4
* *	Attenuation	X	X	X	10 dB	X	X
	Start Frequency	1 1 1		1	🔨 0.15 MHz	1	N.
	Stop Frequency			-	30 MHz	~	
	IF Bandwidth		5	5	9 kHz	4	A.

Page 15 of 61

3.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (ANN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Page 16 of 61 Report No.: NTEK- 2016NT09108872E

3.1.6 TEST RESULTS

EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	26℃	Relative Humidity :	54%
Pressure :	1010hPa	Test Date :	2016-09-26
Test Mode :	VGA	Phase :	
Test Voltage:	AC 230V/50Hz	4 4	2 2 2 4

								~ ~		
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment	
1		0.6660	42.31	9.79	52.10	56.00	-3.90	QP		
2		0.6660	29.46	9.79	39.25	46.00	-6.75	AVG		
 3		0.9140	42.03	9.85	51.88	56.00	-4.12	QP		
 4		0.9140	28.49	9.85	38.34	46.00	-7.66	AVG		
5		1.1816	42.62	9.85	52.47	56.00	-3.53	QP		
6		1.1816	27.10	9.85	36.95	46.00	-9.05	AVG		
 7		1.4899	43.52	9.81	53.33	56.00	-2.67	QP		
 8		1.4899	27.15	9.81	36.96	46.00	-9.04	AVG		
 9	*	2.2820	44.08	9.77	53.85	56.00	-2.15	QP		
 10		2.2820	31.81	9.77	41.58	46.00	-4.42	AVG		
 11		7.2458	47.15	9.85	57.00	60.00	-3.00	QP		
 12		7.2458	34.04	9.85	43.89	50.00	-6.11	AVG		

Factor = Insertion Loss + Cable Loss.

Page 17 of 61

Report No.: NTEK- 2016NT09108872E

EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	26°C	Relative Humidity :	54%
Pressure :	1010hPa	Test Date :	2016-09-26
Test Mode :	VGA	Phase :	NXXX
Test Voltage:	AC 230V/50Hz	4 4	4 4 4 4

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1	0.4060	42.65	10.05	52.70	57.73	-5.03	QP			
2	0.4060	32.54	10.05	42.59	47.73	-5.14	AVG			
3	0.6580	42.67	9.82	52.49	56.00	-3.51	QP			
4	0.6580	29.36	9.82	39.18	46.00	-6.82	AVG			
5 *	0.9220	43.23	9.87	53.10	56.00	-2.90	QP			
6	0.9220	29.84	9.87	39.71	46.00	-6.29	AVG			
7	1.2298	43.05	9.86	52.91	56.00	-3.09	QP			
8	1.2298	27.77	9.86	37.63	46.00	-8.37	AVG			
9	1.6618	42.98	9.82	52.80	56.00	-3.20	QP			
10	1.6618	28.46	9.82	38.28	46.00	-7.72	AVG			
11	7.5739	46.44	9.82	56.26	60.00	-3.74	QP			
12	7.5739	32.76	9.82	42.58	50.00	-7.42	AVG			
Remar		ion Loss +	Cable I	000	-	な	A.	A A	AT.	A

Factor = Insertion Loss + Cable Loss

Page 18 of 61

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

(Below 1000MHz)

5.4						
			ass A	⊠Class B		
	FREQUENCY (MHz)	At 10m	∏At 3m	☐At 10m	⊠At 3m	
		dBµV/m	dBµV/m	dBµV/m	dBµV/m	
	30 – 230	40	50	30	40	
4	230 – 1000 🔨	47	57	37	47	

3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class A (at	: 3m) dBµV/m	⊠Class B (at 3m) dBµV/m		
	Peak	Avg	Peak	Avg	
1000-3000	76	56	70	50	
3000-6000	80	60	74	54	

Notes:

(1) The limit for radiated test was performed according to as following: CISPR 22.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBµV/m)=20log Emission level (uV/m).

3.2.3 TEST PROCEDURE

- a. The measuring distance of at 3m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured, above 1G Average detector mode will be instead.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP(AV) Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Page 19 of 61

3.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Page 20 of 61 Report No.: NTEK- 2016NT09108872E

3.2.6 TEST RESULTS

		~		
EUT :	LCD Monitor	7	Model Name:	215LM00056
Temperature :	24°C		Relative Humidity :	54%
Pressure :	1010hPa 🍼 🍼	5	Test Date :	2016-09-26
Test Mode:	VGA(800*600)		Polarization :	Horizontal
Test Power:	AC 230V/50Hz	1		

Remark:

Factor = Antenna Factor + Cable Loss.

Г

Page 21 of 61

Report No.: NTEK- 2016NT09108872E

EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	24°C ~ ~	Relative Humidity	54% -
Pressure :	1010hPa	Test Date :	2016-09-26
Test Mode:	VGA(800*600)	Polarization :	Vertical
Test Power:	AC 230V/50Hz	~ ~ ~ ~	~ ~ ~
72.0 dBu∀/m			AF AF AF
			Limit: — Margin: —
			5 6 *
		4	l l l l l l l l l l l l l l l l l l l
32 32 32 32 32 32 32 32 32 32 32 32 32 3	mm	Julia man al and man	real work and a sure to the balance we
			ngelseen under heren alle heren alle
			400 500 600 700 1000.000
8		(MHz) 300	400 500 600 700 1000.000
8		(MHz) 300	400 500 600 700 1000.000
8	0 60 70 80 Reading Correct Measure	(MHz) 300 e- Anten	400 500 600 700 1000.000
8 30.000 40 50 No. Mk. Freq.	0 60 70 80 Reading Correct Measure Level Factor ment	(MHz) 300 Limit Over Heigl	400 500 600 700 1000.000
8 30.000 40 50 No. Mk. Freq. MHz 1 * 36.8952 2 ! 44.4308	Correct Measure Reading Correct Measure Level Factor ment dBuV dB dBuV/m 18.26 17.08 35.34 22.26 12.94 35.20	(MHz) 300 (MHz) 4000 -4.66 QP 40.00 -4.80 QP	400 500 600 700 1000.000
8 30.000 40 50 No. Mk. Freq. MHz 1 * 36.8952 2 ! 44.4308 3 140.3421	Correct Measure Reading Correct Measure Level Factor ment dBuV dB dBuV/m 18.26 17.08 35.34 22.26 12.94 35.20 20.69 12.11 32.80	(MHz) 300 (MHz) Anten Limit Over Heigl dBuV/m dB Detector cm 40.00 -4.66 QP 40.00 -7.20 QP	400 500 600 700 1000.000
8 40 50 30.000 40 50 No. Mk. Freq. MHz 36.8952 2 2 1 44.4308 3 140.3421 4 1 210.7860	Beading Level Correct Factor Measure ment dBuV dB dBuV/m 18.26 17.08 35.34 22.26 12.94 32.80 22.61 12.30 34.91	(MHz) 300 (MHz) 300 Limit Over Heigl dBuV/m dB Detector cm 40.00 -4.66 QP 40.00 -7.20 QP 40.00 -7.20 QP	400 500 600 700 1000.000
-8 30.000 40 50 No. Mk. Freq. MHz 1 * 36.8952 2 ! 44.4308 3 140.3421	Correct Measure Reading Correct Measure Level Factor ment dBuV dB dBuV/m 18.26 17.08 35.34 22.26 12.94 35.20 20.69 12.11 32.80	(MHz) 300 (MHz) Anten Limit Over Heigl dBuV/m dB Detector cm 40.00 -4.66 QP 40.00 -7.20 QP	400 500 600 700 1000.000

Factor = Antenna Factor + Cable Loss.

Page 22 of 61

Report No.: NTEK- 2016NT09108872E

										-	tt
EUT :		LCD Mo	onitor 🖉	5 4			el Name: 215LM00056				
Temper		24℃	5	S	5				54%		
Pressur		1010hP		لمناح		Test Da			2016-09-26		t d
Test Mo	ode:		VGA(1280*800)			Polariz	ation :	H	lorizont	tal	
Test Po	ower:	AC 230	V/50Hz	2	2	2			2	2	2
5	1 1				- 1	*	A	A	A	6	
Ś	N Str	SI	Si	S	S.	2		Š.	S.	S	S
72.0 dB	Bu¥/m			1				i			
										Limit Marg	
										4 4	; 6 ,
									3	4 5	
						2			×	X X	č X 📕
32						2			×	Ň.	6 M Journal
	1 X								×	In	- all and a second
									×	Mund	- Ald and a start
32 \ ^{Min} two	www.jutit	Minustania, 12Mi	Mark Mu.	, here,			noper land	makelennet	×	Mun	< X word
	www.juliju	Monthefundary	4MAN MANNA	monolowith	how well	2 With Jonuty	norman	mutules	X	Mund	< X work
	www.juliy	Menning and a full	4Mur Minnor	nurhadamluru	have put		y approximation	mahalamahad	× Later Mardel	, Aux	< X water and a second
		Manufalan Manufalu	4Mbr ⁴ Wayan	annalantuma	h may pull		r shinking	transfeller overland	Kaunan	<u>A</u>	< × where we have a start of the second start
	non July	lunville (_{N-1}))	ul/un/www.	nonduntura	h man gridd		a share	prospections	× Lauran		< × where we have a start of the second start
	www	lunnille an trill	HM104 Mayor	nondundun	h, mark fred		n det Manda	iron ha la vora de la la	Kalenderade		< × where we have a second sec
v Providence		lunnigel un public	ul/Un ^{ut} Vin _{en} n	n on of the second s	h, may public		a open hand	production	× Lauran		< × where we have a second sec
1 Parties				monolyingtime	(MHz)			19445 for 1940 a	X Lanut		< ×
8				normalium/mm				17400 haller Ard And DO 40	X Lanut		< X A
8) 60 7(0 80	Measure				A.	0 500		< X A
8	40 50) 60 7(D 80 Correct	Measure- ment				Antenna	x yuunnuuuu 0 500 Table		< X A
8 30.000	40 50) 60 7(0 80		(MHz)			A.	0 500		(X / / / / / / / / / / / / / / / / / /
8 30.000	40 50	0 60 70 Reading Level	0 80 Correct Factor	ment	(MHz) Limit	Over	31	Antenna Height	x 0 500 Table Degree	600 7	(X / / / / / / / / / / / / / / / / / /
8 30.000 No. Mł	40 50 k. Freq. MHz	0 60 70 Reading Level dBuV	D 80 Correct Factor dB	ment dBuV/m	(MHz) Limit dBuV/m	Over dB	30 Detector	Antenna Height	x 0 500 Table Degree	600 7	(X / / / / / / / / / / / / / / / / / /
8 30.000 No. Mł	40 50 40 50 k. Freq. MHz 48.1626	0 60 70 Reading Level dBuV 17.07	D 80 Correct Factor dB 10.54	ment dBuV/m 27.61	(MHz) Limit dBuV/m 40.00	Over dB -12.39	30 Detector QP	Antenna Height	x 0 500 Table Degree	600 7	(X / / / / / / / / / / / / / / / / / /
8 30.000 No. Mk	40 50 k. Freq. MHz 48.1626 210.7860	0 60 70 Reading Level dBuV 17.07 21.50	0 80 Correct Factor dB 10.54 12.30	ment dBuV/m 27.61 33.80	(MHz) Limit dBuV/m 40.00 40.00	Over dB -12.39 -6.20	31 Detector QP QP	Antenna Height	x 0 500 Table Degree	600 7	(X / / / / / / / / / / / / / / / / / /

-10.38

QP

47.00

36.62

Remark: Factor = Antenna Factor + Cable Loss.

11.93

24.69

845.0878

6

Page 23 of 61

Report No.: NTEK- 2016NT09108872E

EUT :		LCD Mo	onitor		1	Model	Name:	2	15LM0	0056	A.
Tempe	erature :	24 ℃	~	~	~	Relativ	e Humidi	ty:5	4%	~	~
Pressu	re :	1010hP	a		-	Test Da	ate :	2	016-09	-26 🔶	A
Test M	ode:	VGA(12	280*800)	1 Alexandre	1	Polariz	ation :	V	ertical	il and a second	1 th
Test Po	ower:	AC 230	V/50Hz	7	7	7	4			7	7
72.0 d	IBuV/m					-			X		and the second s
										Limit: Margin:	
									6 *		
1	2 3										
32 x		m	and the second	president and feeling to select the	hillinghal	5	nymberen	horald	phylologic	he herodulu	hund marked
X		60 70	0 80	president left will be	(MHz)	¥_	300	400		600 700	1000.000
-8 30.000		Reading	Correct	Measure-	(MHz)		300 Ar	400 Antenna	0 500 Table		
-8	40 50	Reading Level	Correct Factor	Measure- ment	(MHz) Limit	Over	300 Ar H	400 Antenna eight	D 500 Table Degree	600 700	
32 32 32 33	40 50 40 50 1k. Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	(MHz) Limit dBuV/m	Over dB	300 Ar H Detector	400 Antenna	0 500 Table		
32 32 -8 30.000	40 50 40 50 1k. Freq. MHz 32.9791	Reading Level dBuV 16.14	Correct Factor dB 18.88	Measure- ment dBuV/m 35.02	(MHz) Limit dBuV/m 40.00	Over dB -4.98	300 300 Ar H Detector QP	400 Antenna eight	D 500 Table Degree	600 700	
-8 30.000 No. M 1 ! 2 !	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Reading Level dBuV 16.14 18.78	Correct Factor dB 18.88 16.51	Measure- ment dBuV/m 35.02 35.29	(MHz) Limit dBuV/m 40.00 40.00	Over dB -4.98 -4.71	300 300 Ar H Detector QP QP	400 Antenna eight	D 500 Table Degree	600 700	
32 32 -8 30.000	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Reading Level dBuV 16.14	Correct Factor dB 18.88	Measure- ment dBuV/m 35.02 35.29 35.30	(MHz) Limit dBuV/m 40.00	Over dB -4.98	300 300 Ar H Detector QP	400 Antenna eight	D 500 Table Degree	600 700	
32 32 32 33 30.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 50 40 50 1k. Freq. MHz 32.9791 37.8121 42.8998	Reading Level dBuV 16.14 18.78 21.51	Correct Factor dB 18.88 16.51 13.79	Measure- ment dBuV/m 35.02 35.29 35.30 32.60	(MHz) Limit dBuV/m 40.00 40.00	Over dB -4.98 -4.71 -4.70	300 300 Ar H Detector QP QP QP	400 Antenna eight	D 500 Table Degree	600 700	

Factor = Antenna Factor + Cable Loss.

Page 24 of 61

Report No.: NTEK- 2016NT09108872E

EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	24°C	Relative Humidit	y: 54%
Pressure :	1010hPa	Test Date :	2016-09-26
Test Mode:	VGA(1920*1080)	Polarization :	Horizontal
Test Power:	AC 230V/50Hz	·	4. 4. 4.
t at a		* * * *	* * * *
72.0 dBu∀/m	51 51 5	1 - 12 - 12 - 12 - 13	
			Limit: — Margin: —
			- ×
			4 5
32	2	3	× × "/
	Willing Willing Man Part Part Part	Mulan Mandaling and Juda	hundren and the sound and and and
1 X		3 Mulithun hillingundullingundullingundul	× × "/
	Wilten Willer Manueller	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	× × "/
B 30.000 40 50	Reading Correct Meas	(MHz) 300	400 500 600 700 1000.000
8		(MHz) 300 ure- Limit Over He	400 500 600 700 1000.000
8 30.000 40 50 No. Mk. Freq.	Reading Correct Meas Level Factor mer	(MHz) 300 (MHz) An ure-Limit Over Ha (m dBuV/m dB Detector	400 500 600 700 1000.000 tenna Table eight Degree
B 30.000 40 50 No. Mk. Freq. MHz	X Y Y <td>(MHz) 300 (MHz) An ure- An nt Limit Over Ho /m dBuV/m dB Detector 4 40.00 -12.56 QP</td> <td>400 500 600 700 1000.000 tenna Table eight Degree</td>	(MHz) 300 (MHz) An ure- An nt Limit Over Ho /m dBuV/m dB Detector 4 40.00 -12.56 QP	400 500 600 700 1000.000 tenna Table eight Degree
1 30.000 40 50 No. Mk. Freq. MHz 1 45.0583	Reading Correct Meas Level Factor Meas MBuV dB dBuV 15.14 12.30 27.4	(MHz) 300 (MHz) An ure- ht Limit Over Ha /m dBuV/m dB Detector 4 40.00 -12.56 QP 3 40.00 -10.87 QP	400 500 600 700 1000.000 tenna Table eight Degree
No. Mk. Freq. MHz 1 1 45.0583 2 70.0903	X Y	(MHz) 300 (MHz) An ure- ht Limit Over An Ho /m dBuV/m dB Detector 4 40.00 -12.56 QP 3 40.00 -12.57 QP	400 500 600 700 1000.000 tenna Table eight Degree

Remark: Factor = Antenna Factor + Cable Loss AN INT NTEK

Fift

AN RAT

NET

AN ET

2

2

Page 25 of 61

Report No.: NTEK- 2016NT09108872E

- Sector

25

-Sil

- Star

-sr

-Jark

et.

¢¢-

Ś

2	Ter		ature	:	24℃	Monitor		N A	Model Relativ	ve Hum	idity : 5	215LM0 54%	~	4
-	Pre	essur	e:		1010ł	۱Pa	A	t l	Test Da	ate :	2	2016-09	-26 🔶	t
-	Tes	st Mode: VGA(1920*108					Polariz	ation :		/ertical	1 C	1 Alexandre		
	Tes	st Po	wer:		AC 23	30V/50H	Hz	N N	1				~	~
10.	72.	.0 dB	uV/m	R			E X			Æ	J.C.	JACK -		
1. 1	41												Limit: Margin:	
1. 1	41													
	2		1	2				3				*	5 ¥	
1	32		× I	Ā.				×					A.	1. June
		manual	- ye	WW	my		I.		dal I.			l II la	W Williams	Hallan an
	4				* ¥	Mhthau	L. L. L. MM	Mu wawyi Wi	W MAAM	w interes	1. Albertally	post all an Jack		
2							10 N N N N N N N							
							. Mallen			Witten				
-							. MARees	·		We con				
	41						. MARA			M				
10.	14						. Malleri							
1 1	-8						. Malleti							
An An		0.000	40	50) 60	70 80	. Mallets	(MHz)		3	00 40	0 500	600 700) 1000.000
1 1 1 1		0.000	40	50	F	t	. Malleta	×	4	30	×	t	600 700) 1000.000
a ha ha	3		*	~	Readin	g Corre		re-	Over	30	Antenna	Table	×) 1000.000
As As As	3	6.000	κ. F	50 Treq.	F	t	tor ment	re- t Limit	Over	3 Jetector	Antenna Height	t	×) 1000.000
1 1 1 1 1	3		κ. F	req.	Readin Level	g Corre Fact	tor ment dBuV/n	re- t Limit		×	Antenna Height	Table Degree	×) 1000.000
10 10 10 10 10 10	3	Io. MI	κ. F	req. MHz	Readin Level dBuV	g Corre Fact dB 16.7	tor ment dBuV/n 5 35.36	re- t Limit dBuV/m 40.00	dB	Detector	Antenna Height	Table Degree	×) 1000.00
the the the the	3 	lo. Mł 1 *	K. F M 37.4	req. MHz 1164 2752	Readin Level dBuV 18.61	g Corre Fact dB 16.7 13.1	tor ment dBuV/n 5 35.36 0 35.20	re- t Limit dBuV/m 40.00 40.00	dB -4.64	Detector	Antenna Height	Table Degree	×	0 1000.000
a da da da da	3 	lo. Mł 1 * 2 !	<. F M 37.4 44.2	req. //Hz /164 2752 3421	Readin Level dBuV 18.61 22.10	g Corre Fact dB 16.7 13.1 12.1	tor ment dBuV/n 5 35.36 0 35.20 1 34.93	re- Limit dBuV/m 40.00 40.00	dB -4.64 -4.80	Detector QP QP	Antenna Height	Table Degree	×) 1000.00
An An An An An An	3 	lo. Mł 1 * 2 ! 3 !	K. F M 37.4 44.2 140.3	req. //Hz 1164 2752 3421 4685	Readin Level dBuV 18.61 22.10 22.82	g Corre Fact dB 16.7 13.1 12.1 18.6	tor ment dBuV/n 5 35.36 0 35.20 1 34.93 4 41.60	re- t Limit 40.00 40.00 40.00 40.00	dB -4.64 -4.80 -5.07	Detector QP QP QP	Antenna Height	Table Degree	×	0 1000.000
An An An An An An	3 	lo. Mł 1 * 2 ! 3 ! 4 !	K. F M 37.4 44.2 140.3 492.4	req. //Hz /164 /752 /421 /685	Readin Level dBuV 18.61 22.10 22.82 22.96	g Corre Fact dB 16.7 13.1 12.1 18.6 20.7	tor ment dBuV/n 5 35.36 0 35.20 1 34.93 4 41.60 5 39.08	re- Limit dBuV/m 40.00 40.00 40.00 47.00	dB -4.64 -4.80 -5.07 -5.40	Detector QP QP QP QP	Antenna Height	Table Degree	×) 1000.00
the day day day day	3 	lo. Mł 1 * 2 ! 3 ! 4 ! 5 6 !	 K. F M 37.4 44.2 140.3 492.4 603.5 982.6 	req. //Hz /164 /752 /421 /685	Readin Level dBuV 18.61 22.10 22.82 22.96 18.33	g Corre Fact dB 16.7 13.1 12.1 18.6 20.7	tor ment dBuV/n 5 35.36 0 35.20 1 34.93 4 41.60 5 39.08	re- Limit dBuV/m 40.00 40.00 40.00 47.00	dB -4.64 -4.80 -5.07 -5.40 -7.92	Detector QP QP QP QP QP QP	Antenna Height	Table Degree	×	
the the the the the the	3 	Io. MI 1 * 2 3 4 5 6 mark	 F M 37.4 44.2 140.3 492.4 603.5 982.6 (:) 	req. MHz 1164 2752 3421 685 5392 5200	Readin Level dBuV 18.61 22.10 22.82 22.96 18.33 12.63	g Corre Fact dB 16.7 13.1 12.1 18.6 20.7 28.5	tor ment dBuV/n 5 35.36 0 35.20 1 34.93 4 41.60 5 39.08	re- Limit dBuV/m 40.00 40.00 40.00 47.00	dB -4.64 -4.80 -5.07 -5.40 -7.92	Detector QP QP QP QP QP QP	Antenna Height	Table Degree	×	

AN CH

- STE

¢t-

AN THE

AN CONT

Page 26 of 61

3.2.7 TEST RESULTS (1000-6000MHz)

EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	24 °C	Relative Humidity :	54%
Pressure :	1010hPa 🧢 🧹 🦂	Test Date :	2016-09-26
Test Mode:	VGA(1920*800)	Polarization :	Horizontal
Test Power:	AC 230V/50Hz		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		1889.051	59.28	-9.31	49.97	70.00	-20.03	peak				
2		1889.051	39.81	-9.31	30.50	50.00	-19.50	AVG				
3	*	2176.294	58.31	-7.31	51.00	70.00	-19.00	peak				
4		2176.294	37.21	-7.31	29.90	50.00	-20.10	AVG				
5		4865.277	51.60	1.90	53.50	74.00	-20.50	peak				
6		4865.277	32.30	1.90	34.20	54.00	-19.80	AVG				

Remark: Factor = Antenna Factor + Cable Loss

Page 27 of 61

Report No.: NTEK- 2016NT09108872E

Factor = Antenna Factor + Cable Loss

Page 28 of 61

3.3 HARMONICS CURRENT

3.3.1 LIMITS OF HARMONICS CURRENT(CLASS A)

Table 1 – Limits for Class A equipment

Harmonic order (n)	Maximum permissible harmonic current (A)
Odd	harmonics
3 3	2.3 5
* * 5 * *	1.14
	0.77
1 1 9 1 1	0.4
11	0.33
13	0.21
15≤n≤39	0.15*(15/n)
Even	harmonics
	1.08
	0.43
	0.30
8≤n≤40 ←	0.23*(8/n)

3.3.1.1 TEST PROCEDURE

a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.b. The classification of EUT is according to section 5 of EN 61000-3-2. The EUT is classified as follows:

Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.

Class B: Portable tools. Portable tools.; Arc welding equipment which is not professional equipment.

Class C: Lighting equipment.

Class D: Equipment having a specified power less than or equal to 600W of the following types: Personal computers and personal computer monitors and television receivers. c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

3.3.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

Page 30 of 61

Report No.: NTEK- 2016NT09108872E

3.3.2 TEST RESULTS

		<u> </u>	<u> </u>
EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	24°C	Relative Humidity :	54%
Pressure :	1010hPa	Test Date :	N/A ~ ~ ~
Classification:	N/A the state	Test duration:	N/A + +
Test Mode:	N/A <	N N	R R R R
Test Power:	N/A	2 4	~ ~ ~ ~ ~

Note: The active input power of the EUT is less than 75 W. No limits apply for equipment with an active input power up to and including 75W.

Page 31 of 61

3.4 VOLTAGE FLUCTUATION AND FLICKERS

3.4.1 LIMITS OF VOLTAGE FLUCTUATION AND FLICKERS

Test items	Limits(EN61000-3-3)	Descriptions
P _{st}	≤1.0, T _p =10min	short-term flicker indicator
Pit	≪0.65, T _p =2h	long-term flicker indicator
d _c	≤3.3%	relative steady-state voltage change
d _{max}	≪4%(or 6% _{Note(1)} , 7% _{Note(2)})	maximum relative voltage change:
d _(t)	<a> <a> ≤3.3%, more than 500ms	relative voltage change characteristic

Note:

- 1.6 % for equipment which is:
 - a. switched manually, or
 - b. switched automatically more frequently than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds), or manual restart, after a power supply interruption.
- 2.7 % for equipment which is
- a. attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or b. switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

3.4.1.1 TEST PROCEDURE

a. Harmonic Current Test:

Test was performed according to the procedures specified in Sub-clause 6.2 of IEC/EN 61000-3-2 depend on which standard adopted for compliance measurement.

- b. Fluctuation and Flickers Test: Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in Clause 6.0/4.0 of IEC/EN 61000-3-3 depend on which standard adopted for compliance measurement.
- c. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

3.4.1.2 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

3.4.1.3 TEST SETUP

with

with

With

WEIT

AN COL

NET

High

Page 33 of 61

-ser

-Sil

-Jack

- AN

tot with

- Art

- Art

- Sector

-Jack

- And - And

Ś

S.

And the

- Art

L'

~

Ł

L'

Ś

Ż

2

Les a

L'

at 1

夺

ANIEL .

AN THE

Filt

Wilt

WEt

Ariet

-siet

AN IET

WEt

at

3.4.2 TEST RESULTS

		<u>`</u>		<u> </u>	<u> </u>
EUT:	LCD Monitor		Model Name:	215LM00056	
Temperature :	24°C		Relative Humidity :	54%	
Pressure :	1010hPa 🔶 🔶	1.	Test Date :	2016-09-26	2 2
Test Mode:	VGA 🙏 🖌	x /	* * *	t t	X
Test Power:	AC 230V/50Hz		N N	Nº N	N. N
7 7	~ ~ ~ ~	~	7 7	7 7	4 4

Arter Maximum Flicker results

	EUT values	Limit	Result
Pst	0.035	1.00	PASS
Plt	0.025	0.65	PASS
dc [%]	0.006	3.30	PASS
dmax [%]	0.180	4.00	PASS
dt [s]	0.000	0.50	PASS

writer writer writer with

with with with

Wilt

<u>e</u>t-

att

2

with with with with

with with with

with

ret

3

Filt

A A

while while while while while

writer writer writer

with

retext

7

with with with

will with with

ASTER .

3

. Et

with with with

WEIT

with

Ś

with with

With with with

Wet

NIEt \$ -siet 4 ¢ Arter \$ AN ET

\$

a let

- silet

Fret

ATEL

with

NET

Z

Ś

ret

ANIT

4. EMC IMMUNITY TEST

4.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA

Tests Standard No.	TEST SPECIFICATION	Test Mode Test Ports	Perform. Criteria
1. ESD	8kV air discharge 4kV contact discharge	Direct Mode	B
IEC/EN 61000-4-2	4kV HCP discharge 4kV VCP discharge	Indirect Mode	B
2. RS IEC/EN 61000-4-3	80 MHz to 1000 MHz, 1000Hz, 80%, AM modulated	Enclosure	A
3. EFT/Burst	5/50ns Tr/Th 5kHz Repetition Freq.	Power Supply Port	B
3. EF 1/Burst IEC/EN 61000-4-4	5/50ns Tr/Th 5kHz Repetition Freq.	CTL/Signal Data Line Port	B
1. Surges	1.2/50(8/20) Tr/Th us	L-N	₹ B ₹
IEC/EN 61000-4-5	1.2/50(8/20) Tr/Th us	L-PE N-PE	B
	0.15 MHz to 80 MHz, 1000Hz 80%, AM Modulated 150Ω source impedance	CTL/Signal Port	A
5. Continuous radio requency disturbances IEC/EN 61000-4-6	0.15 MHz to 80 MHz, 1000Hz 80%, AM Modulated 150Ω source impedance	AC Power Port	A
	0.15 MHz to 80 MHz, 1000Hz 80%, AM Modulated 150Ω source impedance	DC Power Port	A
6. Power Frequency Magnetic Field IEC/EN 61000-4-8	50 Hz A	Enclosure	ATTA AT
7. Volt. Interruptions	Voltage dip 100%		B
Volt. Dips EC/EN 61000-4-11	Voltage dip 30%	AC Power Port	~ c ~
			С

Page 35 of 61

4.	2 GENERAL	PERFORMANCE CRITERIA
4	According	to EN 55024 standard, the general performance criteria as following:
2 4 4 -	Criterion A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
なった。た	Criterion B	After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level
A to	Criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the

4.3 GENERAL PERFORMANCE CRITERIA TEST SETUP The EUT tested system was configured as the statements of **2.3** Unless otherwise a special operating condition is specified in the follows during the testing.

4.4 ESD TESTING

4.4.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-2
Discharge Impedance:	330ohm / 150pF
Required Performance:	BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Discharge Voltage:	Air Discharge : 2kV/4kV/8kV (Direct)
	Contact Discharge : 2kV/4kV (Direct/Indirect)
Polarity:	Positive & Negative
Number of Discharge:	Air Discharge: min. 20 times at each test point
	Contact Discharge: min. 200 times in total
	50 times at each test point
Discharge Mode:	Single Discharge
Discharge Period:	1 second minimum

4.4.2 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

- a. Contact discharge was applied to conductive surfaces and coupling planes of the EUT.
- During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges.

If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

Vertical Coupling Plane (VCP):

- The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge. Horizontal Coupling Plane (HCP):
- The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.
- b. Air discharges at insulation surfaces of the EUT. It was at least ten single discharges with positive and negative at the same selected point.

4.4.3 TEST SETUP Nearest Wall 10 cm 1m ESD Generator ESD Generator **Discharge Return** Discharge Cable to GRP Return Cable to GRP To AC Main (0.5 mm) EUT Isolation Support VCP 50 cm x 50 cm HCF

Ground Reference Plane(GRP) Bonded to PE

Page 37 of 61

Report No.: NTEK- 2016NT09108872E

470KΩ

470KΩ

Note:

TABLE-TOP EQUIPMENT

(1.6m x 0.8m)

80cm

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

Non-Conductive Table

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

Page 38 of 61 Report No.: NTEK- 2016NT09108872E

4.4.4 TEST RESULTS

<u> </u>	S.		2		2		-	5		S		Ś		-	5		5 5	2 2
EUT :	LCD Monitor								Model Name:					2	215LM00056			
Temperature	re: 25℃						Relative Humidity :					umi	dity	: 4	45%			
Pressure :		1	010	hPa	7		-			2	Tes	t Da	ate :			2	2016-09-26	2 2
Test Mode:		V	GA	1	·	X		1	t		*		X		~	-	At 1	t Y
Test Power:		Α	C 2	30V	/50l	Ηz		1º		~		~	V	-	N.		N N	
		_			~		D :			(1								
Mode					Con	tact	: Dis	scha	arge	(In	dire	ct)						
Test level (kV)	То	et F	oin			2				4				6		_	Criterion	Result
Test Location	10	511	Uni		+		-		+		-		+		-			
4	7	Fro	nt		Ρ		Ρ		Р	7	Ρ	Y					4 4	4 4
	4	Rea	ar	5	Ρ	1	Р		Р		Р		5		5		5 4	F
HCP	5	Le	ft		P		Ρ	5	Ρ	5	Ρ	5					5 5	Complian
at at	*	Rig	ht		Ρ	1	Ρ		Р		Р		1		~			
	1	Fro	nt		Ρ	1	Ρ	XX	Р		P		Ś.		N.		CB Q	Complies
VOD	2	Rea	ar		Р		Ρ	3	Ρ	2	Ρ	2		V	2	-	5. 5.	4 4
VCP	1	Le	ft	1	Ρ	2	Р	0	Р		P		1		6		at a	- 4
× SV	5	Rig	ht		P		Ρ	5	Р	1	Р	S		-			× × ×	1 × 1
Mode			Air	Die	cha	rao				C	onta		Jiec	har	A	-		
Test level				013		ige				0				nar	je I		-	
(kV)	2	2	4	1	8	3	1	5	2	2	4	1	6	6	8	3	Criterion Result	
Test Location	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-		
Gap	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ												
Button	P	Р	Ρ	Ρ	Ρ	Ρ		2	1		5	4	5		.0			Complian
Screen	Ρ	Ρ	Ρ	Р	P	Ρ	V	5		5		1		1.			2° 2	Complies
VGA port		ト		ト		X	-	/	Р	Р	Ρ	Ρ	x	r -	~		A	t At

- 1) +/- denotes the Positive/Negative polarity of the output voltage.
- Test location(s) in which discharge (Air and contact discharge) to be applied illustrated by photos shown in next page(s)
- 3) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.
- 4) Criteria A: Normal performance within limits specified by the manufacturer, requestor or purchaser.
- 5) Criteria B: Temporary loss of function or degradation of performance which ceases after the disturbance ceases, and from which the EUT recovers its normal performance, without operator intervention.
- 6) Criteria C: Temporary loss of function or degradation of performance, the correction of which requires operator intervention.
- 7) Criteria D: Loss of function or degradation of performance which is not recoverable, owing to damage to hardware or software, or loss of data.

4.5 RS TESTING

4.5.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-3
Required Performance:	Att
Frequency Range:	80 MHz - 1000 MHz
Field Strength:	3 V/m
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Polarity of Antenna:	Horizontal and Vertical
Test Distance:	3 m 7 7 7 7 7
Antenna Height:	1.5 m / /
Dwell Time:	3 seconds

4.5.2 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.

The other condition as following manner:

- a. The frequency range is swept from 80 MHz to 1000 MHz, & 1400MHz 2700MHz with the signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- b. Sweep Frequency 900 MHz, with the Duty Cycle:1/8 and Modulation: Pulse 217 Hz(if applicable)
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

Page 40 of 61 Report No.

Report No.: NTEK- 2016NT09108872E

4.5.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

Page 41 of 61 Report No.: NTEK- 2016NT09108872E

4.5.4 TEST RESULTS

6 6		6 6	2 2 2 2
EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	25°C	Relative Humidity :	60%
Pressure :	1010hPa 🤿 🔿	Test Date :	2016-09-26
Test Mode:	VGA	* * *	* * *
Test Power:	AC 230V/50Hz		N N N N

4	Frequency Range	RF Field	R.F.	Azimuth	Perform.	Results	Judgment
	(MHz)	Position	Field Strength	Azimum	Criteria	Results	Judgment
11	t sint sint a		L.	Front	A A	L. L.	
1	* * *	* *	3 V/m (r.m.s)	Rear	x x	- *	
	80MHz - 1000MHz	< Н/∨	AM Modulated		A	P	Complies
		at at	1000Hz, 80%	Left	at a	- 4	
1			A A				1
	4 4 4		4 4	Right	4	2	

- 1) N/A denotes test is not applicable in this test report.
- 2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.
- 3) Criteria A: There was no change operated with initial operating during the test.
- 4) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 5) Criteria C: The system shut down during the test.

4.6 EFT/BURST TESTING

4.6.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-4
Required Performance:	BAAAAAA
Test Voltage:	Power Line:0.5 kV, 1 kV
	Signal/Control Line : 0.5 kV
Polarity:	Positive & Negative
Impulse Frequency:	5 kHz
Impulse Wave shape :	5/50 ns
Burst Duration:	15 ms
Burst Period:	300 ms
Test Duration:	2 minutes

4.6.2 TEST PROCEDURE

The EUT and its simulators were placed on a ground reference plane and were insulated from it by a wood support 0.1m \pm 0.01m thick. The ground reference plane was 1m*1m metallic sheet with 0.65mm minimum thickness. The other condition as following manner:

- a. The length of power cord between the coupling device and the EUT should not exceed 0.5 meter.
- b. Both positive and negative polarity discharges were applied.
- c. The duration time of each test sequential was 2 minutes.

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

Page 44 of 61 Report No.: NTEK- 2016NT09108872E

4.6.4 TEST RESULTS

	2 2 2 2	2 2	7. 7. 7. 7
EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	25°C	Relative Humidity :	60%
Pressure :	1010hPa 🤿 🔿	Test Date :	2016-09-26
Test Mode:	VGA	* * *	t t t
Test Power:	AC 230V/50Hz		N N N N
Test Power:	AC 230V/50Hz		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Cour			Te	est lev	vel (k\	√)			Criterion	Result	15. 4	
Coup	ling Line	0	.5		1		2		1	Cillenon	Result	
		+	-	+	-	+	-	+	-			1
* ~	L L	Р	P	Р	P	x	2	T V	, t	L Y L	* *	
	J'N J'	P	Р	P	P		N'SIN	1.		L' L'		1
t t	PE		to	4	۲	t	1	۲.	to	t.	* *	
AC line	L+N	P	Р	Р	P	Р	P	10		5 2		Ś
t t	L+PE	L.	t.	A	L.	4		Y	Ł.	B	Complies	
1	<n+pe< td=""><td>1.</td><td></td><td>1</td><td>1</td><td></td><td>1</td><td>1.</td><td></td><td>5 5</td><td>~ ~</td><td>5</td></n+pe<>	1.		1	1		1	1.		5 5	~ ~	5
t. t	L+N+PE	L.	t's	k	L.	to.		L.	t.	At 1	t st	4
d 🔶 DC	C Line	1		1	V		2	1.		2 2	~ ~ ~	5
Sigr	L.	\$	4	Ţ	\$	K	L.	4	AT .	5 5		

Note:

1) +/- denotes the Positive/Negative polarity of the output voltage.

2) N/A - denotes test is not applicable in this test report

3) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.

4) Criteria A: There was no change operated with initial operating during the test.

5) Criteria B: The EUT function loss during the test, but self-recoverable after the test.

6) Criteria C: The system shut down during the test.

4.7 SURGE TESTING

4.7.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-5
Required Performance:	BAAAAA
Wave-Shape:	Combination Wave
	1.2/50 us Open Circuit Voltage
	8 /20 us Short Circuit Current
Test Voltage:	Power Line : 0.5 kV, 1 kV, 2 kV
Surge Input/Output:	L-N, L-PE, N-PE
Generator Source:	2 ohm between networks
Impedance:	12 ohm between network and ground
Polarity:	Positive/Negative
Phase Angle:	0°/90°/180°/270°
Pulse Repetition Rate:	1 time / min. (maximum)
Number of Tests:	5 positive and 5 negative at selected points

4.7.2 TEST PROCEDURE

- a. For EUT power supply:
- The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).
- b. For test applied to unshielded asymmetrically operated interconnection lines of EUT:
- The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).
- c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT:
- d. The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

Page 47 of 61 Report No.: NTEK- 2016NT09108872E

4.7.4 TEST RESULTS

	2. 2. 2. 2	2.2	7. 7. 7. 5
EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	25°C	Relative Humidity :	60%
Pressure :	1010hPa 🤿 🔿 🔿	Test Date :	2016-09-26
Test Mode:	VGA	* * *	* * *
Test Power:	AC 230V/50Hz		1 1 1 1 1

4			Test level									
Coupling Line		0.5 kV		1 kV		2 kV		4 kV		Criterion	Result	
	_		+	-	+	-	+	-	+	-		
× 4	~ ~	0°	P	Р	P	P	~		S	~	1 N 2	24
t.	L-N	90°	Р	P	P	Ρ	イ	t		イ	at	t t
~ ~	1	180°	P	Р	P	P		N.	Sn	× *	5 2	
A	t.	270°	Ρ	P	P	Ρ	Y	A		Y	X	t t
S S	N SI	0°	S	· _	N. N.	5	 - 		5	V .	ST S	Siv 2
AC	L-PE	90°		ł	1		1	1		1	1 t	t t
line		180°	N	Ű.	N.	1	Ű	N.	1	Ü	В	Complies
~	V	270°	7	1		V		-	V	1		4. 4
		0°			5			5				E E
4	N-PE	90°	2		1.	2		1.	r		5. 5	4 4
		180°	-	*	4	4	公	4		Y	AT .	
1	4	270°	2	4	5	5			1		5 2	4 4
t.	DC Lin	et d		*	t		*	4		*	t.	4 4
1	Signal Li	ine 🔬	2		5	2			5		5 5	5 2

Note:

1) Polarity and Numbers of Impulses : 5 Pst / Ngt at each tested mode

2) N/A - denotes test is not applicable in this Test Report

3) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.

4) Criteria A: There was no change operated with initial operating during the test.

5) Criteria B: The EUT function loss during the test, but self-recoverable after the test.

6) Criteria C: The system shut down during the test.

Page 48 of 61

4.8 CONTINUOUS RADIO FREQUENCY DISTURBANCES TESTING

4.8.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-6
Required Performance:	Att
Frequency Range:	0.15 MHz - 80 MHz
Field Strength:	3 Vr.m.s.
Modulation:	1kHz Sine Wave, 80%, AM Modulation
Frequency Step:	1 % of fundamental
Dwell Time:	3 seconds

4.8.2 TEST PROCEDURE

The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50mm (where possible). The disturbance signal described below is injected to EUT through CDN.

The other condition as following manner:

- a. The frequency range is swept from 150 kHz to 80 MHz, with the signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- b. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.

4.8.3 TEST SETUP

NOTE:

FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

Page 49 of 61 Report No.: NTEK- 2016NT09108872E

4.8.4 TEST RESULTS

			2 2 2 2
EUT :	LCD Monitor	Model Name:	215LM00056
Temperature :	25°C	Relative Humidity :	60%
Pressure :	1010hPa 🔷 🔿 🔿	Test Date :	2016-09-26
Test Mode:	VGA	* * *	
Test Power:	AC 230V/50Hz	N AN AN	1 1 1 1 1 1

1	Test Ports (Mode)	Freq. Range MHz)	Field Strength	Perform. Criteria	Results	Judgment
1	Input/ Output AC. Power Port	0.1580	2)/(5 m c)	A	A A	Complies
1	Input/ Output DC. Power Port	0.15 80	3V(r.m.s) AM Modulated	AT	N/A	N/A
1 N	Signal Line	0.15 80	1000Hz, 80%	At	NA	N/A

- 1) N/A denotes test is not applicable in this Test Report.
- 2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.
- 3) Criteria A: There was no change operated with initial operating during the test.
- 4) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 5) Criteria C: The system shut down during the test.

Page 50 of 61

4.9 POWER FREQUENCY MAGNETIC FIELD TESTING

4.9.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-8
Required Performance:	Attt
Frequency Range:	50Hz
Field Strength:	1 A/m
Observation Time:	5 minutes
Inductance Coil:	Rectangular type, 1mx1m

4.9.2 TEST PROCEDURE

- The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min. The other condition as following manner:
- a. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- b. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

Page 51 of 61

4.9.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

Page 52 of 61 Report No.: NTEK- 2016NT09108872E

4.9.4 TEST RESULTS

6 6		5 6		2 2	2 2
EUT :	LCD Monitor	L.	Model Name:	215LM00056	T.
Temperature :	25℃		Relative Humidity :	60%	
Pressure :	1010hPa 🤿 🛛 🤿	. 2	Test Date :	2016-09-26	4 4
Test Mode:	VGA	1	* * *	t t	X
Test Power:	AC 230V/50Hz			1 1	1 1

Test Mode	Test Level	Antenna aspect	Duration (s)	Perform Criteria	Results	Judgment
Enclosure	1 A/m	×	300 s	A	P	STAT &
Enclosure	1 A/m	Y	300 s	A	ATP A	Complies
Enclosure	1 A/m	Z	300 s	A	P	

- 1) N/A denotes test is not applicable in this test report
- 2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.
- 3) Criteria A: There was no change operated with initial operating during the test.
- 4) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 5) Criteria C: The system shut down during the test.

4.10 VOLTAGE INTERRUPTION/DIPS TESTING

4.10.1 TEST SPECIFICATION

	Basic Standard:	IEC/EN 61000-4-11		
	Required Performance:	B (For 100% Voltage Dips)		
		C (For 30% Voltage Dips)		
		C (For 100% Voltage Interruptions)		
Test Duration Time:		Minimum three test events in sequence		
Interval between Event:		Minimum ten seconds		
Phase Angle:		0°/45°/90°/135°/180°/225°/270°/315°/360°		
	Test Cycle:	3 times		

4.10.2 TEST PROCEDURE

The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

4.10.3 TEST SETUP

Page 54 of 61 Report No.: NTEK- 2016NT09108872E

4.10.4 TEST RESULTS

6 6		2 2	6 6	2 2	2 2
EUT :	LCD Monitor	t.	Model Name:	215LM00056	, , , , , , , , , , , , , , , , , , ,
Temperature :	25°C	A A	Relative Humidity :	60%	A A
Pressure :	1010hPa 🤿	4 4	Test Date :	2016-09-26	4 4
Test Mode:	VGA	A I	* * *	t t	X
Test Power:	AC 230V/50Hz	N 1	St St	Nº Nº	× ×

Interruption & Dips	Duration (T)	Perform Criteria	Results	Judgment
Voltage dip 100%	0.5	A SHE	STOP STO	Stat Stat S
Voltage dip 30%	25	t ct	dP dt	Complies
Voltage dip 100%	250	₹c ₹	₹ P₹	

- 1). N/A denotes test is not applicable in this test report.
- 2) In the table: 'P' represents 'PASS'; 'F' represents 'FAIL'.
- 3) Criteria A: There was no change operated with initial operating during the test.
- 4) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 5) Criteria C: The system shut down during the test.

Page 55 of 61 Report No.: NTEK- 2016NT09108872E

5. EUT TEST PHOTO

Radiated Measurement Photos

Page 56 of 61

Report No.: NTEK- 2016NT09108872E

Conducted Measurement Photos

Fret

AN ER

ATEX

-sr

ATTER

AN CONT

AN CON

NIEt

AN CON

AN CON

AN CON

ATEX

Ariet.

Page 57 of 61

Report No.: NTEK- 2016NT09108872E

ATTACHMENT PHOTOGRAPHS OF EUT

Photo 1

Page 58 of 61 Repor

Report No.: NTEK- 2016NT09108872E

Page 59 of 61

Page 60 of 61

Report No.: NTEK- 2016NT09108872E

Page 61 of 61

Report No.: NTEK- 2016NT09108872E

