

FCC& ISED EMC Test Report

Applicant :	1807C103 LCD Monitor **273QCG******* (*=A-Z,a-z,0-9,/,orblank) TPV Electronics (Fujian) Co., Ltd. Rongqiao Economic and Technological Development Zone, Fuqing City, Fujian Province, P.R. China
Issued Date :	Jul. 31, 2018 Aug. 01, 2018 ~ Aug. 13, 2018 Sep. 11, 2018 BTL Inc.
Testing Engineer Technical Manage Authorized Signa	(Bill Zhang)

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO Guide 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents	Page
REPORT ISSUED HISTORY	4
1. CERIFICATION	5
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 EUT OPERATING CONDITIONS	10
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.5 DESCRIPTION OF SUPPORT UNITS	11
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
4.1.1 POWER LINE CONDUCTED EMISSION	12
4.1.2 MEASUREMENT INSTRUMENTS LIST	12
4.1.3 TEST PROCEDURE 4.1.4 DEVIATION FROM TEST STANDARD	13 13
4.1.5 TEST SETUP	13
4.1.6 TEST RESULTS	13
4.2 RADIATED EMISSION MEASUREMENT	20
4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT	20
4.2.2 MEASUREMENT INSTRUMENTS LIST	21
4.2.3 TEST PROCEDURE	22
4.2.4 DEVIATION FROM TEST STANDARD	22
4.2.5 TEST SETUP 4.2.6 TEST RESULTS-BELOW 1GHZ	23 23
4.2.7 TEST RESULTS-ABOVE 1GHZ	23 30
5.EUT TEST PHOTO	37

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICE-1-1807C103	Original Issue.	Sep. 11, 2018
L		

1. CERIFICATION

Equipment	:	LCD Monitor
Brand Name	:	N/A
Model Name	:	**273QCG******** (*=A-Z,a-z,0-9,/,orblank)
Applicant	:	TPV Electronics (Fujian) Co., Ltd.
Date of Test	:	Aug. 01, 2018 ~ Aug. 13, 2018
Test Sample	:	Engineering Sample No.: D180706414
Standard(s)	:	FCC Part 15, Subpart B
		ICES-003 Issue 6:2016
		ICES-003 Issue 6:2016 (updated April 2017)
		ANSI C63.4-2014

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICE-1-1807C103) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of NVLAP according to the ISO-17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

EMC Emission				
Standard(s)	Test Item	Limit	Judgment	Remark
FCC Part 15, Subpart B ICES-003 Issue 6:2016	Conducted Emission	Class B	PASS	
ICES-003 Issue 6:2016	Radiated emission Below 1 GHz	Class B	PASS	
(updated April 2017) ANSI C63.4-2014	Radiated emission Above 1 GHz	Class B	PASS	NOTE(2)

NOTE:

- (1) " N/A" denotes test is not applicable to this device.
- (2) The EUT's max operating frequency is 148.5 MHz which does exceed 108 MHz, so the test will be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's test firm number for FCC: 854385

BTL's test firm number for IC:4428B-3

BTL's test designation number for FCC:CN5020

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately **95**%.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C01	CISPR	150 kHz ~ 30MHz	3.16

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		30MHz ~ 200MHz	V	4.68
DG-CB08	CISPR	30MHz ~ 200MHz	Н	4.68
(3m)	CISER	200MHz ~ 1,000MHz	V	4.90
		200MHz ~ 1,000MHz	Н	4.90

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-CB08		1 ~ 6 GHz	4.26
(3m)	CISPR	6 ~18 GHz	5.30

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LCD Monito	LCD Monitor		
Brand Name	N/A			
Model Name	**273QCG**	******* (*=A-Z,a-z	,0-9,/,orblank)	
Model Difference(s)	N/A			
Power Source	AC Mains.			
Power Rating	100-240V~	50-60Hz		
Connecting I/O Port	1* Micro US 1* Display p 1* HDMI po 1* Headpho	100-240V~50-60Hz 1* AC port 4* USB port 1* Micro USB port 1* Display port 1* HDMI port 1* Headphone port 2* Audio port		
Cable Type	Shielded Type	Ferrite Core	Length(m)	Note

Cable Type	Shleided Type	Ferrite Core	Length(m)	Note
HDMI	Shielded	NO	1.2/1.5/1.8	
DP	Shielded	NO	1.2/1.5/1.8	
USB	Shielded	YES	1.2/1.5/1.8	
Audio	Non-shielded	YES	1.2/1.5/1.8	
AC Power Cord	Non-shielded	NO	1.2/1.5/1.8	1.8m is worst case Detachable (3 Pin)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Power cable 1.8m, 1.5m and 1.2m length, worst case is Power cable 1.8m with DP +HDMI +Audio +USB 1.8m, 1.5m and 1.2m length testing and recording in test report.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	HDMI 2560*1440/60Hz
Mode 2	DP 2560*1440/144Hz
Mode 3	HDMI 1080P
Mode 4	HDMI 1280*1024/75Hz
Mode 5	HDMI 640*480/75Hz

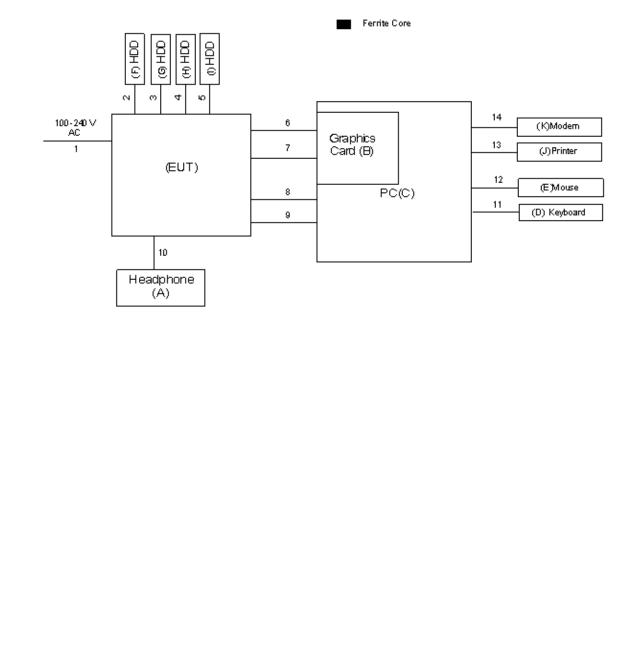
For Conducted Test		
Final Test Mode	Description	
Mode 1	HDMI 2560*1440/60Hz	
Mode 2	DP 2560*1440/144Hz	
Mode 3	HDMI 1080P	

For Radiated Test							
Final Test Mode	Description						
Mode 1	HDMI 2560*1440/60Hz						
Mode 2	DP 2560*1440/144Hz						
Mode 3	HDMI 1080P						

Evaluation description:

1. The maximum resolution is evaluated Mode 1-3. The worst case is Mode 1 and evaluated the middle and low resolution Mode 4 and mode 5.

2. According to client's requirement, choose Mode 1, Mode 2 and Mode 3 recording in test report.



3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. USB~ input from a USB storage device.
- 2. EUT Connected to headphone via headphone cable.
- 3. EUT Connected to PC via HDMI & DP & Audio & USB cable.
- 4. Send "H" pattern to serial port device (Modem).
- 5. Printer Connected to PC via Parallel cable.

As the keyboard and mouse are strictly input devices, no data is transmitted to (from) them during test. They are, however, continuously scanned for data input activity.

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	
Α	Headphone	Philips	SHMI500	VER	N/A	
В	Graphics Card	DELL	ATI 3650	DOC	260832000932	
С	PC	DELL	Vostro 470	DOC	28747261333	
D	Keyboard	DELL	KB212-B	DOC	CN0HTXH97158125004DXA01	
E	Mouse	DELL	MS111-P	DOC	CN011D3V71581279OLOT	
F	HDD	WD	WDBLUZ5000ASL	DOC	WJ1E74X7D92	
G	HDD	WD	WDBLUZ5000ASL	DOC	WX51AB3N8785	
Н	HDD	WD	WDBLUZ5000ASL	DOC	WXX1E7405LYS	
Ι	HDD	WD	WDBLUZ5000AAL	DOC	WXM1A81M8113	
J	Printer	SII	DPU-414	DOC	3018507 B	
K	Modem	ACEEX	DM-1414V	IFAXDM 1414	0603002131	
	-					
Item	Shielded Type	Ferrite Core	0		Note	
1	NO	NO	1.8m/1.5m/1.2m		AC Cable	
2	YES	NO	1m		USB Cable	
3	YES	NO	1m		USB Cable	
4	YES	NO	1m		USB Cable	
5	YES	NO	1m		USB Cable	
6	YES	NO	1.8m/1.5m/1.2m		HDMI Cable	
7	YES	NO	1.8m/1.5m/1.2m		DP Cable	
8	YES	NO	1.8m/1.5m/1.2m		USB Cable	
9	NO	NO	1.8m/1.5m/1.2m		Audio Cable	
10	NO	NO	1.5m		Headphone Cable	
11	YES	NO	1.8m		USB Cable	
12	YES	NO	1.8m		USB Cable	
13	YES	NO	1.8m	Parallel Cable		

1.8m

YES

NO

14

RS232 Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

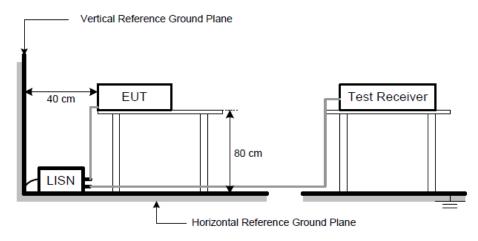
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 11, 2019
2	TWO-LINE V-NETWORK	R&S	ENV216	100526	Mar. 11, 2019
3	EMI Test Receiver	R&S	ESR3	101862	Aug. 11, 2019
4	Artificial-Mains Network	SCHWARZBECK	NSLK 8127	8127685	Jun. 25, 2019
5	Cable	N/A	RG400 12m	N/A	Mar. 23, 2019
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.


4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. First the whole spectrum of emission caused by equipment under test(EUT) is recorded with Detector set to peak. Peak value recorded in table if the margin from QP Limit is larger than 2dB,otherwise,QP value is recorded, Measuring frequency range from 150KHz to 30MHz.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 TEST SETUP

4.1.6 TEST RESULTS

Remark

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz; SPA setting in RBW=10KHz, VBW =10KHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10KHz, VBW=10KHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.

EUT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblank			
Temperature	25°C					
Fest Voltage	AC 120V/60Hz	Phase	Line			
Fest Mode	HDMI 2560*1440/60Hz					
Note	Cable:1.8m					
lest Engineer	Jason Yang					
80 dBuV						
40 1 3 1 3 1 40 1 3 40 1 3 40 40						
0	0.50 1.00	5.00	10.00 30.00(MHz)			

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2152	43.64	9.79	53.43	63.00	-9.57	QP
2	0.2152	33. 59	9.79	43.38	53. 00	- 9.6 2	AVG
3	0.2670	43.82	9.80	53. 62	61.21	-7.59	QP
4	0.2670	33.10	9.80	42.90	51.21	-8.31	AVG
5	0.5324	38.62	9.83	48.45	56. 00	-7.55	QP
6 *	0.5324	31.10	9.83	40.93	46.00	-5. 0 7	AVG
7	0.5932	37.89	9.83	47.72	56. 00	-8.28	QP
8	0.5932	28.40	9.83	38.23	46.00	-7.77	AVG
9	0.8070	36.48	9.84	46.32	56. 00	- 9. 68	QP
10	0.8070	26.70	9.84	36.54	46.00	-9.46	AVG
11	23.6805	35.68	10.77	46.45	60.00	-13.55	QP
12	23.6805	25.41	10.77	36.18	50. 00	-13.82	AVG

UT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblank						
emperature	25°C	Relative Humidity	53%						
est Voltage	AC 120V/60Hz	0Hz Phase N							
est Mode	HDMI 2560*1440/60Hz								
lote	Cable:1.8m								
est Engineer	Jason Yang								
80 dBuV									
40			11 11 12 × 12 ×						
0	0.50 1.00	5.00	10.00 30.00(MHz)						

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2220	43.50	9.88	53.38	62.74	-9.36	QP
2	0.2220	33.50	9.88	43.38	52.74	-9.36	AVG
3	0.2714	43.31	9.90	53.21	61.07	-7.86	QP
4	0.2714	31.51	9.90	41.41	51. 07	- 9.66	AVG
5 *	0.5414	38.41	9.98	48.39	56. 00	-7.61	QP
6	0.5414	28.40	9.98	38.38	46.00	-7.62	AVG
7	0.8632	36.20	10.02	46.22	56. 00	-9.78	QP
8	0.8632	27.40	10.02	37.42	46.00	-8.58	AVG
9	0.9892	35.52	10.05	45.57	56. 00	-10.43	QP
10	0.9892	26.10	10.05	36.15	46.00	-9.85	AVG
11	22.8052	35.80	11.12	46.92	60.00	-13. 08	QP
12	22.8052	25.60	11.12	36.72	50. 00	-13.28	AVG

0		0.50			1.0	00			5.0	0		1	0.00	30.00(MHz)		
40			5 5 6 ×	7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9 MMMmy MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	ully million	****** [.vio#	the second second				han and the second seco	11 13 × h		
80 dBu\	1 3															
est Eng	gineer	Jas	son	Ya	ng											
lote		Ca				10/11/12										
est Vol est Mo						<u>Hz</u> 10/144Hz	Pha	ase					Line			
empera		 25°C AC 120V/60Hz					Relative Humidity Phase						53%			
UT		LC	D١	/lon	itor		Mo	del N	Varr	ne			**273QCG******* (*=A-Z,a-z,0-9,/,orblank			

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2197	44.05	9.79	53.84	62.83	- <mark>8. 99</mark>	QP
2	0.2197	34.49	9.79	44.28	52.83	-8.55	AVG
3 *	0.2647	43.89	9.80	53. 69	61.28	-7.59	QP
4	0.2647	33. 50	9.80	43.30	51.28	-7.98	AVG
5	0.5437	37.81	9.83	47.64	56.00	-8.36	QP
6	0.5437	27.40	9.83	37.23	46.00	-8.77	AVG
7	0.7731	37.18	9.84	47.02	56.00	-8.98	QP
8	0.7731	26.10	9.84	35.94	46.00	-10.06	AVG
9	1.0363	36.81	9.85	46.66	56.00	-9.34	QP
10	1.0363	24.10	9.85	33.95	46.00	-12. 0 5	AVG
11	23. 5680	35.76	10.78	46.54	60.00	-13.46	QP
12	23. 5680	26.40	10.78	37.18	50.00	-12.82	AVG

0	0.50 1.00	5.00	10.00 30.00(MHz)						
40									
80 dBuV	bassin rang								
ote est Engineer	Cable:1.8m Jason Yang								
est Mode	DP 2560*1440/144Hz								
est Voltage	AC 120V/60Hz	Phase	Neutral						
emperature	25°C	Relative Humidity	53%						
UT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblan						

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2220	43.50	9.88	53.38	62.74	-9.36	QP
2	0.2220	33.60	9.88	43.48	52.74	-9.26	AVG
3	0.2714	43.31	9.90	53.21	61.07	-7.86	QP
4	0.2714	33.11	9.90	43.01	51. 07	-8. 06	AVG
5 *	0.5414	38.41	9.98	48.39	56. 00	-7.61	QP
6	0.5414	28.40	9.98	38.38	46.00	-7.62	AVG
7	0.8632	36.20	10.02	46.22	56. 00	-9.78	QP
8	0.8632	25.90	10.02	35.92	46.00	-1 0. 0 8	AVG
9	1.6777	34.90	10.08	44.98	56. 00	-11. 0 2	QP
10	1.6777	23.60	10.08	33. 68	46.00	-12.32	AVG
11	22.8052	35.80	11.12	46.92	60.00	-13. 08	QP
12	22.8052	26.40	11.12	37.52	50. 00	-12.48	AVG

0	0.50 1.00	5.00	10.00 30.00(MHz)	
40 24 Why		rahman all and the second		
13	57 9			
80 dBuV				
est Engineer	Jason Yang			
lote	Cable:1.8m			
est Mode	HDMI 1080P			
est Voltage	AC 120V/60Hz	Phase	Line	
emperature	25°C	Relative Humidity	53%	
UT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblan	

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.2400	44.68	9.79	54.47	62.10	-7.63	QP
2	0.2400	33.90	9.79	43.69	52. 1 0	-8.41	AVG
3 *	0.2602	44.49	9.80	54.29	61.43	-7.14	QP
4	0.2602	32.50	9.80	42.30	51.43	-9.13	AVG
5	0.4717	38.68	9.82	48. 50	56.48	-7.98	QP
6	0.4717	28.11	9.82	37.93	46.48	-8.55	AVG
7	0.5076	38.40	9.83	48.23	56. 00	-7.77	QP
8	0.5076	28.90	9.83	38.73	46.00	-7.27	AVG
9	0.7799	38.13	9.84	47.97	56.00	-8. 0 3	QP
10	0.7799	27.90	9.84	37.74	46.00	-8.26	AVG
11	23. 5342	36.00	10.78	46.78	60.00	-13.22	QP
12	23. 5342	26.40	10.78	37.18	50.00	-12.82	AVG

0	0.50 1.00	5.00	10.00 30.00(MHz)	
40	8 10 12 × × × × ×		MAL MANA M	
	7 9 11		Adda, a same and	
est Engineer	Jason Yang			
ote	Cable:1.8m			
est Mode	HDMI 1080P			
est Voltage		Phase	Neutral	
emperature	25°C	Relative Humidity	53%	
UT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblan	

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1532	44.20	9.88	54.08	65.82	-11.74	QP
2	0.1532	34.80	9.88	44.6 8	55.82	-11.14	AVG
3	0.2197	44.19	9.88	54.07	62.83	-8.76	QP
4	0.2197	33.40	9.88	43.28	52.83	-9.55	AVG
5	0.2602	44.00	9.90	53.90	61.43	-7.53	QP
6	0.2602	32.90	9.90	42.80	51.43	-8.63	AVG
7 *	0.5482	39.08	9.98	49.06	56. 00	-6.94	QP
8	0.5482	27.50	9.98	37.48	46.00	-8.52	AVG
9	0.7844	38.55	10.02	48.57	56. 00	-7.43	QP
10	0.7844	28.40	10.02	38.42	46.00	-7.58	AVG
11	1.0770	36.37	10.05	46.42	56. 00	-9.58	QP
12	1.0770	26.80	10.05	36.85	46.00	-9.15	AVG

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1 GHz

Measurement Method and Applied Limits: ANSI C63.4:

	Class A	(at 10m)	Class B (at 3m)			
Frequency (MHz)	(uV/m) Field strength	(dBuV/m) Field strength	(uV/m) Field strength	(dBuV/m) Field strength		
30 - 88	90	39	100	40		
88 - 216	150	43.5	150	43.5		
216 - 960	210	46.4	200	46		
Above 960	300	49.5	500	54		

Above 1 GHz Measurement Method and Applied Limits: ANSI C63.4:

Frequency		Clas	Clas	ss B		
Frequency (MHz)	(dBuV/m) (at 3m)		(dBuV/m)) (at 10m)	(dBuV/m) (at 3m)	
(IVITZ)	Peak	Average	Peak	Average	Peak	Average
Above 1000	80	60	69.5	49.5	74	54

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)		
Below 1.705	30		
1.705 - 108	1000		
108 - 500	2000		
500 - 1000	5000		
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower		

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B; ICES-003 Issue 6:2016 (updated April 2017).
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

4.2.2 MEASUREMENT INSTRUMENTS LIST

Below 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Receiver	Keysight	N9038A	MY54450004	Aug. 11, 2019
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 11, 2019
3	Pre-Amplifier	Mini-Circuits	EMC 9135	980284	Mar. 11, 2019
4	Pre-Amplifier	Mini-Circuits	EMC 9135	980283	Mar. 11, 2019
5	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	586	Nov. 09, 2018
6	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	587	Jan. 04, 2019
7	Cable	emci	LMR-400(5m+11m+ 15m)	N/A	Jan. 11, 2019
8	Cable	emci	LMR-400(5m+8m+1 5m)	N/A	Jan. 11, 2019
9	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
10	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
11	Attenuator	SHX	TS2-6dB-6G-A	16101101	Nov. 09, 2018
12	Attenuator	SHX	TS2-6dB-6G-A	16101102	Jan. 04, 2019

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

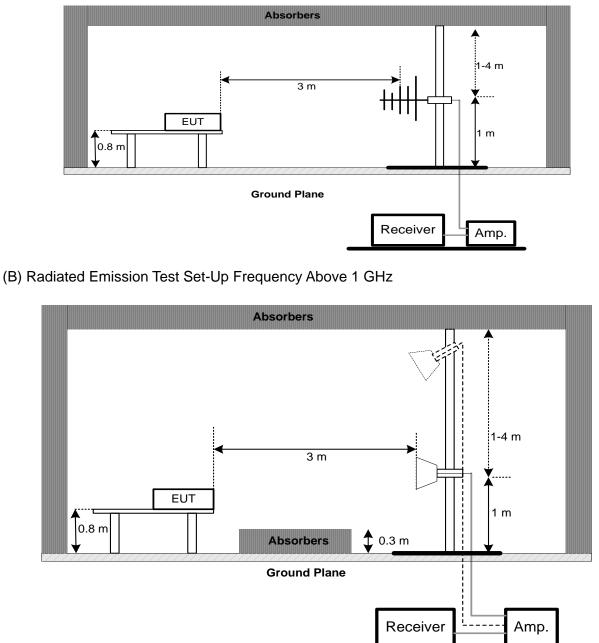
Above 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Horn Antenna	EMCO	3115	9605-4803	Mar. 11, 2019
2	Amplifier	Agilent	8449B	3008A02584	Aug. 11, 2019
3	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
4	Cable	MIcable Inc.	B10-01-01-15M(10M Hz~26.5GHz)	18047122	May 25, 2019
5	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
6	Controller	MF	MF-7802	MF780208159	N/A
7	Cable	emci	SUCOFLEX 102_8m(0.01GHz – 40GHz)	N/A	Mar. 26, 2019

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

4.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.3).


4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

4.2.6 TEST RESULTS-BELOW 1GHZ

Remark:

- (1) All readings are Peak unless otherwise stated QP in column of 『Note』. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Measuring frequency range from 30MHz to 1000MHz.
- (3) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

EUT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblank	
Temperature	25°C	Relative Humidity	60%	
Test Voltage	AC 120V/60Hz	Polarization	Vertical	
Test Mode	HDMI 2560*1440/60Hz			
Note	Cable:1.8m			
Test Engineer	Jason Yang			
80 dBuV/m				
Mary Weber		5 4 MUMANUMANUMANUMANUMANUMANUMANUMANUMANUMA	6 AMM Jun Aryn Mar Arwan Mar Aryn Aryn Aryn Arwyn Mar Aryn Mar Aryn Mar Arwyn Mar Arwyn Mar Arwan Mar Aryn Aryn Aryn Aryn Aryn Aryn Aryn Ary	
0 30.00 127.00 224.0	00 321.00 418.00 515.00	612.00 709.00 8	06.00 1000.00 (MHz)	

No.	freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1 *	99.8399	57.30	-22.22	35. 08	43. 50	-8.42	QP
2	203. 1450	48.83	-20. 50	28.33	43. 50	-15.17	QP
3	262.3150	47.16	-18.28	28.88	46.00	-17.12	QP
4	661.9550	37.33	-10.84	26.49	46.00	-19.51	QP
5	742.4650	42.58	-9.82	32.76	46.00	-13.24	QP
6	890.8750	41.85	-8. 0 8	33.77	46.00	-12.23	QP

EUT	LCD Monitor	Model Name	**273QCG******
Tomporatura	25°C		(*=A-Z,a-z,0-9,/,orblan
Temperature		Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Horizontal
Test Mode	HDMI 2560*1440/60H	Z	
Note	Cable:1.8m		
Test Engineer	Jason Yang		
80 dBuV/m			
40			6 Marman Markey Markey
0 30.00 127.00 224	00 321.00 418.00 5	15.00 612.00 709.00 8	306.00 1000.00 (MHz)

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	258.4350	49.41	-18.45	30.96	46.00	-15. 0 4	QP
2	445.6450	47.02	-14.29	32.73	46.00	-13.27	QP
3	594.0550	42.43	-11.51	30.92	46.00	-15.08	QP
4	666.8050	39.95	-10.80	29.15	46.00	-16.85	QP
5 *	742.4650	43.20	-9.82	33. <u>38</u>	46.00	-12.62	QP
6	890.8750	38.25	-8.08	30. 17	46.00	-15.83	QP

EUT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblan
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz	Polarization	Vertical
Test Mode	DP 2560*1440/144H	<u>Z</u>	
Note	Cable:1.8m		
Test Engineer	Jason Yang		
80 dBuV/m			
40		A S X A X A X A X A X A X A X A X A X A	6 Marshill Managharana
0 30.00 127.00 224			806.00 1000.00 (MHz)

No.	Freq.	Keading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	99.8399	52.35	-22.22	30.13	43.50	-13.37	QP
2	240.0050	43.45	-19.00	24.45	46.00	-21.55	QP
3	445.6450	37.04	-14.29	22.75	46.00	-23.25	QP
4	664.8650	38.55	-10.82	27.73	46.00	-18.27	QP
5	742.4650	42.30	-9.82	32.48	46.00	-13. 52	QP
6 *	896.2100	41.18	-8.03	33.15	46.00	-12.85	QP

UT	LCD Monitor		Model	Name	**273QCG*****	
emperature	25°C		Polativ	e Humidity	(*=A-Z,a-z,0-9,/	,orbiai
est Voltage	AC 120V/60Hz		Polariz		Horizontal	
est Mode	DP 2560*1440/14	4Hz		ation	Honzontai	
lote	Cable:1.8m					
est Engineer	Jason Yang					
80 dBuV/m	~					
40						
	3	4 *	5	6 ×		
	wind have when the work of the second s	- Understanders	Mary Mary	welling and the second second	non-national Montenan	NANNA
way her former		wr				
0	0 321.00 418.00	515.00				

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	133. 3049	39.75	-18.74	21.01	43.50	-22.49	QP
2	202.1750	46.36	-20.50	25.86	43.50	-17.64	QP
3	261.3450	50.47	-18.33	32.14	46.00	-13.86	QP
4	445.6450	47.59	-14.29	33. 30	46.00	-12.70	QP
5	594.0550	43.03	-11.51	31. 52	46.00	-14.48	QP
6 *	742.4650	43.61	- 9. 82	33.79	46.00	-12.21	QP

UT	LCD Monitor		Model	Name	**273	QCG******
.01			model		(*=A-2	Z,a-z,0-9,/,orbla
emperature	25°C		Relati	ve Humidity	/ 60%	
est Voltage	AC 120V/60Hz		Polari	zation	Vertic	al
est Mode	HDMI 1080P					
lote	Cable:1.8m					
est Engineer	Jason Yang					
80 dBuV/m						
	1					
40	1					
	3			5	6	
1 Mott Lund	MMM MANNA L		4			warmed have been been been been been been been be
A HAMMER	Marrie de la comp	wellingthersterntholight	in your Mart	phaneters with borrow and	Welcedia assesses	
Mun mar	J. J. Marthalian	and the application of				
0 30.00 127.00 224.0	0 321.00 418.00	515.00	612.00	709.00	806.00	1000.00

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1 *	96. 9300	51.35	-22. 50	28.85	43.50	-14.65	QP
2	129.4250	46.18	-19.14	27.04	43.50	-16.46	QP
3	299.1750	43.42	-17.11	26.31	46.00	-19.69	QP
4	594.0550	35.81	-11.51	24.30	46.00	-21.70	QP
5	660.9850	36.79	-10.85	25. 94	46.00	-20.06	QP
6	798.2400	34.57	-8.93	25.64	46.00	-20.36	QP

UT	LCD Monitor	Model Name	**273QCG*******
			(*=A-Z,a-z,0-9,/,orblar
emperature	25°C	Relative Humidity	60%
est Voltage	AC 120V/60Hz	Polarization	Horizontal
est Mode	HDMI 1080P		
lote	Cable:1.8m		
est Engineer	Jason Yang		
80 dBuV/m			
	J		
40	2 4	6	
	X 3 X	5 ×	
1 A.	and have made	manual hand the second	
	May Multimeter walk	and with a hadren many many	Ar White and a second
my har when	Contraction of the second seco		
**\/*			
0 30.00 127.00 224.00	0 321.00 418.00 515	00 612.00 709.00 8	306.00 1000.00

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	99.8399	44.45	-22.22	22.23	43.50	-21.27	QP
2	257.9500	50.90	-18.46	32.44	46.00	-13. 56	QP
3	296.7500	45.43	-17.15	28.28	46.00	-17.72	QP
4	445.6450	46.35	-14.29	32.06	46.00	-13.94	QP
5	594.0550	42.24	-11.51	30.73	46.00	-15.27	QP
6 *	742.4650	43.68	-9.82	33.86	46.00	-12.14	QP

4.2.7 TEST RESULTS-ABOVE 1GHZ

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of ^rNote ... Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (3) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

EUT		LCD Mo	nitor	Mode	I Name		**273QCG******* (*=A-Z,a-z,0-9,/,orblan				
Tomr	oroturo	25°C					i+. /	<u>(</u> *=A-Z,a-z 60%	2,0-9,/,orbiar		
						ive Humid	пу				
	Voltage	AC 120			Polar	ization		Vertical			
	Mode	HDMI 2		J/6UHZ							
Note		Cable:1									
lest	Engineer	Jason Y	ang								
100	dBuV/m		1								
		5	7								
50	3		8	9							
	mmuntutur	L. Barrow Marry	And the Albert	Nampa Hunder	wantervertering	www.www.mm.Me	h goodly bla	**************************************	warmhandly		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IN POST OF		×							
0											
100	0.00 1500.00 200	).00 2500.0	0 3000.0	00 3500.00	4000.0	0 4500.00	) 5	00.00	6000.00 (MHz)		

Freq.	Level	Factor	ment	Limit	Margin	
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1497.5000	49.08	-3.58	<b>45. 50</b>	74.00	-28. 50	Peak
1497.5000	38.48	-3.58	34.90	54. <b>00</b>	-19.10	AVG
1717.5000	46.04	-2.82	43.22	74.00	-30.78	Peak
1717.5000	35.13	-2.82	32.31	54. <b>00</b>	-21.69	AVG
2127.5000	50.01	-1.33	48.68	74.00	-25.32	Peak
2127.5000	40.12	-1.33	38.79	54. <b>00</b>	-15.21	AVG
2700.0000	50.42	0.75	51.17	74.00	-22.83	Peak
2700.0000	41.27	0.75	42.02	54. <b>00</b>	-11.98	AVG
3172. 5000	42.86	2.17	45.03	74.00	-28.97	Peak
3172. 5000	31.51	2.17	33.68	54. <b>00</b>	-20.32	AVG
5087.5000	41.53	7.75	49.28	74.00	-24.72	Peak
5087.5000	30.11	7.75	37.86	54. <b>00</b>	-16. 14	AVG
	1497. 5000      1497. 5000      1717. 5000      1717. 5000      2127. 5000      2127. 5000      2700. 0000      2700. 0000      3172. 5000      3172. 5000      5087. 5000	MHz      dBuV/m        1497.5000      49.08        1497.5000      38.48        1717.5000      46.04        1717.5000      35.13        2127.5000      50.01        2127.5000      40.12        2700.0000      50.42	MHz      dBuV/m      dB        1497.5000      49.08      -3.58        1497.5000      38.48      -3.58        1717.5000      46.04      -2.82        1717.5000      5.13      -2.82        127.5000      50.01      -1.33        2127.5000      40.12      -1.33        2700.0000      50.42      0.75        2700.0000      41.27      0.75        3172.5000      42.86      2.17        3172.5000      31.51      2.17        5087.5000      41.53      7.75	MHz      dBuV/m      dB      dBuV/m        1497.5000      49.08      -3.58      45.50        1497.5000      38.48      -3.58      34.90        1717.5000      46.04      -2.82      43.22        1717.5000      35.13      -2.82      32.31        2127.5000      50.01      -1.33      48.68        2127.5000      40.12      -1.33      38.79        2700.0000      50.42      0.75      51.17        2700.0000      41.27      0.75      42.02        3172.5000      42.86      2.17      45.03        3172.5000      31.51      2.17      33.68        5087.5000      41.53      7.75      49.28	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$





EUT			LCD Mo	onitor		Mode	l Name		**273Q	CG*******		
						mode				(*=A-Z,a-z,0-9,/,orblan		
emp	perature		25°C			Relative Humidity			60%			
est	Voltage		AC 120	V/60Hz		Polari	Polarization			tal		
est	Mode		HDMI 2	560*1440	)/60Hz							
lote			Cable:1	.8m								
est	Enginee	r	Jason Y	ang								
100	dBuV/m											
										44		
50			5 <b>7</b>	9						 		
			X↑ Nalh uthu		م له الم الم الم	Allow worked	an on an advantation	worthold	town the work	ml Rummundhann		
	withhat	12 malunn	ft the marker	Notes	Analytic the second sec					-X-		
		× ×	~									
0												
	0.00 1500.0	00 <b>2000</b> .	.00 2500.0	00 3000.0	0 3500.00	4000.0	0 4500.0	0 5	00.000	6000.00		

Freq.	Level	Factor	measure ment	Limit	Margin	
MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1585.0000	47.33	-3.27	44.06	74.00	-29.94	Peak
1585.0000	36.11	-3.27	32.84	54.00	-21.16	AVG
1717.5000	47.83	-2.82	45.01	74.00	-28.99	Peak
1717.5000	35.13	-2.82	32.31	<b>54.00</b>	-21.69	AVG
1980. 0000	48.65	-1.92	46.73	74.00	-27.27	Peak
1980.0000	34.96	-1.92	33.04	54.00	-20.96	AVG
2080.0000	49.63	-1.52	48.11	74.00	-25.89	Peak
2080.0000	38.25	-1.52	36.73	<b>54.00</b>	-17.27	AVG
2700.0000	47.13	0.75	47.88	74.00	-26.12	Peak
2700.0000	35.17	0.75	35.92	<b>54.00</b>	-18.08	AVG
5400.0000	43.17	8.05	51.22	74.00	-22.78	Peak
5400.0000	32.15	8.05	40.20	<b>54.00</b>	-13.80	AVG
	MHz 1585.0000 1585.0000 1717.5000 1717.5000 1980.0000 2080.0000 2080.0000 2700.0000 2700.0000 5400.0000	Freq. Level	Freq.      Level      Factor        MHz      dBuV/m      dB        1585.0000      47.33      -3.27        1585.0000      36.11      -3.27        1585.0000      36.11      -3.27        1717.5000      47.83      -2.82        1717.5000      35.13      -2.82        1980.0000      48.65      -1.92        1980.0000      34.96      -1.92        2080.0000      38.25      -1.52        2700.0000      35.17      0.75        2700.0000      35.17      0.75        5400.0000      43.17      8.05	Freq.LevelFactormentMHzdBuV/mdBdBuV/m1585.000047.33-3.2744.061585.000036.11-3.2732.841717.500047.83-2.8245.011717.500035.13-2.8232.311980.000048.65-1.9246.731980.000034.96-1.9233.042080.000038.25-1.5248.112080.000038.25-1.5236.732700.000047.130.7547.882700.000035.170.7535.925400.000043.178.0551.22	Freq.LevelFactormentLimitMHzdBuV/mdBdBuV/mdBuV/m1585.000047.33-3.2744.0674.001585.000036.11-3.2732.8454.001717.500047.83-2.8245.0174.001717.500035.13-2.8232.3154.001980.000048.65-1.9246.7374.001980.000034.96-1.9233.0454.002080.000038.25-1.5248.1174.002080.000038.25-1.5236.7354.002700.000047.130.7547.8874.002700.000043.178.0551.2274.00	Freq.LevelFactormentL1m1tMarginMHzdBuV/mdBdBuV/mdBuV/mdB1585.000047.33-3.2744.0674.00-29.941585.000036.11-3.2732.8454.00-21.161717.500047.83-2.8245.0174.00-28.991717.500035.13-2.8232.3154.00-21.691980.000048.65-1.9246.7374.00-27.271980.000034.96-1.9233.0454.00-20.962080.000038.25-1.5248.1174.00-25.892080.000038.25-1.5236.7354.00-17.272700.000047.130.7547.8874.00-26.122700.000035.170.7535.9254.00-18.085400.000043.178.0551.2274.00-22.78





EUT		LCD Monitor				I Name		**273QCG******* (*=A-Z,a-z,0-9,/,orblank		
Temp	perature		25°C			Relative Humidity			60%	,
	Voltage		AC 120	//60Hz			ization		Vertical	
Test	Mode		DP 2560	)*1440/14	44Hz					
Note			Cable:1	.8m						
Test	Engineer	ſ	Jason Y	ang						
100	dBuV/m									
50	hullmarka	ulluturt		5 7 X X X X X X X X X X X X	9 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	erray aby nother			11 	
0 100	0.00 1500.0	0 2000.	00 2500.0	0 3000.0	0 3500.00	) 4000.0	0 4500.0	05	000.00	6000.00
No.	Freq.	Read Leve	ing Cor	rect M	[	Limit	Margin	-		(MHz)

No.	Freq.	Level	Factor	measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	2000.0000	47.83	-1.85	45.98	74.00	-28.02	Peak
2	2000.0000	36.12	-1.85	34.27	54. <b>00</b>	-19.73	AVG
3	2080.0000	48.15	-1.52	46.63	74.00	-27.37	Peak
4	2080.0000	35.84	-1.52	34.32	54. <b>00</b>	-19.68	AVG
5	2535.0000	45.02	0.29	45.31	74.00	-28.69	Peak
6	2535.0000	34.92	0.29	35.21	54. <b>00</b>	-18.79	AVG
7	2700.0000	45.76	0.75	46.51	74.00	-27.49	Peak
8	2700.0000	35.62	0.75	36. 37	54. <b>00</b>	-17.63	AVG
9	3175.0000	41.70	2.18	43.88	74.00	-30.12	Peak
10	3175.0000	30.11	2.18	32.29	54. <b>00</b>	-21.71	AVG
11	5400.0000	40.14	8.05	48.19	74.00	-25.81	Peak
12 *	5400.0000	32.48	8.05	40.53	54. <b>00</b>	-13.47	AVG





EUT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblank		
Temperature	25°C	Relative Humidity	60%		
Test Voltage	AC 120V/60Hz	Polarization	Horizontal		
Test Mode	DP 2560*1440/144Hz				
Note	Cable:1.8m				
Test Engineer	Jason Yang				
100 dBuV/m					
50 1 3 5 1 3 5	18 A A A MALLIN A MARA				
0 1000.00 1500.00 2000.0	00 2500.00 3000.00 3500.00	4000.00 4500.00 5	000.00 6000.00 (MHz)		

No.	Freq.	Level	Factor	measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	1600.0000	49.89	-3.22	46.67	74.00	-27.33	Peak
2	1600.0000	36.47	-3.22	33.25	54.00	-20.75	AVG
3	1715. 0000	48.66	-2.82	45.84	74.00	-28.16	Peak
4	1715. 0000	35.11	-2.82	32.29	54.00	-21.71	AVG
5	1980. 0000	48.41	-1.92	46.49	74.00	-27.51	Peak
6	1980. 0000	34.96	-1.92	33.04	54.00	-20.96	AVG
7	2080.0000	50.46	-1.52	48.94	74.00	-25 <b>. 0</b> 6	Peak
8	2080.0000	40.57	-1.52	39.05	54. <b>00</b>	-14.95	AVG
9	2700.0000	45.00	0.75	45.75	74.00	-28.25	Peak
10	2700.0000	34.26	0.75	35.01	54. <b>00</b>	-18.99	AVG
11	5057. 5000	40.73	7.72	48.45	74.00	-25.55	Peak
12 *	5057. 5000	31.59	7.72	39.31	54. <b>00</b>	-14.69	AVG





EUT	LCD Monitor	Model Name	**273QCG******* (*=A-Z,a-z,0-9,/,orblank		
Temperature	25°C	Relative Humidity	60%		
Test Voltage	AC 120V/60Hz	Polarization	Vertical		
Test Mode	HDMI 1080P				
Note	Cable:1.8m				
Test Engineer	Jason Yang				
100 dBuV/m					
50 1 	5 7 9 X C C X C X X X X X X X X X X X X X X		11 11 12 ×		
0 1000.00 1500.00 20	00.00 2500.00 3000.00 3500.0	0 4000.00 4500.00 5	5000.00 6000.00 (MHz)		

No.	Freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	1487.5000	50.30	-3.65	46.65	74.00	-27.35	Peak
2	1487.5000	40.12	-3.65	36.47	54. <b>00</b>	-17.53	AVG
3	1997. 5000	46.54	-1.86	44.68	74.00	-29.32	Peak
4	1997. 5000	35.17	-1.86	33. 31	54. <b>00</b>	-20.69	AVG
5	2080.0000	49.10	-1.52	47.58	74.00	-26.42	Peak
6 *	2080.0000	38.43	-1.52	36.91	54. <b>00</b>	-17.09	AVG
7	2512. 5000	45.29	0.22	45. 51	74.00	-28.49	Peak
8	2512. 5000	34.25	0.22	34.47	54. <b>00</b>	-19.53	AVG
9	3170.0000	42.57	2.16	44.73	74.00	-29.27	Peak
10	3170.0000	31.69	2.16	33.85	54. <b>00</b>	-20.15	AVG
11	5085.0000	39.49	7.75	47.24	74.00	-26.76	Peak
12	5085.0000	28.64	7.75	36.39	54. <b>00</b>	-17.61	AVG





EUT		LCD Mo	Mode	Model Name			**273QCG******* (*=A-Z,a-z,0-9,/,orblank				
Temp	perature		25°C	25°C Relative Hun			Relative Humidity			<u>a 2,0 c</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Voltage		AC 120\	//60Hz			ization		Horizor	ntal	
Test	Mode		HDMI 10	)80P							
Note	1		Cable:1.	8m							
Fest	Engineer		Jason Ya	ang							
100	dBuV/m										
50		3 5 X X X X ALMWV 6 X X X		9 ************************************				blighter	www.andum		
0 100	0.00 1500.00	2000.	00 2500.0	0 3000.0	0 3500.0	) 4000.0	0 4500.0	05	00.00		5000.00
	0.00 1500.00 Freq.	2000. Read Leve	ing Cor	rect M	oo guro	) 4000.0 Limit	00 4500.0 Margin	05	000.00		5000.00 (MHz)

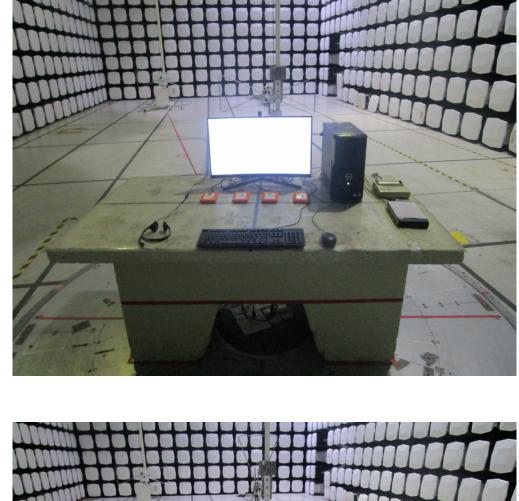
No.	Freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	1600.0000	47.48	-3.22	44.26	74.00	-29.74	Peak
2	1600.0000	37.42	-3.22	34.20	54. <b>00</b>	-19.80	AVG
3	1715.0000	47.89	-2.82	45.07	74.00	-28.93	Peak
4	1715.0000	35.95	-2.82	33.13	54. <b>00</b>	-20.87	AVG
5	1980. 0000	46.94	-1.92	45.02	74.00	-28.98	Peak
6	1980. 0000	34.85	-1.92	32.93	54. <b>00</b>	-21.07	AVG
7	2080.0000	49.41	-1.52	47.89	74.00	-26.11	Peak
8	2080.0000	37.47	-1.52	35.95	54. <b>00</b>	-18. <b>0</b> 5	AVG
9	2700.0000	44.30	0.75	<b>45.05</b>	74.00	-28.95	Peak
10	2700.0000	33.11	0.75	33.86	54. <b>00</b>	-20.14	AVG
11	5400.0000	41.25	8.05	49.30	74.00	-24.70	Peak
12 *	5400.0000	30.61	8.05	38.66	54. <b>00</b>	-15.34	AVG

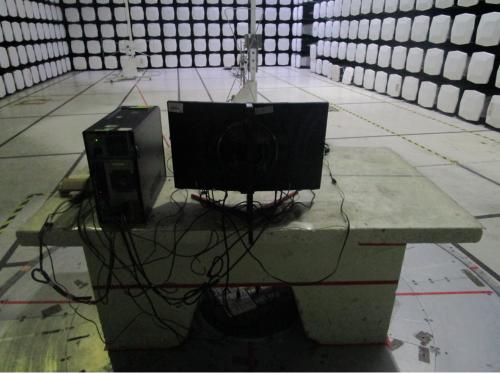




# 5. EUT TEST PHOTO

## Conducted Emission

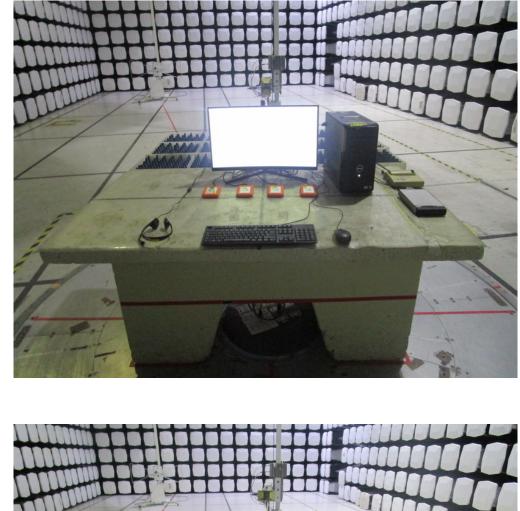


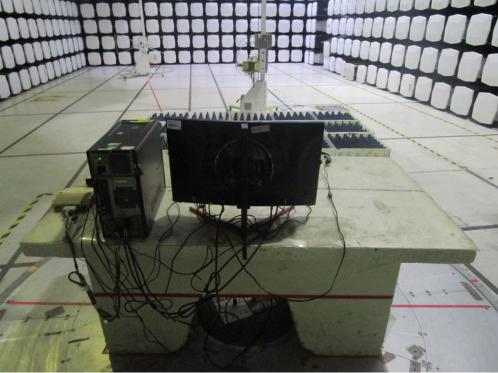




**J**TL



Radiated emission below 1 GHz




**B**TL



Radiated emission above 1 GHz



