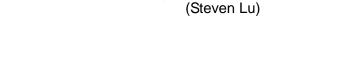


FCC& ISED EMC Test Report


Project No.	:	1812C075
Equipment	:	LCD Monitor
Test Model	:	**G2868*******(*=A-Z,a-z,0-9,/, +,-,\ or blank)
Series Model	:	N/A
Applicant	:	TPV Electronics (Fujian) Co., Ltd.
Address	:	Rongqiao Economic and Technological Development
		Zone, Fuqing City, Fujian Province, P.R. China

:	Dec. 13, 2018
:	Dec. 25, 2018 ~ Jan. 05, 2019
:	Jan. 28, 2019
:	BTL Inc.
	:

Testing Engineer

Technical Manager

Authorized Signatory

(Bill Zhang)

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Certificate #5123.02

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

3TL

Table of Contents P	age
REPORT ISSUED HISTORY	4
I. GENERAL SUMMARY	5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 EUT OPERATING CONDITIONS	10
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.5 DESCRIPTION OF SUPPORT UNITS	11
L EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	12
	12
	12 13
	13
4.1.5 TEST SETUP	13
4.1.6 TEST RESULTS	13
	20
	20 21
	22
	22
	23
	23 30
	37

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Jan. 28, 2019

1. GENERAL SUMMARY

LCD Monitor
N/A
G2868*****(*=A-Z,a-z,0-9,/, +,-,\ or blank)
N/A
TPV Electronics (Fujian) Co., Ltd.
Dec. 25, 2018 ~ Jan. 05, 2019
Engineering Sample No.: D181211951
FCC Part 15, Subpart B
ICES-003 Issue 6:2016
ICES-003 Issue 6:2016 (updated April 2017) ANSI C63.4-2014

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICE-1-1812C075) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of A2LA according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

	EMC Emission					
Standard(s)	Test Item	Limit	Judgment	Remark		
FCC Part15, Subpart B ICES-003 Issue 6:2016	Conducted Emission	Class B	PASS			
ICES-003 Issue 6:2016	Radiated emission Below 1 GHz	Class B	PASS			
(updated April 2017) ANSI C63.4-2014	Radiated emission Above 1 GHz	Class B	PASS	NOTE(2)		

NOTE:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The EUT's max operating frequency is 597 MHz which does exceed 108 MHz, so the test will be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's Test Firm Registration Number for FCC: 357015

BTL's Designation Number for FCC: CN1240

BTL's Test Firm Registration Number for IC: 4428B-3

2.2MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately **95**%.

A. Conducted Measurement :

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150 kHz ~ 30MHz	2.32

B. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		30MHz ~ 200MHz	V	3.76
DG-CB08	CISPR	30MHz ~ 200MHz	Н	3.56
(3m)	CISPR	200MHz ~ 1,000MHz	V	4.00
		200MHz ~ 1,000MHz	Н	3.90

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-CB08	CISPR	1 ~ 6 GHz	4.02
(3m)	CISER	6 ~18 GHz	5.10

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment		LCD Monit	or		
Brand Name		N/A			
Test Model		**G2868**	******(*=A-Z,a-z	,0-9,/, +,-,\ or blan	ik)
Series Model		N/A			
Model Difference	e(s)	Only differ	in model name	due to marketing	purpose.
Power Source		AC Mains.			
Power Rating	Rating 100-240V		0-240V~ 50/60Hz		
Connecting I/O F	' ort	1* D-SUB 5* USB po 1* Display 2* HDMI p 1* Audio p 1* Earphor 1* AC port	rt port ort ort ne port		
Cable Type	Shie	elded Type	Ferrite Core	Length(m)	Note
Display	Shielded		NO	1 8/1 5/1 2	

Cable Type	Shielded Type	Ferrite Core	Length(m)	Note
Display	Shielded	NO	1.8/1.5/1.2	
D-SUB	Shielded	YES	1.8/1.5/1.2	Bonded two Ferrite Cores
Audio	Non-shielded	NO	1.8/1.5/1.2	
HDMI	Shielded	NO	1.8/1.5/1.2	
USB	Shielded	NO	1.8/1.5/1.2	
AC Power Cord	Non-shielded	NO	1.8/1.5/1.2	1.8m is worst case Detachable (3 Pin)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Power cable 1.8m, 1.5m and 1.2m length, worst case is Power cable 1.8m with Display+HDMI+ Audio+D-SUB+USB 1.8m length testing and recording in test report.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

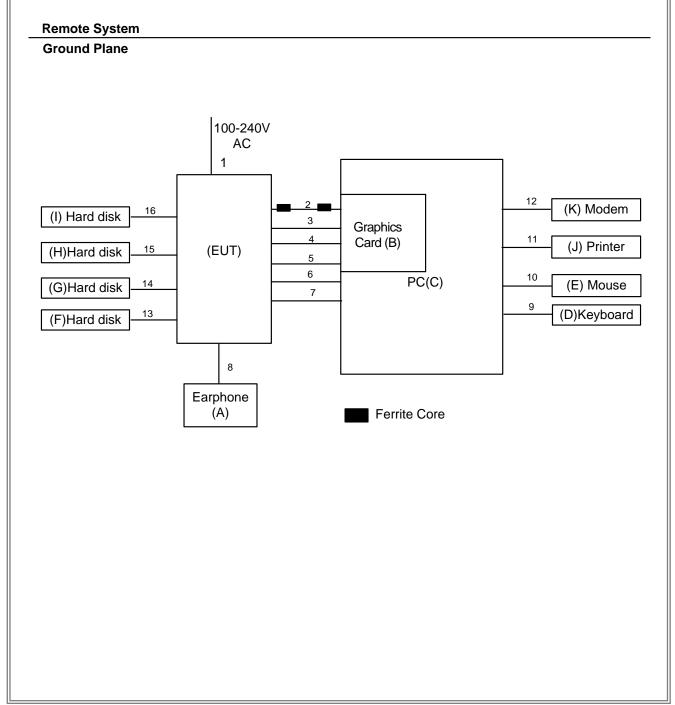
Pretest Mode	Description
Mode 1	D-SUB 3840*2160/60Hz
Mode 2	Display 3840*2160/60Hz
Mode 3	HDMI1 3840*2160/60Hz
Mode 4	HDMI2 3840*2160/60Hz
Mode 5	HDMI1 2160P
Mode 6	HDMI2 2160P
Mode 7	HDMI1 1920*1080/60Hz
Mode 8	HDMI1 640*480/75Hz

For Conducted Test							
Final Test Mode	Description						
Mode 1	D-SUB 3840*2160/60Hz						
Mode 3	HDMI1 3840*2160/60Hz						
Mode 5	HDMI1 2160P						

For Radiated Test							
Final Test Mode Description							
Mode 1	D-SUB 3840*2160/60Hz						
Mode 3	HDMI1 3840*2160/60Hz						
Mode 5	HDMI1 2160P						

Evaluation description:

- 1. The maximum resolution is evaluated Mode 1-6. The worst case is Mode 3 and evaluated the middle and low resolution Mode 7 and mode 8.
- 2. According to the client's requirement, choose Mode 1, Mode 3, Mode 5 and recorded in test report.



3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. EUT connected to PC via Display & HDMI & Audio & USB & D-SUB & USB cable.
- 2. EUT connected to Earphone via earphone cable.
- 3. The Flash disks are plugged into the EUT.
- 4. PC connected to Mouse and Keyboard via USB cable.
- 5. PC connected to Printer via Parallel cable.
- 6. PC connected to Modem via RS232 cable.

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
А	Earphone	APPLE	N/A	N/A
В	Graphics Card	LEADTEK	LR2A5F	ALF7100123952
С	PC	DELL	320	J4JQ52X
D	Keyboard	DELL	SK-8815(L)	00975811
Е	Mouse	DELL	MO28UOL	23-122591
F	Hard Disk	WD	WDBBLW5000AA	_ WX31A9373281
G	Hard Disk	WD	WDBLUZ5000ASI	WXM1AA366091
Н	Hard Disk	WD	WDBBLW5000AA	_ WXD1A64PTAFP
I	Hard Disk	WD	WDBAAR3200AB	WXG1EB0AZC81
J	Printer	SII	DPU-414	3018507 B
K	Modem	ACEEX	DM-1414V	603002131
Item	Shielded Type	Ferrite Core	Length	Note
1	YES	NO	1.8m/1.5m/1.2m	AC Cable
2	YES	YES	1.8m/1.5m/1.2m	D-SUB Cable
3	YES	NO	1.8m/1.5m/1.2m	Display Cable
4	YES	NO	1.8m/1.5m/1.2m	HDMI Cable
5	YES	NO	1.8m/1.5m/1.2m	HDMI Cable
6	NO	NO	1.8m/1.5m/1.2m	Audio Cable
7	YES	NO	1.8m/1.5m/1.2m	USB Cable
8	NO	NO	1.2m	Earphone Cable
9	YES	NO	1.8m	USB Cable
10	YES	NO	1.8m	USB Cable
11	YES	NO	1.5m	Parallel cable
12	YES	NO	1.5m	RS232 cable
13	YES	NO	1.0m	USB Cable
14	YES	NO	1.0m	USB Cable
15	YES	NO	1.0m	USB Cable
16	YES	NO	1.0m	USB Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION (FREQUENCY RANGE 150KHZ-30MHZ)

FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 - 0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 - 5.0	73.00	60.00	56.00	46.00	
5.0 - 30.0	73.00	60.00	60.00	50.00	

Note:

(1) The tighter limit applies at the band edges.

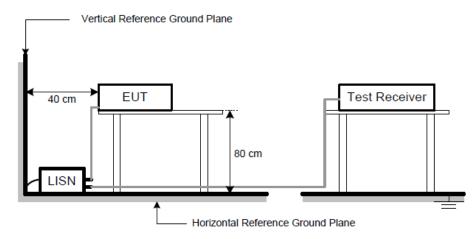
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

4.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EMI Test Receiver	R&S	ESCI	100382	Mar. 11, 2019
2	LISN	EMCO	3816/2	52765	Mar. 11, 2019
3	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 11, 2019
4	TWO-LINE V-NETWORK	R&S	ENV216	101447	Mar. 11, 2019
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A
6	Cable	N/A	RG223	12m	Mar. 23, 2019

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

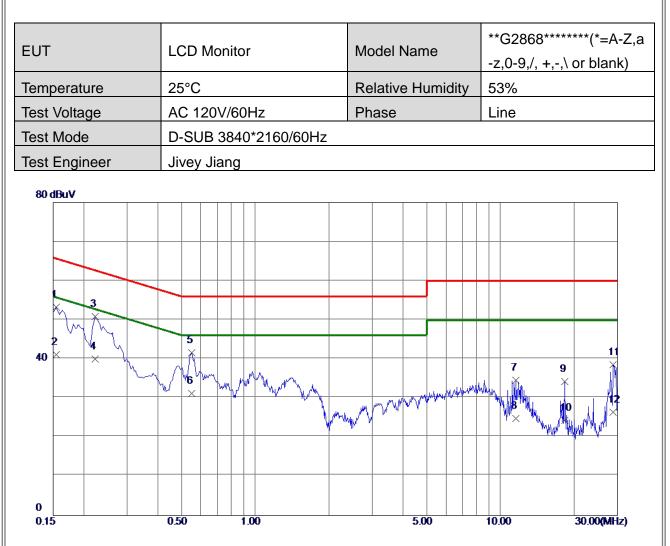

4.1.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- f. First the whole spectrum of emission caused by equipment under test(EUT) is recorded with Detector set to peak. Peak value recorded in table if the margin from QP Limit is larger than 2dB,otherwise,QP value is recorded, Measuring frequency range from 150KHz to 30MHz.

4.1.4 DEVIATION FROM TEST STANDARD

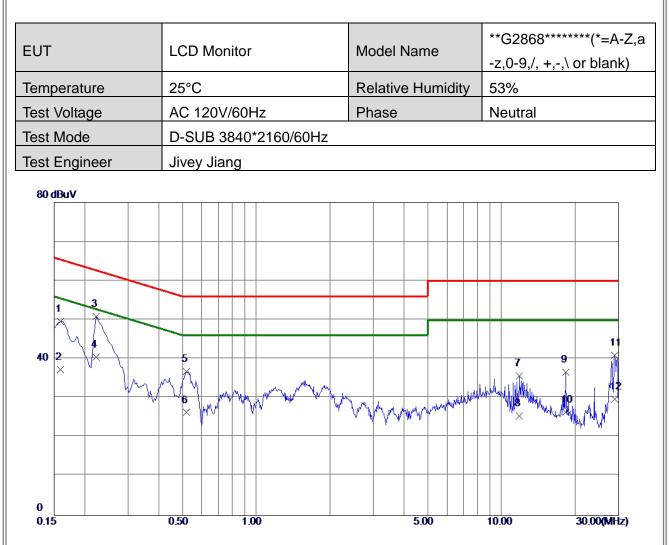
No deviation

4.1.5 TEST SETUP

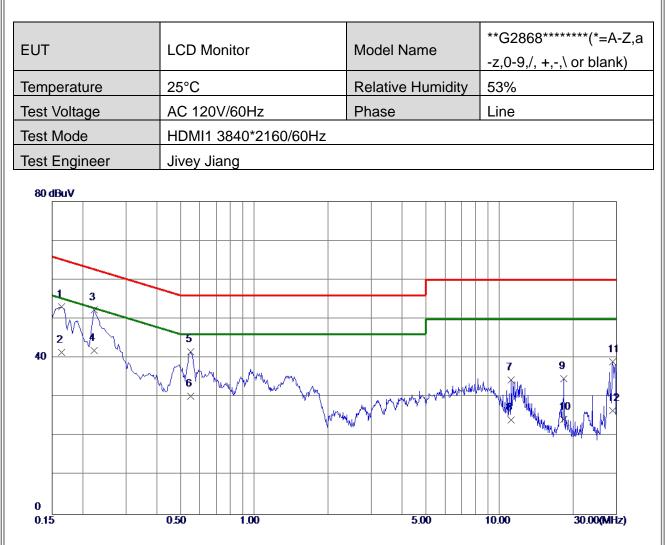

4.1.6 TEST RESULTS

Remark

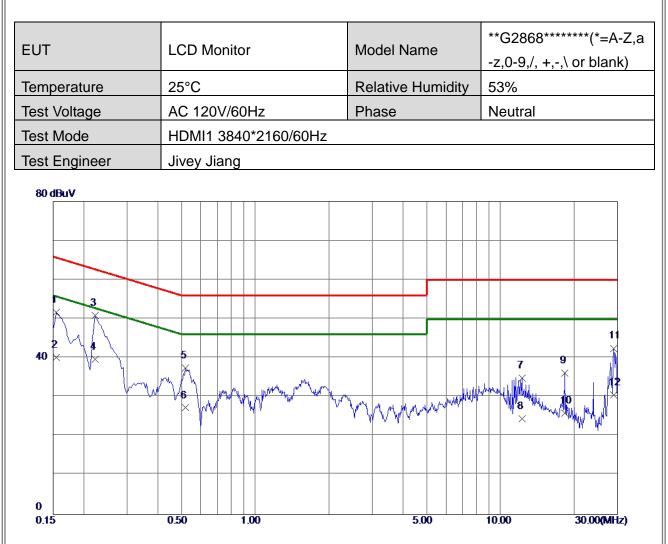
- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9 kHz; SPA setting in RBW=10 kHz, VBW =10 kHz, Swp. Time = 0.3 sec./MHz. Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=10 kHz, VBW=10 kHz, Swp. Time =0.3 sec./MHz.
- (2) All readings are QP Mode value unless otherwise stated AVG in column of "Note... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a "*" marked in AVG Mode column of Interference Voltage Measured.



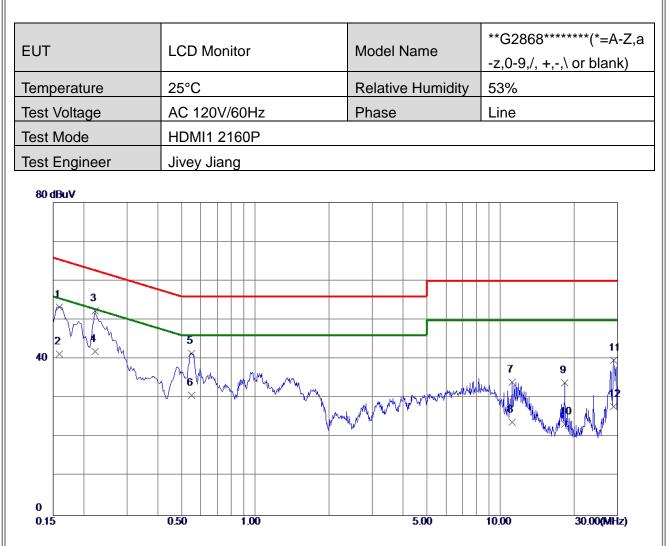
Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1545	43.49	9.82	53.31	65.75	-12.44	QP
0.1545	31.35	9.82	41.17	55.75	-14.58	AVG
0.2220	41.02	9.82	50. 84	62.74	-11.90	QP
0.2220	30.17	9.82	39.99	52.74	-12.75	AVG
0.5505	31.75	9.81	41.56	56. 00	-14.44	QP
0.5505	21.42	9.81	31.23	46.00	-14.77	AVG
11. 5890	24.03	10.57	34.60	60.00	-25.40	QP
11. 5890	14.16	10.57	24.73	50.00	-25.27	AVG
18.2850	23.18	11.04	34.22	60.00	-25.78	QP
18.2850	13.35	11.04	24.39	50.00	-25.61	AVG
28.7970	27.55	11.08	38.63	60.00	-21.37	QP
28.7970	15.28	11.08	26.36	50. 0 0	-23.64	AVG
	MHz 0. 1545 0. 2220 0. 2220 0. 5505 0. 5505 11. 5890 11. 5890 18. 2850 18. 2850 28. 7970	Freq. Level MHz dBuV 0.1545 43.49 0.1545 31.35 0.2220 41.02 0.2220 30.17 0.5505 31.75	Freq. Level Factor MHz dBuV dB 0.1545 43.49 9.82 0.1545 31.35 9.82 0.2220 41.02 9.82 0.2220 30.17 9.82 0.5505 31.75 9.81 0.5505 21.42 9.81 11.5890 24.03 10.57 11.5890 14.16 10.57 18.2850 23.18 11.04 18.2850 13.35 11.08	Freq.LevelFactormentMHzdBuVdBdBuV0.154543.499.8253.310.154531.359.8241.170.222041.029.8250.840.222030.179.8239.990.550531.759.8141.560.550521.429.8131.2311.589024.0310.5734.6011.589014.1610.5724.7318.285023.1811.0434.2218.285013.3511.0838.63	Freq.LevelFactormentL1mitMHzdBuVdBdBuVdBuV0.154543.499.8253.3165.750.154531.359.8241.1755.750.222041.029.8250.8462.740.222030.179.8239.9952.740.550531.759.8141.5656.000.550521.429.8131.2346.0011.589024.0310.5734.6060.0011.589014.1610.5724.7350.0018.285023.1811.0434.2260.0018.285013.3511.0838.6360.00	Freq.LevelFactormentLimitMarginMHzdBuVdBdBuVdBuVdB0.154543.499.8253.3165.75-12.440.154531.359.8241.1755.75-14.580.222041.029.8250.8462.74-11.900.222030.179.8239.9952.74-12.750.550531.759.8141.5656.00-14.440.550521.429.8131.2346.00-14.7711.589024.0310.5734.6060.00-25.4011.589014.1610.5724.7350.00-25.7818.285023.1811.0434.2260.00-25.7818.285013.3511.0424.3950.00-25.6128.797027.5511.0838.6360.00-21.37



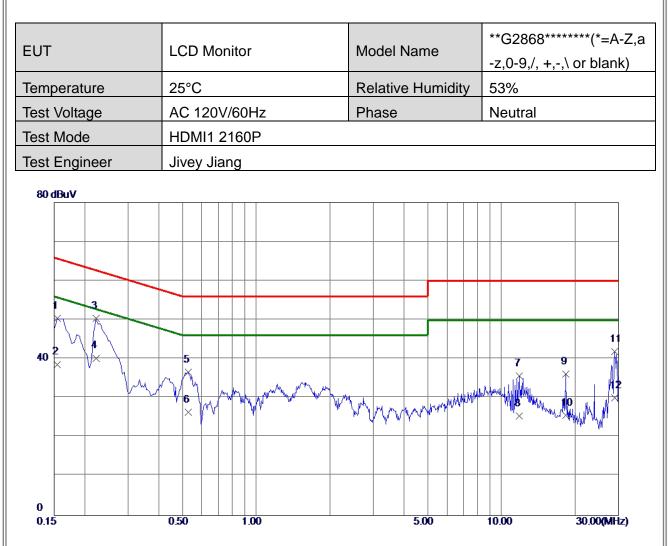
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1590	39.72	9.91	49.63	65.52	-15.89	QP
2	0.1590	27.41	9.91	37.32	55. 52	-18.20	AVG
3 *	0.2220	41.04	9.91	50.95	62.74	-11.79	QP
4	0.2220	30.63	9.91	40.54	52.74	-12.20	AVG
5	0.5190	26.83	9.95	36.78	56. 00	-19.22	QP
6	0.5190	16.37	9.95	26.32	46.00	-19.68	AVG
7	11.8095	24.75	10.87	35.62	60.00	-24.38	QP
8	11.8095	14.50	10.87	25.37	50.00	-24. 63	AVG
9	18.2850	25.31	11.35	36.66	60.00	-23. 34	QP
10	18.2850	15.07	11.35	26.42	5 0. 00	-23. 58	AVG
11	28.8825	29.43	11.49	40.92	60.00	-19. 08	QP
12	28.8825	18.24	11.49	29.73	50.00	-20. 27	AVG



Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.1635	43.24	9.82	53. 0 6	65.28	-12.22	QP
0.1635	31.59	9.82	41.41	55.28	-13.87	AVG
0.2220	42.54	9.82	52.36	62.74	-10.38	QP
0.2220	32.13	9.82	41.95	52.74	-10.79	AVG
0.5505	31.86	9.81	41.67	56. 00	-14.33	QP
0.5505	20.48	9.81	30.29	46.00	-15.71	AVG
11.1615	23.78	10.55	34.33	60.00	-25. 67	QP
11.1615	13.67	10.55	24.22	5 0. 00	-25.78	AVG
18.2850	23.65	11.04	34.69	60.00	-25. 31	QP
18. 2850	13.26	11.04	24.30	5 0. 00	-25. 70	AVG
28.9500	27.98	11.08	39.06	60.00	-20. 94	QP
28.9500	15.53	11.08	26.61	5 0. 00	-23. 39	AVG
	MHz 0. 1635 0. 2220 0. 2220 0. 5505 0. 5505 11. 1615 11. 1615 18. 2850 18. 2850 28. 9500	Freq. Level MHz dBuV 0.1635 43.24 0.1635 31.59 0.2220 42.54 0.2220 32.13 0.5505 31.86	Freq. Level Factor MHz dBuV dB 0.1635 43.24 9.82 0.1635 31.59 9.82 0.2220 42.54 9.82 0.2220 32.13 9.82 0.5505 31.86 9.81 0.5505 20.48 9.81 11.1615 23.78 10.55 11.1615 13.67 10.55 18.2850 23.65 11.04 18.2850 13.26 11.08	Freq. Level Factor ment MHz dBuV dB dBuV 0.1635 43.24 9.82 53.06 0.1635 31.59 9.82 41.41 0.2220 42.54 9.82 52.36 0.2220 32.13 9.82 41.95 0.5505 31.86 9.81 41.67 0.5505 20.48 9.81 30.29 11.1615 23.78 10.55 34.33 11.1615 13.67 10.55 24.22 18.2850 23.65 11.04 34.69 18.2850 13.26 11.08 39.06	Freq.LevelFactormentL1m1tMHzdBuVdBdBuVdBuV0.163543.249.8253.0665.280.163531.599.8241.4155.280.222042.549.8252.3662.740.222032.139.8241.9552.740.550531.869.8141.6756.000.550520.489.8130.2946.0011.161523.7810.5534.3360.0011.161513.6710.5524.2250.0018.285023.6511.0434.6960.0028.950027.9811.0839.0660.00	Freq.LevelFactormentLimitMarginMHzdBuVdBdBuVdBuVdB0.163543.249.8253.0665.28-12.220.163531.599.8241.4155.28-13.870.222042.549.8252.3662.74-10.380.222032.139.8241.9552.74-10.790.550531.869.8141.6756.00-14.330.550520.489.8130.2946.00-25.6711.161523.7810.5534.3360.00-25.6711.161513.6710.5524.2250.00-25.7818.285023.6511.0434.6960.00-25.7028.950027.9811.0839.0660.00-20.94



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1545	41.78	9.91	51.69	65.75	-14.06	QP
2	0.1545	30.31	9.91	40.22	55.75	-15. 53	AVG
3 *	0.2220	41.03	9.91	50.94	62.74	-11.80	QP
4	0.2220	29.75	9.91	39.66	52.74	-13. 08	AVG
5	0.5190	27.56	9.95	37.51	56. 00	-18.49	QP
6	0.5190	17.33	9.95	27.28	46.00	-18.72	AVG
7	12.2415	23.96	10.90	34.86	60.00	-25.14	QP
8	12.2415	13.60	10.90	24.50	50.00	-25. 50	AVG
9	18.2850	24.80	11.35	36.15	60.00	-23.85	QP
10	18.2850	14.52	11.35	25.87	50.00	-24.13	AVG
11	28.9545	30.99	11.49	42.48	60.00	-17.52	QP
12	28.9545	19.03	11.49	30.52	50.00	-19.48	AVG



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1590	43.51	9.82	53.33	65.52	-12.19	QP
2	0.1590	31.42	9.82	41.24	55.52	-14.28	AVG
3 *	0.2220	42.47	9.82	52.29	62.74	-10.45	QP
4	0.2220	32.15	9.82	41.97	52.74	-10.77	AVG
5	0.5505	31.70	9.81	41.51	56. 00	-14.49	QP
6	0.5505	20.84	9.81	30.65	46.00	-15. 35	AVG
7	11.1570	23.59	10.55	34.14	60.00	-25.86	QP
8	11.1570	13.27	10.55	23.82	50.00	-26. 18	AVG
9	18.2850	22.89	11.04	33.93	60.00	-26.07	QP
10	18.2850	12.35	11.04	23.39	5 0. 00	-26. 61	AVG
11	28.8780	28.68	11.08	39.76	60.00	-20.24	QP
12	28.8780	16.71	11.08	27.79	50.00	-22. 21	AVG

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1544	40.45	9.91	50.36	65.76	-15.40	QP
2	0.1544	28.73	9.91	38.64	55.76	-17.12	AVG
3 *	0.2220	40.55	9.91	50.46	62.74	-12.28	QP
4	0.2220	30.33	9.91	40.24	52.74	-12.50	AVG
5	0. 5280	26.66	9.95	36.61	56. 00	-19.39	QP
6	0. 5280	16.52	9.95	26.47	46.00	-19.53	AVG
7	11.8050	24.83	10.87	35.70	60.00	-24.30	QP
8	11.8050	14.57	10.87	25.44	5 0. 00	-24.56	AVG
9	18.2850	24.83	11.35	36.18	60.00	-23.82	QP
10	18.2850	14.29	11.35	25. 64	5 0. 00	-24.36	AVG
11	28.8780	30.49	11.49	41.98	60.00	-18. 0 2	QP
12	28.8780	18.61	11.49	30.10	50.00	-19.90	AVG

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1 GHz

Measurement Method and Applied Limits: ANSI C63.4:

Frequency (MHz)	Class A	(at 10m)	Class B (at 3m)		
	(uV/m) Field strength	(dBuV/m) Field strength	(uV/m) Field strength	(dBuV/m) Field strength	
30 - 88	90	39	100	40	
88 - 216	150	43.5	150	43.5	
216 - 960	210	46.4	200	46	
Above 960	300	49.5	500	54	

Above 1 GHz Measurement Method and Applied Limits: ANSI C63.4:

Frequency		Clas	ss A		Class B		
Frequency (MHz)	(dBuV/m) (at 3m)	(dBuV/m)) (at 10m)	(dBuV/m) (at 3m)		
	Peak	Average	Peak	Average	Peak	Average	
Above 1000	80	60	69.5	49.5	74	54	

FREQUENCY RANGE OF RADIATED MEASUREMENT (FOR UNINTENTIONAL RADIATORS)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

NOTE:

- (1) The limit for radiated test was performed according to as following: FCC Part 15, Subpart B; ICES-003 Issue 6 :2016 (updated April 2017).
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3m Emission level = 10m Emission level + 20log(10m/3m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

4.2.2 MEASUREMENT INSTRUMENTS LIST

Below 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Receiver	Keysight	N9038A	MY54450004	Aug. 11, 2019
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 11, 2019
3	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980284	Mar. 11, 2019
4	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980283	Mar. 11, 2019
5	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	946	Nov. 24, 2019
6	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	947	Nov. 24, 2019
7	Cable	emci	LMR-400(5m+11m+ 15m)	N/A	Aug. 07, 2019
8	Cable	emci	LMR-400(5m+8m+8 m)	N/A	Aug. 07, 2019
9	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
10	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
11	Attenuator	EMCI	EMCI-N-6-06	N0670	Nov. 24, 2019
12	Attenuator	SHX	EMCI-N-6-06	N0671	Nov. 24, 2019

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

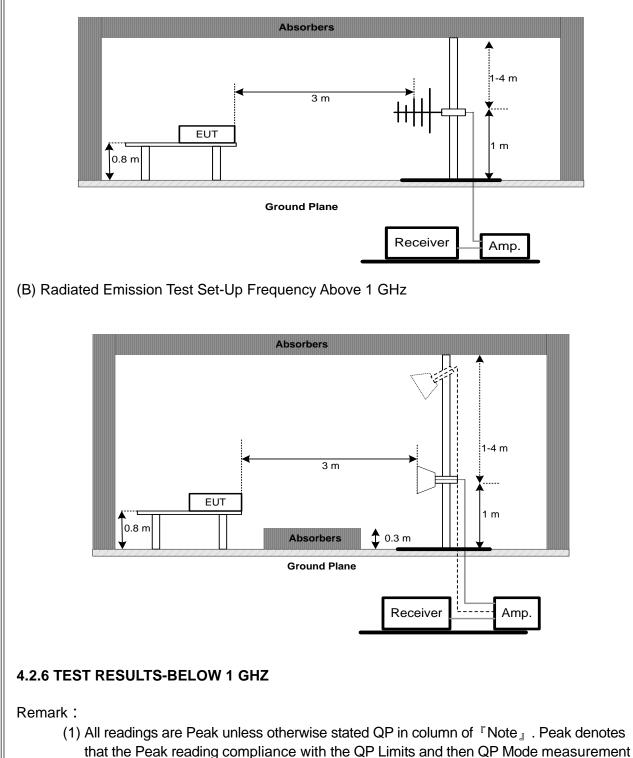
Above 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Horn Antenna	EMCO	3115	9605-4803	Mar. 11, 2019
2	Amplifier	Agilent	8449B	3008A02584	Aug. 11, 2019
3	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 11, 2019
4	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT-1	N/A	N/A
5	Cable	MIcable Inc.	B10-01-01-15M(10MHz ~26.5GHz)	18047122	May 25, 2019
6	Multi-Device Controller	ETS-Lindgre n	2090	N/A	N/A
7	Controller	MF	MF-7802	MF78020815 9	N/A
8	Cable	MIcable Inc.	B10-01-01-5M(10MHz~ 26.5GHz)	18047123	May 25, 2019

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

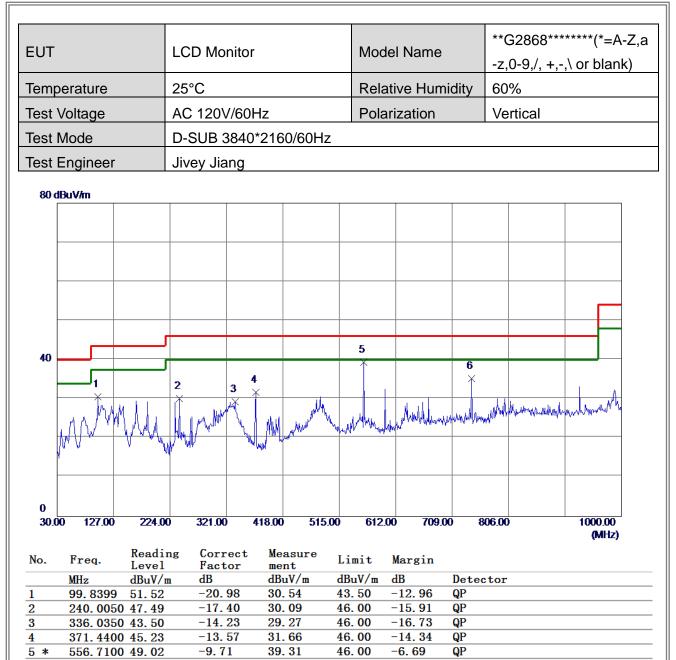
4.2.3 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.3).


4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP


(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

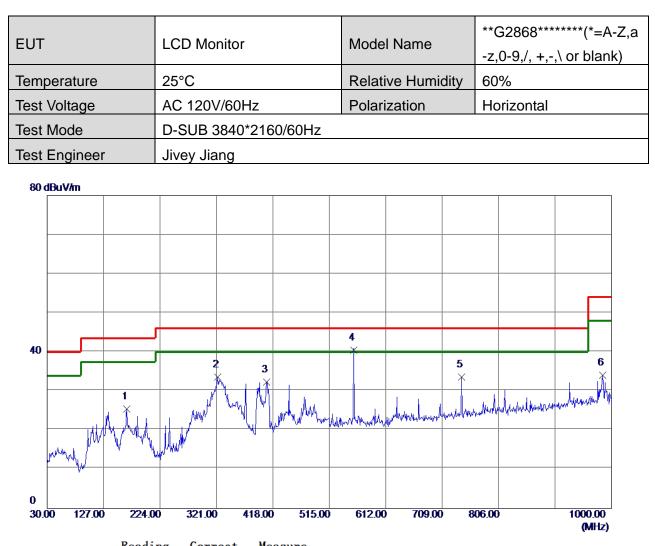
- didn't perform. (2) Measuring frequency range from 30 MHz to 1000 MHz
- (3) If the peak scan value lower limit more than 20 dB, then this signal data does not show in table.

742.4650 41.66

6

-6.41

35.25


46.00

-10.75

QP

No.	Freq.	Level	Factor	measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	166.7700	41.74	-16.25	25.49	43. 50	-18. 0 1	QP
2	323. 4250	47.95	-14.37	33. 58	46.00	-12.42	QP
3	406.8450	45.04	-12.72	32. 32	46.00	-13.68	QP
4 *	556.7100	50 . 21	-9.71	40.50	46.00	-5. 50	QP
5	742.4650	40.03	-6.41	33. 62	46.00	-12.38	QP
6	984.4800	37.15	-3.12	34.03	54.00	-19.97	QP

5

6 *

EUT			LCD Monitor				el Name		**G2868*******(*=A-Z, -z,0-9,/, +,-,\ or blank)	
Temp	perature		25°C			Rela	ative Hum	idity	60%	
Test	Voltage		AC 120\	//60Hz		Pola	rization		Vertical	
	Mode		HDMI1 3		0/60Hz					
					0,00112					
rest	Engineer		Jivey Jia	ng						
80 c	lBuV/m									
							_			
40										
40								6		
	1		2	3	4	5		I Ť		
	×.,		X		X		_	_		
	. , MA	ALL.	10 tom W	A Lu	1 MAR		Myrut her a	Mary Ma	We want where the second	many many many many
	IAN 1	MM.	A ANY	N M	MWAR W	weller well	My white	car and to	-	
	Nº V *	1 4	N.M.	New Jun 1	<i>w</i>					
	Y I									
0										
30.0	0 127.00	224.00) 321.00	418.00	515.00) 612.	00 709.0	0 8	06.00	1000.00 (MHz)
No.	Freq.	Readin			asure	Limit	Margin			
	MHz	Level dBuV/m	Fact dB		nt	dBuV/m	dB	Detec	tor	
1		51.07	-20.			43.50	-13.41	QP		
2		0 47.91	-17.			46.00	-15.49	QP		
								-		
3	371.440	0 45.27	-13.	57 31	. 70	46. 00	-14.30	QP		

32. 03 36. 17

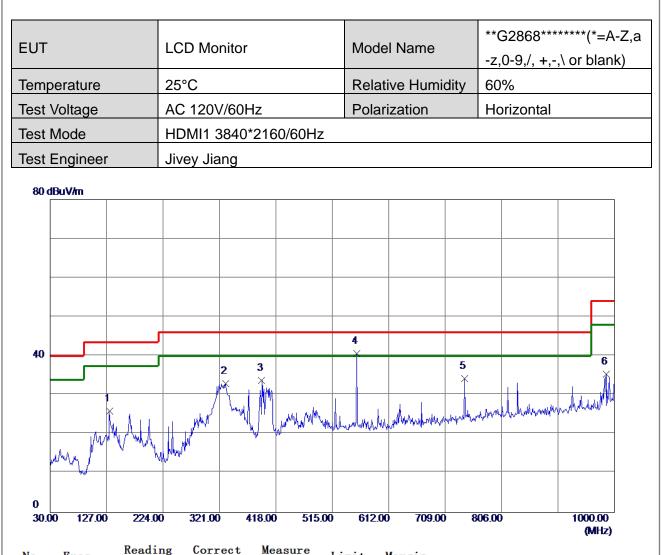
-9.71

-6.41

46. 00 46. 00 QP

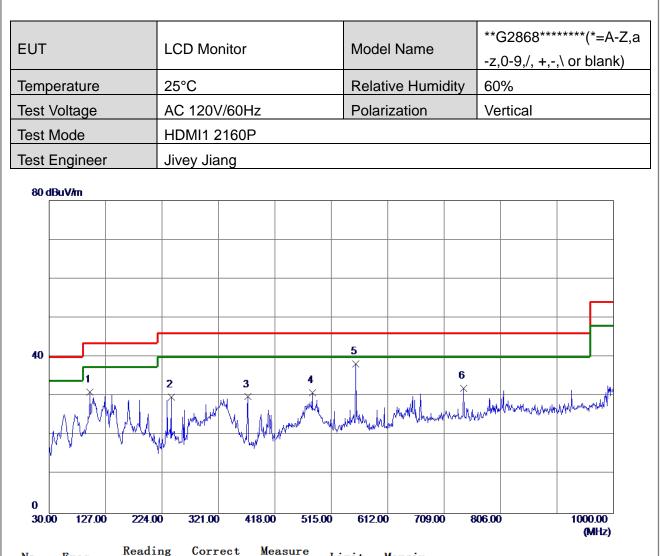
QP

-13.97

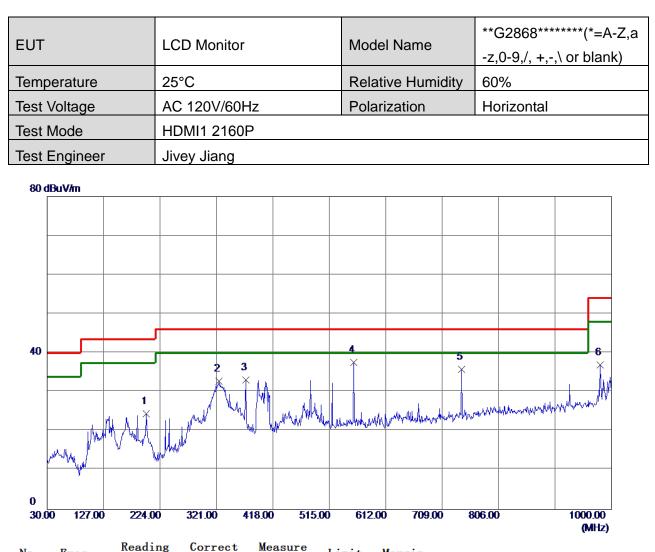

-9.83

556.7100 41.74

742.4650 42.58



No.	freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	131.8500	43.39	-17.47	25. 92	43. 50	-17.58	QP
2	331.6700	47.27	-14.28	32.99	46.00	-13.01	QP
3	393.7500	46.73	-13.02	33.71	46.00	-12.29	QP
4 *	556.7100	50.38	-9.71	40.67	46.00	-5.33	QP
5	742.4650	40.69	-6.41	34.28	46.00	-11.72	QP
6	985.4500	38. 5 1	-3.11	35.40	54. 00	-18. 60	QP



No.	freq.	Level	Factor	ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	99.8399	52. 0 8	-2 0. 98	31.10	43. 50	-12.40	QP
2	240.0050	47.16	-17.40	29.76	46.00	-16.24	QP
3	371.4400	43.41	-13. 57	29.84	46.00	-16. 16	QP
4	482. 5050	41.84	-10. 95	30.89	46.00	-15.11	QP
5 *	556.7100	47.90	-9.71	38.19	46.00	-7.81	QP
6	742.4650	38.47	-6.41	32.06	46.00	-13.94	QP

No.	Freq.	Level	Factor	measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	200.7200	43.78	-19.23	24.55	43. 50	-18.95	QP
2	325. 3650	47.11	-14.35	32.76	46.00	-13.24	QP
3	371.4400	46.72	-13. 57	33.15	46.00	-12.85	QP
4 *	556.7100	47.29	-9.71	37.58	46.00	-8.42	QP
5	742.4650	42.24	-6.41	35. <mark>8</mark> 3	46.00	-10.17	QP
6	980. 6000	40.08	-3.17	36.91	54.00	-17.09	QP

4.2.7 TEST RESULTS-ABOVE 1 GHZ

Remark :

- (1) All readings are Peak unless otherwise stated QP in column of ^rNote ... Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (2) Radiated emissions measured in frequency range above 1000 MHz were made with an instrument using Peak detector mode and AV detector mode of the emission.
- (3) Data of measurement within this frequency range shown "*" in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- (4) A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

EUT			LCD N	lonitor		Mode	el Name			******(*=A-Z,a -,\ or blank)			
Temp	perature		22°C			Relat	tive Humi	idity	55%				
Test	Voltage		AC 12	0V/60Hz	,	Pola	rization		Vertical				
	Mode			D-SUB 3840*2160/60Hz									
				Jivey Jiang									
lest	Enginee	r	Jivey J	lang									
86.9 d	lBuV/m												
			3							11			
	1		¥		4 *		1		9				
		× ι	4		6				A Martine Contraction				
	a	hadden man M	King almed		withurstown	Mannaparen	markerren	pour have	shiftennesser	Marthan Martha Mart			
	W Mr. Marine	×	* wijnorstaan				×						
-13.1	0.00 1500.0	0 2000	00 250	00 20	0.00 3500	.00 4000.	00 4500.	00 50	00.00	6000.00			
100	0.00 1500.0	N 2000.	00 200	J.00 300	0.00 3000	.00 4000.	.00 4000.	UU DI	00.00	(MHz)			
No.	Freq.	Read		orrect	Measure	Limit	Margin						
		Leve		actor	ment dBuV/m	dBuV/m	dB	Data	atom				
1	MHz 1500_0	dBuV 000 48.3		5 3. 56	44.81	74.00	-29.19	Dete Peak					
2		000 38.2		3. 56 3. 56	34.69	54.00	-19.31	AVG					
3		000 53.1		1.86	51.24	74.00	-22.76	Peak					
4		000 42.8		1.86	41.03	54.00	-12.97	AVG					
5		000 47.9		59	49.57	74.00	-24.43	Peak					
6		000 37.8		59	39.44	54.00	-14.56	AVG					
7		000 38.5		76	43.33	74.00	-30.67	Peak					
8		000 28.6		76	33.40	54.00	-20.60	AVG					
9		000 39.0		53	46.61	74.00	-27.39	Peak					
10	4965.0	000 29.6	4 (.	53	37.17	54.00	-16.83	AVG					

5945.0000 45.25

12 * 5945.0000 35.14

8.91

8.91

54.16

44.05

74.00

54.00

-19.84

-9.95

Peak

AVG

11

EUT			LCE	D Monitor	,		Mode	el Name			********(*=A-Z,a		
Tom	perature		22°(<u> </u>			Relat	Relative Humidity 55%			+,-,\ or blank)		
									any	Horizont			
	Voltage			AC 120V/60Hz Polarization Horizontal D-SUB 3840*2160/60Hz									
	Mode				^216	0/60Hz							
Test	Enginee	r	Jive	y Jiang									
86 9 d	JBuV/m												
00.0 0													
			_										
			3								11		
		1	×		5					9	M		
		X	4		Ť						12		
	h	Mulm 7	X	A. M. M. M. Marshark	the second	Manpurchase	mound	Raymen mayor	harrythin	Variant Description	www.com.com.wayt		
	Wannahand		Additional		×		8	\$		×			
							´						
			_										
-13.1													
100	0.00 1500.0	0 2000	.00	2500.00	3000.0	0 3500.	00 4000.	00 4500.0	0 5	000.00	6000.00		
		-									(MHz)		
No.	Freq.	Read Leve		Correct Factor		easure ent	Limit	Margin					
	MHz	dBuV		dB		BuV/m	dBuV/m	dB	Dete	ctor			
1	1855. 0	000 47.7	1	-2.35		5. 36	74.00	-28.64	Peak				
2		000 37.8		-2.35		5. 51	54.00	-18.49	AVG				
3		000 53.2		-1.87		1.35	74.00	-22.65	Peak	[
4		$000 \ 43.5$		-1.87		1.65	54.00	-12.35	AVG Peak				
5 6		000 43.4 000 33.8		1.51 1.51		4.93 5.36	74.00 54.00	-29.07 -18.64	AVG				
7		000 33.8 000 37.9		4.69		2.65	74.00	-31. 35	Peak	τ			
8		000 27.6		4.69		2.33	54.00	-21.67	AVG				
9	4992.5	000 38.8	5	7.64	4	6.49	74.00	-27.51	Peak				
10		000 28.6		7.64		6.28	54.00	-17.72	AVG				
11		000 44.5		8.95		3.51	74.00	-20.49	Peak				
12 *		000 34.1		8.95		3. 10	54.00	-10.90	AVG	-			

EUT			LCD	Monitor			Mode	el Name		**G2868******(*=A-Z, -z,0-9,/, +,-,\ or blank)			
Tem	perature		22°C				Relat	Relative Humidity					
Test	Voltage		AC 120V/60Hz				Polar	rization		Vertical			
	Mode			HDMI1 3840*2160/60Hz									
					210	0/00112							
Test	Engineer		Jivey	Jiang									
86.9 c	dBuV/m												
			3										
			*		5	,		7		9	Ň		
					X	<u> </u>		×					
		Aller , lake	¥	h. M	Ś.	unidition	A some Murand	Shippy how when the	manner	which 10 this winds	An warman warman war		
	Mynown	· ····································	1 North March	wanne frankliker	www	And a second second		v X		*			
	*												
-13.1													
	0.00 1500.00) 2000.	00 25	00.00	3000.0	0 3500.	0 4000.	00 4500.0	00 5	000.00	6000.00		
											(MHz)		
		Read	ing	Correct	M	easure							
No.	Freq.	Leve		Factor		ent	Limit	Margin					
	MHz	dBuV		dB		BuV/m	dBuV/m	dB	Dete	ector			
1	1500.00			-3. 56		3. 23	74.00	-30.77	Peak	د			
2	1500.00			-3.56		2. 23	54.00	-21.77	AVG				
3	2000.00			-1.85		1.74	74.00	-22.26	Peak	C			
4	2000.00			-1.85		2.00	54.00	-12.00	AVG				
5	3000.00			1.59		3.33	74.00	-25.67	Peak	C			
6	3000.00			1.59		7.44 4.27	54.00	-16.56	AVG				
7													
7 8	3995.00			4.74 174			74.00	-29.73	Peak	C			
7 8 9	3995.00 3995.00 5000.00	00 29.8	6 4	4. 74 4. 74 7. 67	3 4	4. 60 5. 97	54.00 74.00	-29.73 -19.40 -28.03	AVG Peak				

5000.0000 28.46

5947.5000 44.02

12 * 5947.5000 34.81

10

11

7.67

8.91

8.91

36.13

52. 93

43.72

54.00

74.00

54.00

-17.87

-21.07

-10.28

AVG

AVG

Peak

EUT			LCD Monitor			Mode	Model Name		**G2868*******(*=A-Z, -z,0-9,/, +,-,\ or blank)			
Tem	mperature 22°			22°C			Relative Humidity			55%		
Test Voltage			AC 120)V/60Hz		Pola	rization		Horizontal			
Test Mode												
		HDMI1 3840*2160/60Hz										
lest	Engineer		Jivey J	lang								
86.9 c	dBuV <i>i</i> m											
										11		
			1						g	Ť.		
			<u>×</u>	3	5				¥	12		
		- I	2	*		- un about he have	humman	homenones	MA On Mary	uther proper the praise		
	White when the	White have been been been been and the second secon	Kenderstand	ANUMONAN	man Martharen	And Andrew Contraction	3		<u>*</u>			
	And a second			Ť			×					
				_								
-13.1												
	0.00 1500.0	0 2000.	00 2500	.00 300	0.00 3500	.00 4000.	.00 4500.	00 50	00.00	6000.00		
										(MHz)		
N_	Frea.	Read	ing Co	rrect	Measure	Limit	Margin					
No.	гreq.	Leve		ctor	ment							
	MHz	dBuV			dBuV/m	dBuV/m	dB	Dete				
	2000.00	000 50.2	0 -1	. 85	48.35	74.00	-25.65	Peak				
2	2000. 00 2000. 00	000 50.2 000 40.2	0 -1 7 -1	. 85 . 85	48.35 38.42	74.00 54.00	-25.65 -15.58	Peak AVG				
1 2 3 4	2000. 00 2000. 00 2495. 00	000 50.2 000 40.2 000 43.6	0 -1 7 -1 5 0.	. 85 . 85 17	48. 35 38. 42 43. 82	74.00 54.00 74.00	-25.65 -15.58 -30.18	Peak AVG Peak				
2 3 4	2000. 00 2000. 00 2495. 00 2495. 00	000 50. 2 000 40. 2 000 43. 6 000 34. 1	$ \begin{array}{ccc} 0 & -1 \\ 7 & -1 \\ 5 & 0. \\ 8 & 0. \end{array} $. 85 . 85 17 17	48.35 38.42 43.82 34.35	74.00 54.00 74.00 54.00	-25.65 -15.58 -30.18 -19.65	Peak AVG Peak AVG				
2 3 4 5	2000.00 2000.00 2495.00 2495.00 3000.00	000 50.2 000 40.2 000 43.6	$ \begin{array}{cccc} 0 & -1 \\ 7 & -1 \\ 5 & 0. \\ 8 & 0. \\ 4 & 1. \end{array} $. 85 . 85 17	48. 35 38. 42 43. 82	74.00 54.00 74.00	-25.65 -15.58 -30.18	Peak AVG Peak				
2 3	2000.00 2000.00 2495.00 2495.00 3000.00 3000.00	000 50. 2 000 40. 2 000 43. 6 000 34. 1 000 44. 2	$\begin{array}{ccc} 0 & -1 \\ 7 & -1 \\ 5 & 0 \\ 8 & 0 \\ 4 & 1 \\ 9 & 1 \end{array}$. 85 . 85 17 17 59	48. 35 38. 42 43. 82 34. 35 45. 83	74.00 54.00 74.00 54.00 74.00	-25.65 -15.58 -30.18 -19.65 -28.17	Peak AVG Peak AVG Peak				
2 3 4 5 6	2000. 00 2000. 00 2495. 00 3000. 00 3000. 00 3970. 00	000 50.2 000 40.2 000 43.6 000 34.1 000 44.2 000 34.2	$\begin{array}{c cccc} 0 & -1 \\ 7 & -1 \\ 5 & 0. \\ 8 & 0. \\ 4 & 1. \\ 9 & 1. \\ 6 & 4. \\ 9 & 4. \end{array}$. 85 . 85 17 17 59 59	48.35 38.42 43.82 34.35 45.83 35.88	74.00 54.00 74.00 54.00 74.00 54.00	-25.65 -15.58 -30.18 -19.65 -28.17 -18.12	Peak AVG Peak AVG Peak AVG				

54.00

74.00

54.00

38.16

54.40

44.84

Peak

AVG

AVG

-15.84

-19.60

-9.16

4992.5000 30.52 5930.0000 45.52

5930.0000 35.96

10

11 12 * 7.64

8.88

8.88

								G2868****(*=A-Z,a			
EUT	EUT		LCD Monitor			el Name		-z,0-9,/, +,-,\ or blank)			
Temp	perature	22°C	22°C			Relative Humidity		55%			
Test	Voltage	AC 12	AC 120V/60Hz			ization		Vertical			
Test Mode		HDM	HDMI1 2160P								
Test Engineer		Jivey	Jivey Jiang								
96.0.4	lBuV/m										
00.9 0											
		3						<u> </u>			
		1		×				9			
	*			6		×	1 1 4 1	and the second of the day to we add			
	human unhilmen	M Maria	Manufaran	welknew population	mmm	"Untryling the hours	www.my.com	with I Brown on Mr charles within the mark			
	1. A. M.					*					
-13.1											
100	0.00 1500.00 200	0.00 25	00.00 300	0.00 3500.00	4000 .	00 4500.0	0 50	00.00 6000.00 (MHz)			
No.		-	Correct	Measure	Limit	Margin					
	- Lev		Factor dB	ment	dBuV/m	dB	Dete	etor			
1	1500.0000 46.		-3. 56		74.00	-30.68	Peak				
2	1500.0000 36.	45 ·	- <mark>3. 56</mark>		54. 00	-21.11	AVG				
3	1997.5000 56.		-1.86		74.00	-19.07	Peak				
/ *	1997. 5000 46.		-1.86 1.58		54.00 74.00	-9.00 -24.53	AVG Peak				
<u>4 *</u>	2007 5000 47	00			1 T. UU	74.00	reak				
5	2997.5000 47. 2997 5000 37										
5 6	2997.5000 37.	16	1.58	38.74	54 . 00	-15.26	AVG				
5		16 94		38.74 43.69							

4990.0000 29.46

5932. 5000 45. 14

5932.5000 35.19

7.63

8.88

8.88

37.09

54.02

44.07

54.00

74.00

54.00

-16.91

-19. 98

-9.93

AVG

AVG

Peak

10

11 12

EUT		L	LCD Monitor			Model Name		**G2868*******(*=A-Z -z,0-9,/, +,-,\ or blank)			
Temperature		2	22°C			Relative Humidity		55%			
Test	Voltage	A	AC 120V/60Hz			rization		Horizontal			
Test Mode		Н	HDMI1 2160P								
Test Engineer		Ji	Jivey Jiang								
60.90	dBuV/m										
									11		
		5		7				9	Ň		
	1	¥		*				*	12		
				mullimment	anna anna	Mannow	montrup	wit Brown Within	hand have been and have be		
	Jun when the work	- WINDAR	A Carper of Warren	*				1			
	Î										
-13.1											
	0.00 1500.00	2000.00	2500.00 3	000.00 3500.0	0 4000.	.00 4500.0	00 500	00.00	6000.00 (MHz)		
No.	Freq.	Reading Level	g Correct Factor	Measure ment	Limit	Margin					
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detec	tor			
1	1007.5000		-7.00	43.26	74.00	-30.74	Peak				
2	1007.5000		-7.00	33.64	54.00	-20.36	AVG				
3 4	1497.5000 1497.5000		-3. 58	42.72 32.71	74.00 54.00	-31.28	Peak AVG				
	2000. 0000		-1.85	47.52	74.00	-26.48	Peak				
5											
5 6	2000. 0000		-1.85	36.00	54. 00	-18.00	AVG				
		37.85 43.72		36.00 45.30 35.11	54.00 74.00 54.00	-18.00 -28.70 -18.89	AVG Peak AVG				

4990.0000 39.67

4990.0000 29.96

5930.0000 44.71

5930.0000 34.19

7.63

7.63

8.88

8.88

47.30

37.59

53.59

43.07

74.00

54.00

74.00

54.00

AVG

AVG

Peak

Peak

-26.70

-16.41

-20.41

-10.93

9

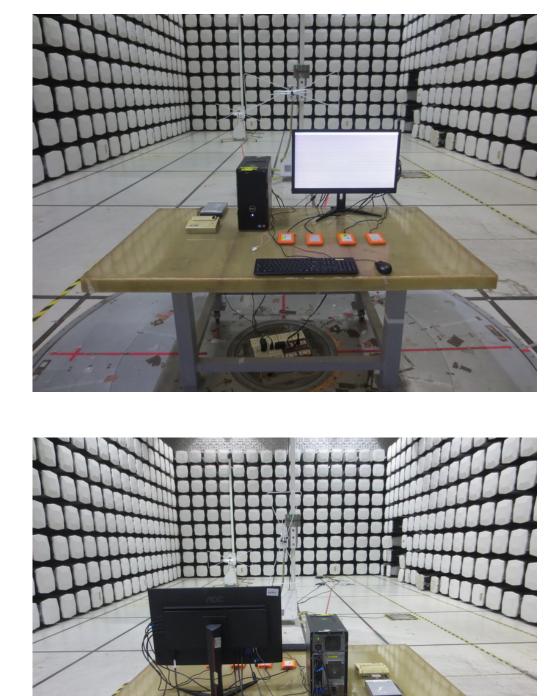
10

11 12 *

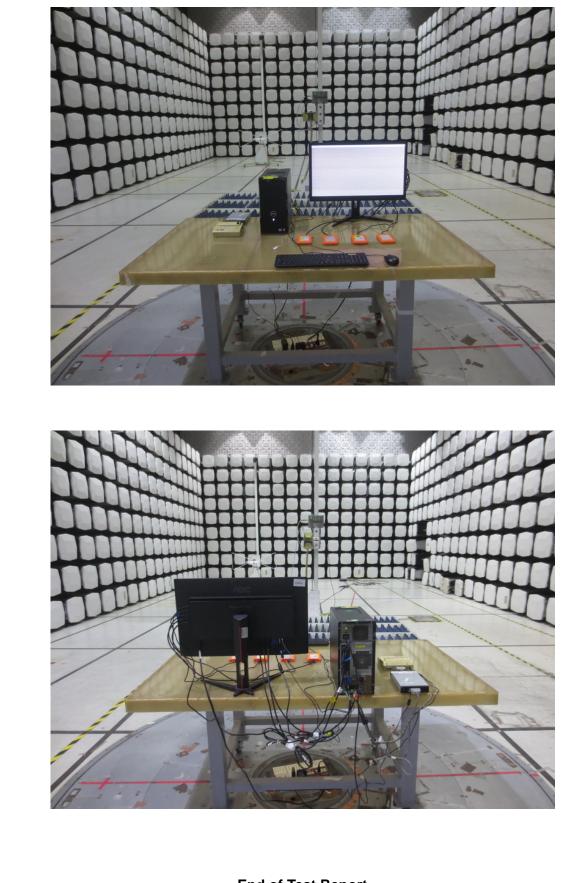


5. EUT TEST PHOTO

Conducted Emission



3TL



Radiated emission below 1 GHz

Radiated emission above 1 GHz

End of Test Report

Report No.: BTL-FICE-1-1812C075