

ISO 9241-307 TEST REPORT

/loni	tor
	Ioni

Name/address of Taiwan BOE Vision-electronic Technology Co., Ltd. the applicant: 7F, 2, Rei Kuang Road, Nei Hu, Taipei, Taiwan, R.O.C.

Name/address of the manufacturer: Taiwan BOE Vision-electronic Technology Co., Ltd.
7F, 2, Rei Kuang Road, Nei Hu, Taipei, Taiwan, R.O.C.

Trade mark AOC

/Brand name:

Model/Type: **240LM000****

Panel: BOE (MV240WUM-N10)

Electrical data: 100-240Vac, 1.5A, 50/60

(EUT)

Testing Standards: ISO 9241-307:2008(E)

Test period: 2016/9/8

5F, No. 413, Section 2, Tiding Blvd., Neihu, Taipei 114, Taiwan

Test results: The UUT has shown compliance with ISO 9241-307, 5.2 Emissive flat

panel (LCD) display for indoor use requirements.

Signature Tested by: 7 Verified by:

Thursday of of the the proper

Name: Date: Name Date: Date: Date: Lisa Chen 2016/9/8 Jeff Chuang 2016/10/4

FAX: (+886) 2 8797 8791

Engineer Senior Project Manager

Test facility: Nemko AS Taiwan Branch

5F, No. 409, Section 2, Tiding Blvd., Neihu, Taipei 114, Taiwan

Laboratories are accredited by the Taiwan Accreditation Foundation (TAF) under the terms of TAF legislation. The accredited laboratory activities meet the requirements in ISO 17 025 (2005). This report apply only to the sample(s) tested. It is manufacturer's responsibility to assure the additional production units of this product are manufactured with identical electrical and mechanical components. This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Nemko AS Taiwan Branch TEL: (+886) 2 8797 8790

	TEST RESULT SUMMARIZATION						
Clause	Requirements	Result					
Table 41	Design viewing distance	N/A*					
Table 41	Design viewing direction	PASS					
Table 43	Gaze and head tilt angles	N/A					
Table 43	Virtual images	N/A					
Table 44	Illuminance	PASS					
Table 44	Display luminance	PASS					
Table 49	Luminance balance and glare	N/A*					
Table 49	Luminance and contrast adjustment	PASS					
Table 51	Vibration	N/A					
Table 51	Wind and rain	N/A					
Table 51	Excessive temperatures	PASS					
Table 52	Luminance uniformity	PASS					
Table 57	Colour non-uniformity	PASS*					
Table 62	Contrast non-uniformity	PASS					
Table 62	Geometric distortions	N/A					
Table 62	Screen and faceplate defects	PASS*					
Table 64	Temporal instability (Flicker)	PASS					
Table 64	Spatial instability (Jitter)	N/A					
Table 64	Moire effects	PASS					
Table 64	Other visual artefacts	PASS					
Table 64	Unwanted reflections	PASS					
Table 70	Luminance contrast	PASS					
Table 75	Image polarity	PASS					
Table 75	Character height	PASS					
Table 75	Text size constancy	N/A					
Table 75	Character stroke width	PASS					
Table 75	Character width to height ratio	PASS					
Table 75	Character format	PASS					
Table 75	Between-character spacing	PASS					
Table 75	Between-word spacing	PASS					
Table 75	Between-line spacing	PASS					
Table 76	Luminance coding	PASS*					
Table 79	Blink coding	N/A					
Table 79	Color coding	PASS					
Table 81	Geometrical coding	N/A					
Table 82	Monochrome and multicolour object size	N/A					
Table 82	Contrast for object legibility	N/A					
Table 82	colour considerations for graphics	N/A					
Table 82	Background and surrounding image effects	N/A					
Table 82	Number of colours	N/A					
Table 83	Colour gamut and reference white	PASS					
Table 85	Electro-Optical transfer function (EOTF) and grey scale	PASS					
Table 91	Rendering of moving images	PASS					
Table 91	Colour misconvergence	N/A					
Table 91	Image formation time (IFT)	PASS					
Table 91	Spatial resolution	PASS*					
Table 91	Raster modulation	N/A					
Table 91	Fill factor	PASS					
Table 91	Pixel density	PASS					
Tubic 31	i inci denoity	1 700					

Product information and system configuration

System configuration										
Measurements System: hp Workstation, XW4200										
Measurements (OS): Microsoft Windows XP, Professional										
Test Software:	SS320 V2.01.128A									
Signal operation System:	Lab. PC6									
Signal (OS)	Microsoft Windows XP, Profe	essional								
Signal generator:	ASUS EN8800 Series (512N	1B)								
Signal generator driver:	nv4_disp (6.14.11.6726-nVII	DIA Detonator 67.26)								
Signal generator level:	100%									
Test Equipments										
Item Instrument Name	Manufacture	Model	Due. Date							
1 Display Analysis system	Microvision	SS-320	2017/09							
2 Display Analysis system	Microvision	SS-210	2017/08							
3 RTM Modual	Microvision	SS310-XE	2017/09							
4 Reflectance standard	Labsphere	SRS-99-020	2017/06							
5 Light Source	Microvision	Diffuse	NCR							
6 Diffuse Light Source	Schott	DCR III	NCR							
EUT Information										
Adaptor Manufacture/Type:	Build-In Power									
Adaptor input rating:	Build-In Power		The same of the sa							
Adaptor output rating:	Build-In Power		Mary Mary Company							
LCD manufacture/type:	BOE (MV240WUM-N10)		The state of the s							
Inverter manufacture/type: Build-In circuit (Manufacture didn't specify)										
Model difference: The "*" of the model name can be alphameric or blank.										
Additional information	Alternative									

Display setting							
Preset_CCT:	Warm						
Contrast:	50/100						
Brightness:	90/100						
Clock:	Default						
Phase:	Default						
Signal ports for testing:	DVI						

Class level summary											
Classification:	ISO 92	41-307	Corresponding to ISO 13406-2								
Classification.	Specified	Test result	Specified	Test result							
Viewing direction range class (Classviewing):	Viewing Class III (b)	Viewing Class III (b)	CLASS III	CLASS III							
Chromaticity uniformity class:	Low	Low	-	-							
Pixel fault class (Class _{Pixel}):	CLASS I	CLASS I	CLASS II	CLASS II							
Reflection class,(ClassReflectionPositive):	CLASS I	CLASS I++	CLASS I	CLASS I							
Reflection class,(ClassReflectionNegative):	CLASS I	CLASS I	CLASS I	CLASS I							

- Lower class value is better, for chromaticity uniformity, "High" is best.
 The character added to the viewing class, indicates the viewing cone alternative of table 39.
- Reflection class"+" and "++" (not defined by 9241-307) is given for the more strict illumination condition L_{REF,EXT}=300 and 500.
- The Table 57 colour non-uniformity in a)2) (Directional requirement) which apply as "non mandatory requirement" according to AG1 decision.

Intended context of use and relevant test parameters

Table 38 - Intended context of use							
User vision	User with normal or corrected to normal vision of any age, 7 years or older (any literate user).						
Design screen illuminance $Es:$ Screen tilt angle (α):	314.7 lx 75.0°						
Reflection class (Refer to Table 64 for Classification of illumination conditions)	Class I						
Reflection environment	Suitable for general office use. (Class I)						
Reference illuminance source	Large(15°): 200 cd/m² AND Small (1°): 2000 cd/m²						
Illuminant	Illuminance source D65						
Ambient Temperature:							
Perception of information type	Artificial information						
Diagonal:							
Screen size Horizontal:	***************************************						
	324.0 mm						
Image type	Still image and Quasi-static image.						
Design viewing distance (Ddesign,view)	500.0 mm						
Type of viewing cone.	Viewing Class III (b)						
Design viewing direction θ_D	0.0°						
Φ_{D}	90.0°						
	62.9°						
Eye and head position	Fixed installation (rigid).						
Number of users	Single User						
Display handling	Stationary, indoor.						
0140140100 2014010	CHICAGO (10 HONE) (10 HONE						

Table 40 Basic physical attributes of the visual display							
Optical mode of operation	Emissive						
Mode of observation	Direct-view						
Diagonal of the active display	24.0 Inch						
Pixel resolution Horizonta	: 1920						
Vertica	: 1200						
Format	Landscape						

Compliance assessment

Table 41 Design viewing distance PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

N/A*

Depending on the type of information shown the visual display shall fulfil the following requirement:

The display is design for: Artificial information predominantly.

For Artificial information

The typical design viewing distance is calculated on optimum position for the most important visual display which is within ±15° in the vertical and horizontal direction from the line-of-sight.

Measuring method : *EK1-ITB 2000:2010 (500 mm)*

Assessment and reporting Refer to Table 41, a) Artificial information.

W_{view}: 518.4 ±0.9mm Aspect ratio: 16:10

H_{view}: 324.0 ±0.6mm D_{design,view}: 500.0

*Refer to EK1-ITB 2000:2016Annex 4.1, Design, View =500mm.

4				
Table 41 Design viewing di	rection	PASS/FAIL/(N/A:not app	olicable)/*(with co	mments)
Pass/Fail criterion based on	requirements and intended con	text of use.		PASS
	onform to all optical requirement			
b) The design viewing directi	on (θ_D, Φ_D) , as well as the design	n viewing direction rang	ge shall be spec	ified.
Measuring method:	Intended of use, ISO 9241-305 (F	14.1,P14.2)		
Assessment and reporting	Refer to Table 42		The same of the sa	

Table	Table 42 - Step 1 for isotropic/anisotropic optically behaviour.												
Ф	0°	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
θ	0°	40°	40°	40°	40°	40°	40°	40°	40°	40°	40°	40°	40°
Lθ	249.8	159.8	147.3	131.8	128.6	133.3	158.6	177.7	162.1	136.1	125.6	124.4	143.2
	± 12.5	± 8.1	± 7.5	± 6.7	± 6.6	± 6.8	± 8.0	± 9.0	± 8.2	± 6.9	± 6.4	± 6.4	± 7.3
	L⊥	249.8	± 12.5	Note:	4	bose			- 4	P A			92
L	θ,min	124.4	± 6.4	Lθ/L⊥	≦ 0.8, tl	he visua	l display	has opt	ically an	isotropio	behavi	our.	
Le	9/L⊥	0.5	± 0.1	Lθ/L⊥:	> 0.8, th	e visual	display	has option	cally isot	ropic be	haviour.		
Optic	Optically behaviour: For anisotropic visual displays follow step 3 (lateral and directional optical												
	Anisotropic measurements are performed).												

Та	ble 4	2 - St	ep 3 l	Deter	mine	the D	esign	View	ing D	irection	on (θε	D,ΦD)	. (For	anisc	otropio	c visu	al dis	plays)		
	0°	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°	11°	12°	13°	14°	15°	16°	17°	18°	19°	20°
Azimuth angle set at 90°																					
)°~20°)	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	1
) (Azimuth angle set at 270°																				
eT Fe	1	-	1	1	1	ı	1	-	1	-		-	1	ı	1	1	-	1		1	1
Ma	aximu	ım lur	ninan	ce at	(θ,Φ)	Note	:													
Re	ferer	ісе (θ	D)		0°		If the	visua	al disp	olay is	pred	omina	antly o	desig	ned fo	or arti	ficial i	inform	nation	, follo	W
Re	Reference (ΦD) 90°						step	4a).													
Predominantly information type.						oe.	If the	visua	al disp	olay is	pred	omina	antly (desig	ned fo	or Rea	ality ir	nform	ation,	follov	٧
	Artificial information						step	4b).													

Test Report Compliance assessment

Table 42 - Step 4c,Determine the measurement directions (Artificial information)											
M/D_(n)	M/D_0	M/D_1	M/D_2	M/D_3	M/D_4	M/D_5	M/D_6	M/D_7	N/A		
θ	0.0°	31.4°	31.4°	31.4°	31.4°	31.4°	31.4°	0.0°	N/A		
Ф	Any	212.0°	151.0°	270.0°	90.0°	29.0°	328.0°	90.0°	N/A		

Table 43 Gaze and head tilt angles	S	PASS/FAIL/(N/A:not a	pplicable)/*(with comments) N/A
		N. N.		

Table 43 Virtual images PASS/FAIL/(N/A:not applicable)/*(with comments) N/A

Table 44 Illuminance		PASS/FAIL/(N/A:not applicable)/*(with	n comments)			
Pass/Fail criterion based	d on requirements and intended conte	ext of use.	PASS			
The supplier shall specif	fy the maximum design screen illumin	ance, Es, as well as the illuminant				
Measuring method:	Intended context of use					
Assessment and reportir	ng Refer to following information					
At indoor locations of :	Office work					
Reference illuminance:	Vertical 250 lx + 250 lx × $cos(\alpha)$ in offices	, where α is the screen tilt angle.				
Screen tilt angle:	75.0°	Reference illumin	ant:			
Reference illuminant:	Illuminance source D65	CIE 1931 (x,y)	x: 0.313			
Reference illuminance:	314.7 lx	4.7 lx y: 0.329				
Es (used in report):	314.7 lx	CIE 1976 (u',v')	u': <i>0.1</i> 98			
			v': 0.468			

Compliance assessment

Table 44	Display luminance	PASS/FAIL/(N/A:not applicable)/*(with cor	nments)
Pass/Fail	criterion based on requirements and intended conto	ext of use.	PASS

The visual display shall fulfil the following requirements:

Artificial information

- 1) Under darkroom conditions, the visual display shall have a minimum display luminance of 20 cd/m² over all relevant viewing directions (see design viewing direction).
- 2) Under darkroom conditions, the visual display should have a minimum display luminance of 150 cd/m² over all relevant viewing directions (see design viewing direction and ISO 9241-303).

Requirement level apply: General requirement

Measuring method : ISO 9241-305 P12.5, M12.1

Assessment and reporting Refer to Table 46

Table 46-Display luminance (cd/m^2) Minimum display luminance level							20	
M/D(n)	M/D_0	M/D_1	M/D_2	M/D_3	M/D_4	M/D_5	M/D_6	M/D_7
CL	250.1	234.3	235.0	208.6	210.8	212.0	210.0	249.2
CL	± 12.6	± 11.8	± 11.8	± 10.5	± 10.6	± 10.7	± 10.6	± 12.5
HL	252.9	237.2	238.3	210.5	213.7	214.3	212.1	252.0
ΠL	± 12.7	± 11.9	± 12.0	± 10.6	± 10.8	± 10.8	± 10.7	± 12.7
- 11	196.5	186.1	188.0	163.0	169.4	168.2	163.3	197.2
LL	± 9.9	± 9.4	± 9.5	± 8.3	± 8.6	± 8.5	± 8.3	± 9.9

Table 49 Luminand	ce balance and glare	*	PASS/FAIL/(N/A:not applicable)/*(v	vith comments)	
Pass/Fail criterion based on requirements and intended context of use.					

- a) In work environments, the luminance of task areas, Ltask,area, that are frequently viewed in sequence while using the visual display (document, covers, etc.) should be between
- $0,1 \times L$ task,area $\leq L$ Ea,HS $\leq 10 \times L$ task,area

where LEa, HS is the area average luminance of the visual display.

b) For prolonged use in work environments, check that the design of the visual display screen and surrounding area of the product housing do not produce disturbing glare in the prevailing environmental lighting conditions.

*Table 49 b) ISO 9241-300 didn't defined the suitable requirement level.

Measuring method:

| ISO 9241-305 |
| Assessment and reporting | a) Not applicable. b) No suitable gloss requirement level publish yet.

Table 49 Luminance and contrast adjustment PASS/FAIL/(N/A:not applicable)/*(with comments) Pass/Fail criterion based on requirements and intended context of use. PASS

The visual display shall fulfil the following requirements.

- 1) The display luminance (luminance of the low and/or high state) shall be adjustable manually or automatically to the ambient illumination conditions.
- 2) The display luminance of the low state should be adjustable.
- 3) The display luminance of the high state shall be adjustable.
- 4) The luminance of the low and high states should be adjustable independently.
- 5) Adjustment of the display luminance (luminance of the low and/or high state) should not affect the electro-optical transfer function (EOTF) or the gamma value.

•	· ,
Measuring method:	ISO 9241-305 5.1.2.5, P 14.1
Assessment and reporting	Refer to Table 50

Compliance assessment

T 1 1 50 A				
I I ania hii - Accac	emant and ra	norting tor	li iminanca and	contract admictment
I able ou - Asses	silicili alla le		iuiiiiiiaiice aiiu	contrast adjustment

-) Step 1 Report the available controls for manual or automatic adjustment.
 - Step 2 Describe the effect of the controls based on suppliers information.
 - Step 3 Report the resulting values for passed or failed.

Luminance of High state and Low State adjustable manually to ambient illumination condition.

Step 1 Adjust the control responsible for the display luminance of the high state to maximum.

Step 2 Adjust the control responsible for the display luminance of the low state between minimum and maximum. Measure the display luminance, for each adjustment setting.

High state (Maximum)Low State (Minimum) 0.3 ± 0.2 Low State (Maximum) 0.3 ± 0.2

3) Step 1 Adjust the control responsible for the display luminance of the Low state to maximum.

Step 2 Adjust the control responsible for the display luminance of the High state between minimum and maximum. Measure the display luminance, for each adjustment setting.

Low state (Maximum) High State (Minimum) 0.1 \pm 0.2 High State (Maximum) 0.3 \pm 0.2

4,5) Step 1 Display a full screen grey scale (equidistantly spaced in 5 % steps). Step 2 Adjust the control responsible for the display luminance of the high state to the middle position. Adjust the control responsible for the display luminance of the low state between minimum and maximum. Perform a visual inspection of the whole grey scale as well as the 0 %, 5 % and 10 % areas of the grey scale.

Step 3 Adjust the control responsible for the display luminance of the low state to the middle position. Adjust the control responsible for the display luminance of the high state between minimum and maximum. Perform a visual inspection of the whole grey scale as well as the 90 %, 95 % and 100 % areas of the grey scale.

Step 4 Observe the visual display for independency between adjustments of the display luminance of the low and high state.

High state and Low state adjustment setting High State (Brightness) 90/100

Low State (Contrast) 50/100

Table 51 Vibration	PASS/FAIL/(N/A:not applicable)/*(with comments)	N/A
•		

Table 51 Wind and rain	PASS/FAIL/(N/A:not applicable)/*(with comments)	N/A

Table 51 Excessive temperatures PASS/FAIL/(N/A:not applicable)/*(with comments)							
Pass/Fail criterion based on	Pass/Fail criterion based on requirements and intended context of use. PASS PASS						
When operation of visual disp	play devices is required in enviro	nments where temperatures are appro	paching 0				
°C or +40 °C, users should to	ake equipment and personal pred	cautions to ensure that they are able to)				
complete their tasks satisfact	torily and safely.						
Measuring method:	Measuring method: ISO 9241-305						
Assessment and reporting Supplier specification or intended context of use.							
The safety operation temperature is: 40°C							

Compliance assessment

Table 52 Luminance uniformity

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

PASS

The visual display shall fulfil the following requirements.

Se	parate d	istance i	n degree	Lateral criterion	Directional criterion
	1.1°	to <	2.0°	1.3	1.7
\geq	2.0°	to <	4.0°	1.4	1.7
\geq	4.0°	to <	5.0°	1.5	1.7
\geq	5.0°	to <	7.0°	1.6	1.7
\geq	7.0°			1.7	1.7

Criterion level (General requirement/Strictly requirement) selected by: General requirement

Measuring method : ISO 9241-305 P14.1, P14.2

Assessment and reporting Refer to Table 54 b) 1), Table 54 b) 2)

Table 54_a)1)2)-Lateral measurement, Artificial/Anisotropic								
M/E)(n)	M/D_7	Dis(°)	500	Min.	Pos.	L-Ratio	Result
CL	100%	250.8 ± 12.6	CL-HL	8.4°	1.7	CL-HL	1.01 ± 0.07	PASS
CL	50%	52.0 ± 2.8	CL-NL	0.4	1.7	CL-IIL	1.02 ± 0.08	PASS
HL	100%	253.0 ± 12.7	CL-LL	31.3°	1.7	CL-LL	1.26 ± 0.09	PASS
IIL	50%	53.1 ± 2.8	CL-LL	31.3	1.7	CL-LL	1.23 ± 0.09	PASS
LL	100%	198.7 ± 10.0	HL-LL	35.6°	1.7	HL-LL	1.27 ± 0.09	N/A*
LL	50%	42.2 ± 2.3		L-LL 35.0	1.7	⊓L-LL	1.26 ± 0.10	N/A*
*Locations	*Locations (HL-LL), is for reference purpose only, it is not considered as standard requirement.							

Table 54_a)3)-Directional measurement, Artificial/Anisotropic							
Azimuth	R/G/B	Result for	Max_L	Max_L	Min L	Min_L	Max_L
Azimutii	Level	full θ _{range}	IVIAX_L	at θ _{range}	IVIIII_L	at θ _{range}	ratio
0°	100%	PASS	251.2 ± 12.6	0°	212.3 ± 10.7	24°	1.18 ± 0.08
U	50%	PASS	51.1 ± 2.7	0°	45.2 ± 2.4	24°	1.13 ± 0.09
90°	100%	PASS	249.8 ± 12.5	0°	209.1 ± 10.5	24°	1.19 ± 0.08
90	50%	PASS	51.9 ± 2.8	0°	42.2 ± 2.3	24°	1.23 ± 0.09
180°	100%	PASS	255.0 ± 12.8	10°	241.3 ± 12.1	24°	1.06 ± 0.08
100	50%	PASS	56.6 ± 3.0	19°	52.5 ± 2.8	0°	1.08 ± 0.08
270°	100%	PASS	250.8 ± 12.6	0°	206.3 ± 10.4	24°	1.22 ± 0.09
270	50%	PASS	52.8 ± 2.8	0°	41.7 ± 2.3	24°	1.27 ± 0.10

Evaluate the directional uniformity criterion. If the requirement is not fulfilled within θrange,specify the maximum inclination angle at which the maximum luminance ratio is reached.

Table 57 Colour non-uniformity

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

PASS*

The display shall fulfill following requirements for colour uniformity.

a) Artificial information

1) Lateral uniformity criterion:

Color uniformity ($\Delta u', v'$) criterion: 0.

For an intended uniform colour appearance, the chromaticity uniformity difference, $\Delta u', v'$, of a colour at different locations on the visual display shall not exceed the following limits:

 $\Delta u', v' = 0.02$ for Dactive / Ddesign, view < 0.75

 $\Delta u', v' = 0.03$ for D_{active} / D_{design,view} ≥ 0.75

2) Directional uniformity criterion:

The visual display shall have a sufficient chromaticity uniformity over all relevant viewing directions (see design viewing direction). The maximum chromaticity uniformity difference, $\Delta u', v'$, of a colour shall not exceed the above-mentioned limits.

"*" indicate the "non-mandatory requirement" apply for Table 57 a)2), which refer to AG1 decision.

Measuring method : ISO 9241-305 P19.2, P19.3

Assessment and reporting Refer to Table 59

Test Report Compliance assessment

No. Levels PC Name Word of MS Excel of MS Colors 0 N/A Black Black 1 3 Light Red Red 2 3 Light Green Green 3 3 Light Blue Blue	R 0 255 0	G 0 0 255 0	0 0 0
1 3 Light Red Red Red 2 3 Light Green Green Green	255 0 0	0 255	0
2 3 Light Green Green Green	0	255	0
- V	0		
3 3 Light Blue Blue Blue	_	0	055
	255		255
4 2 Bright White White White	255	255	255
5 2 Light Cyan Cyan Cyan	0	255	255
6 2 Light Magenta Magenta Magenta	255	0	255
7 2 Light Yellow Yellow Yellow	255	255	0
8 2 White Light Grey Light Grey	192	192	192
9 1 Red Dark Red Dark Red	128	0	0
10 1 Green Dark Green Dark Green	0	128	0
11 1 Blue Dark Blue Dark Blue	0	0	128
12 1 Gray Dark Grey Grey	128	128	128
13 1 Cyan Dark Cyan Dark Cyan	0	128	128
14 1 Magenta Dark Magenta Purple	128	0	128
15 1 Yellow Dark Yellow Light Brown	128	128	0

Table 59 - Assessment and reporting for colour non-uniformity -Artificial information-Anisotropic Display Depending on the technology, the visual display may not fulfil the requirement for all displayed colours. The following differentiation is made.

High class chromaticity uniformity

Combinations: R,G,B = 100%, Combination: R=G=B=75% and Combinations R,G,B=50%.

Medium class chromaticity uniformityCombinations: R,G,B = 100% and Combination: R=G=B=75%.

Low class chromaticity uniformity

Combinations: R,G,B = 100%.

Color u	niformity	[,] (Δu'v') for Lateral				
_	_Δu'v' ition	Max_∆u'v'		/lax_Δu'v lor (R/G		Result
From	То		R	G	В	
HL-7	LL-7	0.006 ± 0.019	255	0	255	PASS

Color unifo	rmity	[,] (Δu',v') for Artificial/ <i>A</i>	Anisotrop	ic, Direc	ctional re	equireme	ent		
Requirem	ent	Max_Δu'v'		/lax_Δu' lor (R/G		Max_ Dire	_Δu'v' ction	Best Class	Result
type			R	G	В	From	То	codia meet	
	CL	0.019 ± 0.019	128	0	128	CL-1	CL-4	High	PASS
Directional	HL	0.018 ± 0.019	128	0	128	HL-1	HL-4	High	PASS
	LL	0.016 ± 0.019	128	0	128	LL-1	LL-4	High	PASS
Product speci	ify chr	omaticity uniformity class:	Low class	s chroma	aticity uni	formity		Result	PASS

Also refer to following pages for Lateral/Directional measurement result.

Test Report Compliance assessment

Table 59 - 0	Color read	ding (u',v') and Co	lor unifor	mity (Δu'\	/') for Lat	eral requ	irement	
Locations	CL	7	HL	7	LL	7	HL-LL	CL-HL	CL-LL
Color (n)	u'	٧'	u'	٧'	u'	٧'	∆u',v'	∆u',v'	∆u',v'
Color 1	0.438	0.525	0.439	0.525	0.438	0.525	0.001	0.001	0.001
Coloi i	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.027	± 0.027	± 0.027
Color 2	0.122	0.567	0.122	0.567	0.122	0.567	0.001	0.001	0.001
COIOI 2	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.009	± 0.031	± 0.014
Color 3	0.186	0.137	0.187	0.136	0.185	0.138	0.002	0.001	0.002
Color 3	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.011	± 0.011	± 0.011
Color 4	0.197	0.460	0.197	0.459	0.197	0.462	0.004	0.002	0.002
C0101 4	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.026	± 0.027	± 0.026
Color 5	0.140	0.444	0.140	0.443	0.140	0.447	0.005	0.002	0.003
Color 5	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.026	± 0.025	± 0.026
Color 6	0.301	0.313	0.301	0.311	0.301	0.317	0.006	0.003	0.004
Color o	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.019	± 0.018	± 0.019
Color 7	0.201	0.557	0.201	0.557	0.200	0.557	0.001	0.001	0.001
Coloi 7	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.014	± 0.016	± 0.014
Color 8	0.196	0.462	0.196	0.462	0.196	0.464	0.003	0.001	0.002
COIOI 0	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.027	± 0.027	± 0.027
Color 9	0.433	0.523	0.433	0.523	0.433	0.523	0.001	0.001	0.001
Color 9	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.026	± 0.027	± 0.026
Color 10	0.123	0.566	0.123	0.566	0.124	0.566	0.001	0.001	0.001
Coloi 10	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.010	± 0.032	± 0.010
Color 11	0.184	0.149	0.184	0.149	0.183	0.154	0.005	0.001	0.005
COIOI I I	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.010	± 0.010	± 0.010
Color 12	0.195	0.464	0.195	0.463	0.195	0.466	0.003	0.001	0.002
C0101 12	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.027	± 0.027	± 0.027
Color 13	0.140	0.448	0.140	0.447	0.140	0.451	0.004	0.002	0.003
00101 13	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.026	± 0.025	± 0.026
Color 14	0.299	0.319	0.299	0.317	0.298	0.321	0.004	0.003	0.002
00101 14	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.019	± 0.019	± 0.019
Color 15	0.197	0.557	0.197	0.557	0.197	0.557	0.001	0.001	0.001
C0101 13	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.014	± 0.018	± 0.032

Table 59						-								
Color values			cation	CL - c							rection	nal req		
CL1~7	CI	1	Cl	2	CL	3	CI	4	Cl	₋ -5	Cl	6	Cl	7
n=	u'	٧'	u'	٧'	u'	٧'								
Color1	0.438	0.525	0.438	0.525	0.440	0.526	0.440	0.526	0.440	0.526	0.440	0.525	0.438	0.525
	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021
Color2	0.121	0.567	0.121	0.567	0.121	0.567	0.120	0.568	0.121	0.567	0.121	0.567	0.122	0.567
	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023
Color3	0.187	0.136	0.187	0.138	0.187	0.136	0.187	0.136	0.186	0.135	0.186	0.135	0.186	0.137
	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006
Color4	0.198	0.461	0.198	0.461	0.197	0.462	0.197	0.462	0.198	0.463	0.198	0.463	0.197	0.460
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color5	0.140	0.445	0.139	0.446	0.139	0.446	0.139	0.446	0.139	0.448	0.139	0.448	0.140	0.444
	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018
Color6	0.303	0.314	0.303	0.315	0.304	0.315	0.304	0.315	0.305	0.318	0.305	0.318	0.301	0.313
	± 0.013	± 0.013	± 0.013	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.013	± 0.013
Color7	0.201	0.557	0.201	0.557	0.201	0.557	0.201	0.557	0.201	0.557	0.201	0.557	0.201	0.557
	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023
Color8	0.196	0.458	0.195	0.459	0.197	0.466	0.197	0.466	0.197	0.466	0.197	0.467	0.196	0.462
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color9	0.422	0.521	0.420	0.520	0.432	0.523	0.432	0.523	0.431	0.521	0.428	0.519	0.434	0.523
	± 0.018	± 0.021	± 0.018	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.018	± 0.021	± 0.018	± 0.021	± 0.019	± 0.021
Color10	0.123	0.565	0.123	0.564	0.124	0.567	0.123	0.566	0.123	0.566	0.123	0.565	0.123	0.566
	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023
Color11	0.188	0.157	0.186	0.159	0.185	0.158	0.184	0.157	0.184	0.153	0.184	0.157	0.184	0.149
	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007
Color12	0.194	0.458	0.194	0.460	0.196	0.469	0.196	0.469	0.195	0.467	0.195	0.468	0.195	0.464
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color13	0.141	0.442	0.141	0.443	0.140	0.454	0.139	0.454	0.139	0.451	0.139	0.453	0.140	0.448
	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.019	± 0.007	± 0.019	± 0.007	± 0.018	± 0.007	± 0.019	± 0.007	± 0.018
Color14	0.294	0.311	0.295	0.314	0.303	0.327	0.303	0.327	0.301	0.323	0.302	0.326	0.299	0.319
	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.013	± 0.013	± 0.014	± 0.013	± 0.013
Color15	0.195	0.556	0.195	0.556	0.198	0.558	0.198	0.557	0.197	0.557	0.197	0.556	0.197	0.557
	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023

						E.			Ħ		7		E		- 4				1111		
Co	lor uni	iformit	y resu	lt (Δu',	v'), for	locati	on CL	- conti	nue Ta	able 59)/Color	unifo	rmity, l	Directi	onal re	equirer	ment .				
n=	CL1-2	CL1-3	CL1-4	CL1-5	CL1-6	CL1-7	CL2-3	CL2-4	CL2-5	CL2-6	CL2-7	CL3-4	CL3-5	CL3-6	CL3-7	CL4-5	CL4-6	CL4-7	CL5-6	CL5-7	CL6-7
5	0.001	0.002	0.002	0.003	0.002	0.001	0.002	0.003	0.003	0.002	0.001	0.000	0.000	0.000	0.002	0.000	0.001	0.002	0.001	0.002	0.002
	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.028	± 0.027	± 0.030	± 0.027	± 0.030	± 0.029	± 0.027	± 0.028	± 0.027	± 0.027
C2	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001
	± 0.030	± 0.027	± 0.026	± 0.032	± 0.030	± 0.015	± 0.023	± 0.024	± 0.031	± 0.028	± 0.019	± 0.025	± 0.017	± 0.031	± 0.021	± 0.019	± 0.021	± 0.023	± 0.012	± 0.025	± 0.023
S	0.002	0.001	0.001	0.002	0.002	0.002	0.003	0.003	0.004	0.003	0.002	0.000	0.001	0.002	0.002	0.001	0.001	0.002	0.000	0.002	0.002
	± 0.009	± 0.011	± 0.009	± 0.011	± 0.012	± 0.012	± 0.009	± 0.009	± 0.009	± 0.009	± 0.010	± 0.009	± 0.011	± 0.012	± 0.010	± 0.012	± 0.013	± 0.010	± 0.009	± 0.009	± 0.009
2	0.001	0.001	0.002	0.003	0.003	0.001	0.000	0.001	0.002	0.002	0.002	0.000	0.001	0.002	0.002	0.002	0.002	0.003	0.000	0.004	0.004
	± 0.027	± 0.027	± 0.026	± 0.027	± 0.027	± 0.026	± 0.025	± 0.025	± 0.027	± 0.027	± 0.027	± 0.025	± 0.026	± 0.026	± 0.027	± 0.026	± 0.026	± 0.027	± 0.027	± 0.027	± 0.027
C5	0.001	0.001	0.001	0.003	0.004	0.002	0.000	0.001	0.003	0.002	0.002	0.000	0.002	0.002	0.002	0.002	0.002	0.003	0.000	0.005	0.005
	± 0.025	± 0.025	± 0.025	± 0.025	± 0.026	± 0.024	± 0.025	± 0.025	± 0.025	± 0.026	± 0.024	± 0.025	± 0.025	± 0.026	± 0.024	± 0.025	± 0.026	± 0.024	± 0.016	± 0.025	± 0.025
90	0.001	0.002	0.002	0.004	0.005	0.003	0.001	0.001	0.004	0.004	0.003	0.000	0.003	0.003	0.003	0.002	0.003	0.004	0.001	0.006	0.006
	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019
C7	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.001	0.001	0.001	0.001
	± 0.014	± 0.032	± 0.014	± 0.013	± 0.015	± 0.030	± 0.022	± 0.028	± 0.014	± 0.017	± 0.031	± 0.019	± 0.014	± 0.013	± 0.030	± 0.013	± 0.016	± 0.032	± 0.016	± 0.030	± 0.032
8	0.001	0.008	0.009	0.008	0.009	0.005	0.007	0.008	0.007	0.008	0.003	0.001	0.000	0.001	0.004	0.001	0.000	0.004	0.001	0.003	0.004
	± 0.027	± 0.026	± 0.027	± 0.027	± 0.027	± 0.026	± 0.026	± 0.026	± 0.026	± 0.027	± 0.026	± 0.027	± 0.024	± 0.027	± 0.027	± 0.026	± 0.019	± 0.027	± 0.027	± 0.027	± 0.027
60	0.003	0.011	0.011	0.009	0.006	0.012	0.013	0.013	0.012	0.008	0.015	0.001	0.003	0.006	0.002	0.003	0.006	0.002	0.004	0.004	0.008
	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.030	± 0.030	± 0.028	± 0.026	± 0.029	± 0.028	± 0.026	± 0.027	± 0.027	± 0.027
C10	0.001	0.002	0.002	0.001	0.001	0.002	0.002	0.002	0.002	0.001	0.002	0.000	0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001
	± 0.026	± 0.030	± 0.032	± 0.032	± 0.029	± 0.030	± 0.032	± 0.032	± 0.032	± 0.032	± 0.032	± 0.011	± 0.025	± 0.031	± 0.032	± 0.030	± 0.032	± 0.031	± 0.031	± 0.013	± 0.030
C11	0.002	0.003	0.004	0.005	0.005	0.008	0.003	0.003	0.006	0.004	0.009	0.001	0.004	0.001	0.008	0.004	0.000	0.007	0.004	0.004	0.007
	± 0.010	± 0.012	± 0.013	± 0.011	± 0.013	± 0.010	± 0.012	± 0.012	± 0.010	± 0.012	± 0.010	± 0.012	± 0.010	± 0.012	± 0.010	± 0.010	± 0.012	± 0.010	± 0.010	± 0.010	± 0.010
C12	0.001	0.010	0.011	0.009	0.010	0.006	0.009	0.010	0.008	0.009	0.004	0.000	0.002	0.001	0.005	0.002	0.001	0.005	0.001	0.003	0.004
	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.026	± 0.026	± 0.027	± 0.027	± 0.027	± 0.026	± 0.026	± 0.026	± 0.021	± 0.027	± 0.027	± 0.025	± 0.027	± 0.027	± 0.027	± 0.027
C13	0.002	0.012	0.013	0.010	0.012	0.007	0.010	0.011	0.009	0.010	0.005	0.001	0.003	0.001	0.006	0.003	0.001	0.006	0.002	0.003	0.005
	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.025	± 0.026	± 0.026	± 0.025	± 0.026	± 0.025	± 0.024	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026
C14	0.003	0.018	0.019	0.014	0.017	0.009	0.015	0.016	0.012	0.013	0.006	0.001	0.003	0.001	0.009	0.004	0.002	0.010	0.002	0.005	0.008
	± 0.018	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019
C15	0.000	0.003	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.001
	± 0.026	± 0.016	± 0.016	± 0.015	± 0.013	± 0.014	± 0.019	± 0.020	± 0.019	± 0.014	± 0.018	± 0.019	± 0.021	± 0.031	± 0.023	± 0.021	± 0.030	± 0.023	± 0.031	± 0.028	± 0.028

FORM TE-013 Page: 12 of 29 Nov. 2013 D

Table 59														
Color values														
HL1~7	HL	1	HL	2	HL	3	HL	4	HL	5	HL	6	HL	7
n=	u'	٧'	u'	٧'	u'	۷'	u'	٧'	u'	٧'	u'	٧'	u'	٧'
Color1	0.438	0.525	0.437	0.525	0.440	0.526	0.440	0.526	0.440	0.526	0.439	0.525	0.439	0.525
	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021
Color2	0.121	0.567	0.121	0.567	0.121	0.567	0.121	0.567	0.121	0.567	0.121	0.567	0.122	0.567
	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023
Color3	0.188	0.136	0.188	0.137	0.187	0.135	0.187	0.133	0.187	0.136	0.186	0.135	0.187	0.136
	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006
Color4	0.197	0.460	0.197	0.460	0.197	0.461	0.197	0.461	0.198	0.462	0.197	0.463	0.197	0.459
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color5	0.140	0.444	0.140	0.445	0.139	0.445	0.139	0.445	0.139	0.447	0.139	0.447	0.140	0.443
	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018
Color6	0.303	0.312	0.303	0.314	0.304	0.313	0.303	0.313	0.304	0.316	0.304	0.316	0.301	0.311
	± 0.013	± 0.013	± 0.013	± 0.013	± 0.014	± 0.013	± 0.013	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.013	± 0.013
Color7	0.200	0.557	0.201	0.557	0.200	0.557	0.200	0.557	0.201	0.557	0.201	0.557	0.201	0.557
	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023
Color8	0.195	0.457	0.195	0.459	0.196	0.465	0.196	0.466	0.196	0.465	0.196	0.466	0.196	0.462
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color9	0.424	0.521	0.420	0.519	0.431	0.523	0.431	0.523	0.431	0.521	0.428	0.519	0.433	0.523
	± 0.018	± 0.021	± 0.018	± 0.021	± 0.018	± 0.021	± 0.019	± 0.021	± 0.018	± 0.021	± 0.018	± 0.021	± 0.019	± 0.021
Color10	0.123	0.565	0.123	0.564	0.124	0.567	0.123	0.566	0.123	0.566	0.123	0.565	0.123	0.566
	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023
Color11	0.188	0.156	0.187	0.157	0.185	0.156	0.184	0.154	0.184	0.1 52	0.185	0.156	0.184	0.149
	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007
Color12	0.194	0.458	0.194	0.459	0.196	0.468	0.195	0.468	0.195	0.466	0.195	0.467	0.195	0.463
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color13	0.141	0.441	0.141	0.443	0.140	0.453	0.139	0.453	0.139	0.450	0.139	0.452	0.140	0.447
	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.019	± 0.007	± 0.019	± 0.007	± 0.018	± 0.007	± 0.019	± 0.007	± 0.018
Color14	0.294	0.309	0.294	0.313	0.303	0.325	0.303	0.325	0.301	0.321	0.301	0.323	0.299	0.317
	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013
Color15	0.194	0.556	0.195	0.556	0.198	0.558	0.197	0.557	0.197	0.557	0.197	0.556	0.197	0.557
	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023

		±0	.007 ± 0	0.018 ± 0	.007 ± 0	.018 ± 0.	007 ± 0.	.019 ± 0.	007 ±	0.019	0.007	± 0.018	± 0.007	± 0.0	019 ± 0.	007 ± 0	.018					
1	Color14	4 0.2 ± 0		309 0.2 0.013 ± 0	3332 3533	313 0.3 .013 ± 0.	03 0.3 013 ± 0.	10.0	222	-9111111	0.301 0.013	0.321 ± 0.013	0.301 ± 0.013	0.32 ± 0.0		- 2	.013	A STATE OF THE PARTY OF THE PAR	h _{idg}			
	Color1	<u> </u>	-	556 0.1	C1011 011101	556 0.1		1111	HT.		0.197	0.557	0.197	0.5		100	557		the same	En_		
	00101 10	± 0	.009 ± 0	0.023 ± 0	.009 ± 0	.023 ± 0.	009 ± 0.	023 ± 0.	009 ±	0.023 ±	0.009	± 0.023	± 0.009	± 0.0	023 ± 0.	009 ± 0	.023			-		
Co	lor uni	iformit	v resi	ılt (Au'	v') for	r locati	on HI	- conti	nue T	ahle !	59/Co	lor un	iform	itv [Directi	onal r	anuirei	ment		- 10	1.	
n=	HL1-2	HL1-3	HL1-4	HL1-5	HL1-6	HL1-7	HL2-3	HL2-4	HL2-5	_	_	_		L3-5	HL3-6	HL3-7	HL4-5	HL4-6	HL4-7	HL5-6	HL5-7	HL6-7
CJ	0.002 ± 0.027	0.003 ± 0.027	0.002 ± 0.027	0.002 ± 0.027	0.002 ± 0.027	0.001 ± 0.027	0.004 ± 0.027	0.004 ± 0.027	0.003 ± 0.027	0.003 ± 0.02				001 0.030	0.002 ± 0.029	0.002 ± 0.027	0.001 ± 0.030	0.001 ± 0.029	0.002 ± 0.027	0.001 ± 0.028	0.002 ± 0.027	0.001 ± 0.027
CS	0.001 ± 0.021	0.001 ± 0.028	0.001 ± 0.026	0.001 ± 0.031	0.001 ± 0.033	0.001 ± 0.019	0.001 ± 0.009	0.001 ± 0.032	0.001 ± 0.009	0.001 ± 0.01				001 0.010	0.001 ± 0.016	0.002 ± 0.021	0.001 ± 0.015	0.001 ± 0.022	0.002 ± 0.023	0.001 ± 0.023	0.001 ± 0.025	0.001 ± 0.022
ខ	0.002 ± 0.009	0.002 ± 0.010	0.002 ± 0.009	0.001 ± 0.013	0.002 ± 0.012	0.002 ± 0.011	0.003 ± 0.009	0.004 ± 0.009	0.002 ± 0.010	0.003 ± 0.01			1-191-1-191	001 0.010	0.001 ± 0.012	0.002 ± 0.009	0.002 ± 0.009	0.002 ± 0.010	0.003 ± 0.009	0.001 ± 0.010	0.001 ± 0.009	0.001 ± 0.009
2	0.001 ± 0.025	0.001 ± 0.026	0.001 ± 0.027	0.002 ± 0.027	0.003 ± 0.027	0.002 ± 0.027	0.000 ± 0.027	0.001 ± 0.025	0.002 ± 0.027	0.003 ± 0.02	53-4 3-453-453	100000 100000		002 0.027	0.002 ± 0.027	0.002 ± 0.027	0.002 ± 0.026	0.002 ± 0.027	0.003 ± 0.027	0.001 ± 0.025	0.004 ± 0.027	0.004 ± 0.027
C5	0.001 ± 0.026	0.001 ± 0.025	0.001 ± 0.025	0.002 ± 0.025	0.003 ± 0.025	0.002 ± 0.024	0.000 ± 0.021	0.001 ± 0.020	0.002 ± 0.025	0.003 ± 0.02				002 0.026	0.002 ± 0.025	0.003 ± 0.024	0.002 ± 0.026	0.002 ± 0.025	0.003 ± 0.024	0.001 ± 0.024	0.005 ± 0.025	0.005 ± 0.025
8	0.001 ± 0.019	0.001 ± 0.019	0.001 ± 0.019	0.004 ± 0.019	0.005 ± 0.019	0.002 ± 0.019	0.001 ± 0.019	0.001 ± 0.019	0.003 ± 0.019	0.003 ± 0.01				003 0.019	0.003 ± 0.019	0.003 ± 0.019	0.003 ± 0.019	0.003 ± 0.019	0.003 ± 0.019	0.000 ± 0.019	0.006 ± 0.019	0.006 ± 0.019
C7	0.001 ± 0.014	0.001 ± 0.030	0.001 ± 0.028	0.001 ± 0.024	0.001 ± 0.014	0.001 ± 0.028	0.001 ± 0.028	0.001 ± 0.027	0.001 ± 0.025	0.001 ± 0.01				001 0.016	0.001 ± 0.022	0.001 ± 0.028	0.001 ± 0.015	0.001 ± 0.024	0.001 ± 0.028	0.001 ± 0.028	0.001 ± 0.032	0.001 ± 0.031
8	0.001 ± 0.026	0.008 ± 0.026	0.008 ± 0.026	0.007 ± 0.026	0.009 ± 0.026	0.004 ± 0.026	0.007 ± 0.026	0.007 ± 0.027	0.007 ± 0.026	0.007 ± 0.02				000 0.025	0.001 ± 0.027	0.003 ± 0.027	0.001 ± 0.027	0.000 ± 0.024	0.004 ± 0.027	0.001 ± 0.027	0.003 ± 0.027	0.004 ± 0.027
65	0.004 ± 0.027	0.007 ± 0.026	0.008 ± 0.026	0.007 ± 0.026	0.005 ± 0.027	0.010 ± 0.026	0.011 ± 0.026	0.012 ± 0.026	0.011 ± 0.026	0.008 ± 0.02				002 0.030	0.005 ± 0.029	0.003 ± 0.026	0.002 ± 0.030	0.006 ± 0.028	0.002 ± 0.026	0.004 ± 0.027	0.003 ± 0.028	0.007 ± 0.028
C10	0.001 ± 0.028	0.002 ± 0.029	0.002 ± 0.031	0.001 ± 0.032	0.001 ± 0.015	0.002 ± 0.022	0.002 ± 0.032	0.002 ± 0.032	0.002 ± 0.031	0.001 ± 0.03				001 0.022	0.002 ± 0.032	0.001 ± 0.032	0.001 ± 0.028	0.002 ± 0.032	0.001 ± 0.031	0.001 ± 0.029	0.001 ± 0.009	0.001 ± 0.031
C11	0.002 ± 0.011	0.003 ± 0.013	0.004 ± 0.012	0.005 ± 0.011	0.004 ± 0.012	0.008 ± 0.010	0.002 ± 0.012	0.004 ± 0.011	0.006 ± 0.010	0.003 ± 0.01				004 0.010	0.001 ± 0.012	0.007 ± 0.010	0.002 ± 0.010	0.002 ± 0.010	0.005 ± 0.010	0.004 ± 0.010	0.003 ± 0.010	0.007 ± 0.010
C12	0.001 ± 0.026	0.010 ± 0.027	0.011 ± 0.027	0.008 ± 0.027	0.010 ± 0.027	0.005 ± 0.026	0.009 ± 0.026	0.009 ± 0.027	0.007 ± 0.026	0.008 ± 0.02				002 0.026	0.001 ± 0.021	0.005 ± 0.027	0.003 ± 0.027	0.001 ± 0.026	0.005 ± 0.027	0.001 ± 0.027	0.003 ± 0.027	0.004 ± 0.027
C13	0.002 ± 0.026	0.011 ± 0.026	0.012 ± 0.026	0.009 ± 0.025	0.011 ± 0.026	0.006 ± 0.026	0.010 ± 0.026	0.010 ± 0.026	0.008 ± 0.025	0.009 ± 0.02				002 0.026	0.001 ± 0.025	0.005 ± 0.026	0.003 ± 0.026	0.001 ± 0.026	0.006 ± 0.026	0.002 ± 0.026	0.003 ± 0.025	0.005 ± 0.026
C14	0.004 ± 0.018	0.017 ± 0.019	0.018 ± 0.019	0.013 ± 0.019	0.016 ± 0.019	0.009 ± 0.019	0.014 ± 0.019	0.015 ± 0.019	0.011 ± 0.019	0.013 ± 0.01				004 0.019	0.002 ± 0.019	0.008 ± 0.019	0.004 ± 0.019	0.002 ± 0.019	0.009 ± 0.019	0.002 ± 0.019	0.005 ± 0.019	0.007 ± 0.019
C15	0.000 ± 0.021	0.003 ± 0.017	0.003 ± 0.017	0.002 ± 0.015	0.003 ± 0.013	0.002 ± 0.016	0.003 ± 0.019	0.003 ± 0.019	0.003 ± 0.018	0.002 ± 0.01				001 0.022	0.001 ± 0.028	0.001 ± 0.022	0.001 ± 0.025	0.001 ± 0.029	0.001 ± 0.025	0.000 ± 0.032	0.000 ± 0.020	0.001 ± 0.032
	OM TE-01	10		1							Page: 1	2 - 4 00									NI	2013 D

FORM TE-013 Page: 13 of 29 Nov. 2013 D

Table 59 -						-								
Color values														
LL1~7		1	LL			3		4		5		<u>6</u>		7
n=	u'	٧'	u'	V'	u'	٧'	u'	٧'	u'	ν'	u'	٧'	u'	٧'
Color1	0.438	0.525	0.438	0.525	0.440	0.526	0.440	0.526	0.440	0.526	0.439	0.525	0.438	0.525
	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021	± 0.019	± 0.021
Color2	0.122	0.567	0.122	0.567	0.121	0.567	0.121	0.567	0.121	0.567	0.122	0.567	0.122	0.567
	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023
Color3	0.186	0.139	0.186	0.142	0.186	0.139	0.186	0.140	0.186	0.140	0.185	0.141	0.185	0.138
	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006	± 0.009	± 0.006
Color4	0.197	0.463	0.197	0.464	0.197	0.464	0.197	0.464	0.197	0.465	0.197	0.466	0.197	0.462
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color5	0.139	0.448	0.139	0.449	0.139	0.449	0.139	0.449	0.139	0.451	0.139	0.451	0.140	0.447
	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.018
Color6	0.304	0.317	0.304	0.319	0.305	0.319	0.304	0.318	0.305	0.320	0.305	0.321	0.301	0.317
	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.013	± 0.013
Color7	0.201	0.557	0.201	0.557	0.200	0.557	0.200	0.557	0.201	0.557	0.201	0.557	0.200	0.557
	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023
Color8	0.195	0.460	0.196	0.462	0.196	0.468	0.196	0.468	0.196	0.467	0.196	0.468	0.196	0.464
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color9	0.424	0.521	0.422	0.521	0.430	0.523	0.432	0.523	0.430	0.521	0.428	0.520	0.433	0.523
	± 0.018	± 0.021	± 0.018	± 0.021	± 0.018	± 0.021	± 0.019	± 0.021	± 0.018	± 0.021	± 0.018	± 0.021	± 0.019	± 0.021
Color10	0.123	0.565	0.124	0.565	0.124	0.566	0.123	0.566	0.123	0.565	0.124	0.565	0.124	0.566
	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023	± 0.006	± 0.023
Color11	0.186	0.159	0.186	0.162	0.184	0.162	0.184	0.159	0.184	0.157	0.183	0.160	0.183	0.154
	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007	± 0.009	± 0.007
Color12	0.194	0.461	0.194	0.463	0.196	0.471	0.195	0.471	0.195	0.469	0.195	0.470	0.195	0.466
	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019	± 0.009	± 0.019
Color13	0.141	0.446	0.141	0.447	0.140	0.456	0.139	0.457	0.139	0.454	0.139	0.456	0.140	0.451
	± 0.007	± 0.018	± 0.007	± 0.018	± 0.007	± 0.019	± 0.007	± 0.019	± 0.007	± 0.019	± 0.007	± 0.019	± 0.007	± 0.018
Color14	0.295	0.315	0.296	0.318	0.303	0.329	0.304	0.329	0.302	0.325	0.302	0.328	0.299	0.321
	± 0.013	± 0.013	± 0.013	± 0.013	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.014	± 0.013	± 0.013
Color15	0.196	0.556	0.196	0.556	0.198	0.558	0.198	0.557	0.197	0.557	0.197	0.556	0.197	0.557
	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023	± 0.009	± 0.023

						ii.			Ħ.				Ē.		#				100	L.	
Co	lor uni	iformit	y resu	lt (Δu',	v'), for	locati	on LL	- conti	nue Ta	able 59	/Color	unifo	mity, [Directi	onal re	quiren	nent .				
n=	LL1-2	LL1-3	LL1-4	LL1-5	LL1-6	LL1-7	LL2-3	LL2-4	LL2-5	LL2-6	LL2-7	LL3-4	LL3-5	LL3-6	LL3-7	LL4-5	LL4-6	LL4-7	LL5-6	LL5-7	LL6-7
C1	0.001	0.002	0.002	0.003	0.001	0.000	0.002	0.002	0.003	0.001	0.000	0.001	0.000	0.001	0.002	0.000	0.002	0.002	0.001	0.002	0.001
	± 0.030	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.028	± 0.028	± 0.027	± 0.029	± 0.028	± 0.027	± 0.027	± 0.027	± 0.027
22	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.000	0.001	0.002	0.000	0.001	0.001	0.001	0.001	0.001
	± 0.017	± 0.027	± 0.025	± 0.024	± 0.032	± 0.021	± 0.024	± 0.022	± 0.021	± 0.018	± 0.025	± 0.028	± 0.031	± 0.027	± 0.024	± 0.026	± 0.024	± 0.023	± 0.023	± 0.022	± 0.022
8	0.003	0.000	0.001	0.001	0.002	0.002	0.003	0.002	0.002	0.001	0.004	0.001	0.002	0.002	0.001	0.001	0.001	0.002	0.001	0.002	0.003
	± 0.009	± 0.009	± 0.010	± 0.009	± 0.010	± 0.011	± 0.009	± 0.009	± 0.009	± 0.010	± 0.009	± 0.009	± 0.009	± 0.009	± 0.011	± 0.009	± 0.009	± 0.010	± 0.010	± 0.009	± 0.009
2	0.001	0.001	0.001	0.002	0.003	0.002	0.000	0.001	0.002	0.002	0.002	0.000	0.001	0.001	0.002	0.002	0.002	0.002	0.001	0.004	0.004
	± 0.027	± 0.026	± 0.025	± 0.027	± 0.027	± 0.025	± 0.013	± 0.021	± 0.027	± 0.027	± 0.026	± 0.026	± 0.027	± 0.027	± 0.026	± 0.027	± 0.027	± 0.027	± 0.021	± 0.027	± 0.027
C5	0.002	0.001	0.001	0.003	0.003	0.002	0.000	0.001	0.002	0.002	0.003	0.000	0.002	0.002	0.002	0.002	0.003	0.003	0.001	0.004	0.005
	± 0.026	± 0.025	± 0.023	± 0.025	± 0.025	± 0.025	± 0.026	± 0.020	± 0.025	± 0.025	± 0.025	± 0.012	± 0.025	± 0.025	± 0.025	± 0.026	± 0.026	± 0.024	± 0.026	± 0.025	± 0.025
95	0.002	0.002	0.001	0.003	0.004	0.002	0.000	0.001	0.002	0.002	0.004	0.001	0.002	0.002	0.004	0.002	0.003	0.003	0.000	0.006	0.006
	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019
C7	0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.000	0.000	0.001	0.001	0.001	0.001
	± 0.016	± 0.028	± 0.028	± 0.032	± 0.032	± 0.028	± 0.026	± 0.027	± 0.030	± 0.031	± 0.026	± 0.024	± 0.020	± 0.022	± 0.032	± 0.018	± 0.021	± 0.032	± 0.025	± 0.031	± 0.029
8	0.001	0.008	0.008	0.007	0.008	0.004	0.006	0.006	0.006	0.006	0.002	0.000	0.001	0.000	0.004	0.001	0.000	0.004	0.001	0.003	0.004
	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.026	± 0.023	± 0.026	± 0.027	± 0.024	± 0.024	± 0.027	± 0.027	± 0.027	± 0.027
හි	0.002	0.007	0.009	0.007	0.005	0.010	0.008	0.011	0.009	0.006	0.011	0.003	0.003	0.004	0.003	0.003	0.005	0.001	0.003	0.003	0.006
	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.030	± 0.029	± 0.026	± 0.029	± 0.028	± 0.027	± 0.027	± 0.028	± 0.027
C10	0.000	0.001	0.002	0.001	0.001	0.001	0.001	0.002	0.001	0.000	0.001	0.000	0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001
	± 0.010	± 0.031	± 0.032	± 0.032	± 0.014	± 0.030	± 0.032	± 0.032	± 0.029	± 0.032	± 0.032	± 0.016	± 0.024	± 0.032	± 0.032	± 0.030	± 0.032	± 0.030	± 0.028	± 0.015	± 0.032
C11	0.003	0.004	0.003	0.004	0.004	0.006	0.002	0.004	0.005	0.003	0.008	0.003	0.005	0.002	0.007	0.002	0.001	0.005	0.003	0.003	0.006
	± 0.010	± 0.011	± 0.012	± 0.012	± 0.012	± 0.011	± 0.012	± 0.011	± 0.010	± 0.012	± 0.010	± 0.010	± 0.010	± 0.011	± 0.010	± 0.010	± 0.010	± 0.010	± 0.010	± 0.010	± 0.010
C12	0.002	0.010	0.010	0.008	0.010	0.005	0.008	0.008	0.007	0.007	0.003	0.000	0.002	0.001	0.005	0.002	0.001	0.005	0.001	0.003	0.004
	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.027	± 0.025	± 0.026	± 0.025	± 0.027	± 0.026	± 0.025	± 0.027	± 0.027	± 0.027	± 0.027
C13	0.002	0.011	0.011	0.009	0.011	0.006	0.009	0.009	0.008	0.008	0.004	0.000	0.002	0.001	0.005	0.002	0.001	0.005	0.001	0.003	0.005
	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.016	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.026	± 0.025	± 0.026
C14	0.003	0.016	0.016	0.012	0.015	0.007	0.013	0.014	0.010	0.012	0.005	0.001	0.004	0.001	0.009	0.004	0.002	0.009	0.003	0.005	0.008
	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019	± 0.019
C15	0.000	0.002	0.003	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.001
	± 0.015	± 0.019	± 0.019	± 0.018	± 0.014	± 0.019	± 0.020	± 0.020	± 0.019	± 0.014	± 0.021	± 0.023	± 0.021	± 0.030	± 0.018	± 0.022	± 0.029	± 0.020	± 0.029	± 0.016	± 0.027
	DM TE O									_											

FORM TE-013 Page: 14 of 29 Nov. 2013 D

Test Report

Compliance assessment

Table 62 Contrast non-uniformity

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use

a) Lateral non-uniformity criterion

For an intended uniform appearance, the contrast nonuniformity, CRnon-uniformity = 1 - CRmin/CRmax, shall not exceed 50 %, where CR is the luminance contrast.

b) Directional non-uniformity criterion

The visual display shall have sufficient contrast uniformity over all relevant viewing directions (see design viewing direction).

- 1) The luminance contrast, CR, shall exceed the limit CRmin.
- 2) There shall be no contrast inversion.

Measuring method: ISO 9241-305, P18.5

Refer to following Tables for Lateral and Directional measurement result. Assessment and reporting

					First recognision of		STEELSTEIN,			
	Lateral cont	rast nor	า-unifor	mity eva	aluation				Result	PASS
	Location	11	22	33	44	55	66	77	88	99
P	I = voc	225.0	252.2	255.2	256.7	254.7	239.4	228.4	228.6	210.0
	LEs,HS(n)	± 11.1	± 12.4	± 12.6	± 12.7	± 12.6	± 11.8	± 11.3	± 11.3	± 10.4
	1 = 1 = 1	4.9	4.8	4.8	4.8	4.7	4.8	4.7	4.8	4.9
	LEs,LS(n)	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4
H	CR _{Es(n)}	46.3	52.2	53.5	54.0	53.8	50.4	48.2	47.7	43.3
	CRES(n)	± 4.4	± 4.9	± 5.1	± 5.1	± 5.1	± 4.8	± 4.6	± 4.5	± 4.1
	CRmin	3.9	3.9	4.0	4.0	4.0	4.0	4.0	3.9	3.9
	CINMIN	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1
	CR _{max}	5 4.0	CD	niformity	53.2%					4
	CKmax	± 5.1	CKur	niformity	± 16.7%			ä		
	CRmin	43 .3	CP	uniformity	46.8%		i i	4		
	OT \min	1.4.4	∪ I\non	unitormity	+ 16 70/	100-001-001-001-001-	96			

***************************************			7101101101101	101101101101101	10110011011011
Directional luminance	contrast			Result	PASS
Refer to Table 72-Lumir	nance contrast for m	easurement data	ıs		

Table 62 Geometric distortions PASS/FAIL/(N/A:not applicable)/*(with comments) N/A

Table 62 Screen and faceplate defects

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

The visual display should be in the fault class, Classpixel 0. If not in Classpixel 0, the supplier shall specify the Classpixel of the visual display in accordance with Table 63.

The pixel fault class which specified by supplier: CLASS I The multiplier, n_{ClassPixel} specified by supplier:

*Evaluation method is not specified in ISO 9241-305 M 21.6 yet.

*Screen and faceplate defects were verified by visual inspection.

Measuring method: ISO 9241-305 M 21.6 Refer to Table 63 Assessment and reporting

Compliance assessment

Table 63 - Pixel fault classifications, fault pixels criterion (per million for size >9.1 inch)						
Pixel fault class	Type 1	Type 2	Тур	Type 3		Cluster fault
Class _{Pixel} (n)	Type i	Type 2	71		Type1/Type2	Type 3
ClassPixel0	0	0	0	0	0	0
Class	2	2	5	2	0	0
Class _{Pixel} l (for type 3 = 5PSU)	2	2	2	7	0	0
(101 type 3 = 5F30)	2	2	0	12	0	0
ClassII	5	5	12	0	0	2
ClassPixelII	5	5	12	0	0	2
(for type 3 = 10PSU)	5	5	0	23	0	2
Class-, III	12	35	115	0	0	12
Class _{Pixel} III (for type 3 = 100PSU)	12	35	115	0	0	12
(101 type 3 = 100P30)	12	35	0	230	0	12
Class IV	115	346	1152	0	12	115
ClassPixelIV	115	346	1152	0	12	115
(for type 3 = 1000PSU)	115	346	0	2304	12	115
100.1						

	Table 63 Observation result for Pixel fault class						
	Pixel fault class	Type 1	Type 2	Тур	e 3	Cluster fault	Cluster fault
	Class _{Pixel} (n)	Type I	Type 2	Stuck high Stuck low		Type1/Type2	Type 3
3	CLASS I	0	0	2	1	0	0

		His HIH		
Table 64 Temporal instabi	lity (Flicker)	PASS/FAIL	./(N/A:not applicable)/	(with comments)
Pass/Fail criterion based or	requirements and intende	ed context of use.		PASS
The entire image area shall	be free of flicker to at least	st 90% of the user	population.	1
Measuring method:	ISO 9241-305, P15.3			***
Assessment and reporting	Refer to following measure	ement datas.		

L _t cd/m ²	248.6
A mm ²	5.14
DC	1278

	Base						
	Repetition	Frequency	Frequency	Frequency			
	Freq. (Hz)	2 (Hz)	3 (Hz)	4 (Hz)			
	30.0	60.0	90.0	120.0			
AMP	0.00009	0.00016	0.00016	0.00014			
E _{obs}	0.1	0.2	0.2	0.2			
E _{pred}	19	684	25108	921666			

Table 64 Spatial instability (Jitt	er)	PASS/FAIL/(N/A:not applicable)/*(with comments)	N/A

Table 64 Moire effects		PASS/FAIL/(N/A:not applicable)/*(with cor	nmente)	
		, , ,	,	
Pass/Fail criterion based on	requirements and intended conte	ext of use.	PASS	
For colour displays, the entire	For colour displays, the entire image area shall be free of moire patterns to enable the user to perform the			
task in an effective and effici-	ent way.			
Measuring method:	ISO 9241-305			
Assessment and reporting	Refer to following visual inspection	result.		
Display on the entire image area horizontal and vertical bars with maximum resolution as well as a pixel checker board				
and observe the screen for moire patterns.				
Visual inspection result: M	oire effect didn't found from horizonta	al and vertical bars with checker board patt	ern.	

Compliance assessment

Table 64 Other visual artefa		PASS/FAIL/(N/A:not applicable)/*(with comme	nts)		
Pass/Fail criterion based on requirements and intended context of use. PASS					
The entire image area shall b	e free of other visual artefacts to	enable the user to perform the task in an			
effective and efficient way.					
Measuring method:	ISO 9241-305				
Assessment and reporting Refer to following visual inspection result.					
Display on the entire image area horizontal and vertical bars with maximum resolution as well as a pixel					
checker board and observe the screen for moire patterns.					
Visual inspection result: Other visual artefacts didn't found with visual inspection.					

Table 64 Unwanted reflections

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

PASS

The type of artificial information shown on the visual display shall fulfil the following requirements.

The visual display shall be suitable for the intended environment. Over all relevant viewing directions (see design viewing direction), the following requirements shall be fulfilled:

$$\frac{1)}{L_H + L_D + L_S} \ge 2.2 + 4.84 * (L_L + L_D + L_S)^{-0.65}$$

2) For visual display using positive polarity

$$\frac{L_{H} + L_{D} + L_{S}}{L_{H} + L_{D}} \le 1.25$$

3) For visual display using negative polarity

$$\frac{L_L + L_D + L_S}{L_L + L_D} \le 1.2 + \frac{1}{15} * \frac{L_H + L_D}{L_L + L_D}$$

Classification of illumination condition						
Classification	Extended	AND/OR Small				
	Light source	AND/OR	Light source			
Class I++	500	N/A				
Class I+	300	IN/A				
Class I	200	AND	2000			
Class II	200	OR	2000			
Class III	125	OR	200			

Note:

- The classification definition used to indicate the illumination condition, and Class I, Class II and Class III are same as ISO 13406-2.
- Reflection class"+" and "++" (not defined by 9241-307) is given for the more strict illumination condition $L_{\text{REF},\text{EXT}}$ =300 and 500.

Measuring method:	ISO 9241-305 P16.3
Assessment and reporting	See result summarization table, and Table 66 for detail measurement data.

Reflection result summarization	Class I++	Class I+	Class I	Class II	Class III	levels
Contrast in the presence of reflections	PASS	PASS	PASS	PASS	PASS	Class I++
Contrast of unwanted reflections, Positive	PASS	PASS	PASS	PASS	PASS	Class I++
Contrast of unwanted reflections, Negative	FAIL	FAIL	PASS	PASS	PASS	Class I

Reflection class_Test Result	Class I
Reflection class_Product Specification	Class I
Reflection class_Final Result	PASS

Table 66 measurement data for unwanted reflections

Contrast ir	Contrast in the presence of reflections $\frac{L_H + L_D + L_S}{L_L + L_D + L_S} \ge 2.2 + 4.84 * (L_L + L_D + L_S)^{-0.65}$												
Direction	CL-1S	CL-2S	CL-3S	CL-4S	CL-5S	CL-6S	2	CL-1S	CL-2S	CL-3S	CL-4S	CL-5S	CL-6S
Ref_Light		Per	formanc	e evalua	ation		VI		С	riterion e	evaluatio	n	
EXT	9.9	9.7	9.0	8.8	8.8	8.7	IV	2.9	2.8	2.8	2.8	2.8	2.8
Class 0a	± 1.5	± 1.3	± 1.4	± 1.4	± 1.3	± 1.3	d	± 0.4	± 0.4	± 0.4	± 0.3	± 0.3	± 0.3
EXT	15.7	15.3	14.3	13.9	13.8	13.7	٧	3.1	3.1	3.1	3.0	3.1	3.0
Class 0b	± 2.4	± 2.0	± 2.2	± 2.2	± 2.0	± 2.1	VI	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4	± 0.4
EXT	22.7	22.1	20.7	20.1	20.1	19.7	1	3.3	3.3	3.3	3.3	3.3	3.3
Class I	± 3.4	± 2.9	± 3.2	± 3.1	± 2.9	± 3.0	ΛΙ	± 0.5	± 0.4	± 0.5	± 0.4	± 0.4	± 0.4
SML	228.0	216.4	201.8	256.8	218.1	173.8	1	7.0	6.8	6.8	7.6	7.1	6.5
Class I	± 51.9	± 47.9	± 42.5	± 67.2	± 49.7	± 32.9	4	± 1.4	± 1.4	± 1.4	± 1.6	± 1.5	± 1.2
EXT	34.6	33.5	31.7	31.0	30.9	30.3	N	3.6	3.6	3.6	3.6	3.6	3.6
Class III	± 5.1	± 4.3	± 4.9	± 4.8	± 4.5	± 4.5	VI .	± 0.5	± 0.5	± 0.5	± 0.5	± 0.5	± 0.5
SML	382.4	320.7	424.4	484.4	474.5	390.3	IV	8.9	8.2	9.7	10.3	10.3	9.4
Class III	± 142.5	± 103.1	± 181.3	± 233.9	± 227.8	± 158.2	VI.	± 2.3	± 1.9	± 2.7	± 3.2	± 3.2	± 2.6

	L					9	шц						
Contrast o		ted refle	ections		$\frac{L_H + L}{L_H} -$	$+L_S$	≤ 1	1.25					
Direction	CL-1S	CL-2S	CL-3S	CL-4S	CL-5S	CL-6S	\geq	CL-1S	CL-2S	CL-3S	CL-4S	CL-5S	CL-6S
Ref_Light		Per	formanc	e evalua	ition		≤		С	riterion e	evaluatio	on	
EXT	1.1	1.1	1.1	1.1	₫ 1.1 🥞	1.1	IA	1.25	1.25	1.25	1.25	1.25	1.25
Class 0a	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	_					The same of the sa	
EXT	1.1	1.1	1.1	1.1	1.1	1.1	۸	1.25	1.25	1.25	1.25	1.25	1.25
Class 0b	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1				7		1	A.
EXT	1.0	1.0	1.0	1.0	1.0	1.0	1	1.25	1.25	1.25	1.25	1.25	1.25
Class I	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	4		A	W			₽
SML	1.0	1.0	1.0	1.0	1.0	1.0	>	1.25	1.25	1.25	1.25	1.25	1.25
Class I	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	_		A				
EXT	1.0	1.0	1.0	1.0	1.0	1.0	<	1.25	1.25	1.25	1.25	1.25	1.25
Class III	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	_						
SML	1.0	1.0	1.0	1.0	1.0	1.0		1.25	1.25	1.25	1.25	1.25	1.25
Class III	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1		Harry Control					

Contrast o Negative p		ted refle	ections		$\frac{L_L +}{L_L}$	$\frac{L_D + L_S}{+ L_D}$	≤1	$1.2 + \frac{1}{15}$	$\frac{L_H + L_I}{L_L + L_I}$	$\frac{-L_D}{-L_D}$			
Direction	CL-1S	CL-2S	CL-3S	CL-4S	CL-5S	CL-6S	≥	CL-1S	CL-2S	CL-3S	CL-4S	CL-5S	CL-6S
Ref_Light	t Performance evaluation				≤		С	riterion e	evaluatio	n			
EXT	46.0	38.5	59.8	68.5	69.9	58.7		28.8	23.8	33.5	37.0	37.6	31.4
Class 0a	± 19.5	± 13.7	± 30.2	± 37.9	± 39.6	± 28.7	_	± 11.1	± 7.7	± 15.7	± 19.2	± 20.1	± 14.2
EXT	28.0	23.5	36.3	41.5	42.3	35.6	N	28.8	23.8	33.5	37.0	37.6	31.4
Class 0b	± 11.9	± 8.4	± 18.3	± 23.0	± 24.0	± 17.4	_	± 11.1	± 7.7	± 15.7	± 19.2	± 20.1	± 14.2
EXT	19.0	16.0	24.5	28.0	28.6	24.1	1	28.8	23.8	33.5	37.0	37.6	31.4
Class I	± 8.0	± 5.7	± 12.4	± 15.5	± 16.2	± 11.8	≤	± 11.1	± 7.7	± 15.7	± 19.2	± 20.1	± 14.2
SML	1.8	1.6	2.4	2.1	2.5	2.6	1	28.8	23.8	33.5	37.0	37.6	31.4
Class I	± 0.8	± 0.6	± 1.3	± 1.2	± 1.5	± 1.3	≤	± 11.1	± 7.7	± 15.7	± 19.2	± 20.1	± 14.2
EXT	12.3	10.4	15.7	17.9	18.2	15.4	1	28.8	23.8	33.5	37.0	37.6	31.4
Class III	± 5.2	± 3.7	± 7.9	± 9.9	± 10.3	± 7.5	≤	± 11.1	± 7.7	± 15.7	± 19.2	± 20.1	± 14.2
SML	1.1	1.1	1.1	1.1	1.2	1.2	^	28.8	23.8	33.5	37.0	37.6	31.4
Class III	± 0.6	± 0.5	± 0.7	± 0.8	± 0.8	± 0.7	_	± 11.1	± 7.7	± 15.7	± 19.2	± 20.1	± 14.2

Compliance assessment

Table 70 Luminance contrast

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

PASS

Depending on the type of information shown, the visual display shall fulfil the following requirements.

The visual display shall be suitable for the intended environment, Over all relevant viewing directions (see design viewing direction), the following requirements shall be fulfilled:

$$\frac{L_H + L_D}{L_L + L_D} \ge 2.2 + 4.84 * (L_L + L_D)^{-0.65}$$

Measuring method:	ISO 9241-305, P18.2, P18.2a
Assessment and reporting	Refer to Table 72

Table 72 Directional luminance contrast									
Location	M/D(n)	M/D_1	M/D_2	M/D_3	M/D_4	M/D_5	M/D_6	M/D_7	
	LEs,HS(n)	236.7 ± 12.5	237.5 ± 12.5	208.9 ± 11.0	210.2 ± 11.1	209.6 ± 11.1	207.9 ± 11.0	248.6 ± 13.1	
	LEs,LS(n)	0.9 ± 0.3	1.0 ± 0.3	0.6 ± 0.3	0.5 ± 0.3	0.5 ± 0.3	0.6 ± 0.3	0.6 ± 0.3	
CL	CR _{Es(n)}	252.0 ± 83.9	231.6 ± 73.5	367.2 ± 180.4	385.6 ± 199.3	418.6 ± 232.7	333.5 ± 155.6	386.5 ± 184.7	
	CR _{min(n)}	7.2 ± 0.3	7.0 ± 0.3	9.2 ± 0.6	9.4 ± 0.7	9.8 ± 0.8	8.8 ± 0.6	8.6 ± 0.6	
	Result	PASS							
	LEs,HS(n)	238.8 ± 21.1	239.5 ± 21.1	210.7 ± 18.6	212.0 ± 18.7	211.4 ± 18.7	209.7 ± 18.5	250.7 ± 22.1	
	LEs,LS(n)	1.0 ± 0.8	1.0 ± 0.9	0.6 ± 0.4	0.6 ± 0.4	0.5 ± 0.4	0.6 ± 0.5	0.6 ± 0.4	
HL	CR _{Es(n)}	249.1 ± 215.2	228.8 ± 201.3	365.2 ± 273.7	384.2 ± 272.3	417.9 ± 291.6	331.4 ± 247.9	387.2 ± 214.9	
	CR _{min(n)}	7.2 ± 0.1	6.9 ± 0.1	9.1 ± 0.1	9.3 ± 0.1	9.7 ± 0.1	8.7 ± 0.1	8.6 ± 0.1	
	Result	PASS							
	LEs,HS(n)	187.6 ± 16.8	188.2 ± 16.8	165.6 ± 14.8	166.7 ± 14.9	166.1 ± 14.8	164.9 ± 14.7	197.1 ± 17.5	
	LEs,LS(n)	0.9 ± 0.8	1.0 ± 0.9	0.5 ± 0.4	0.5 ± 0.4	0.5 ± 0.3	0.6 ± 0.4	0.6 ± 0.3	
LL	CR _{Es(n)}	213.0 ± 17.6	196.2 ± 17.8	304.4 ± 15.2	317.4 ± 15.3	342.7 ± 15.2	276.9 ± 15.2	312.8 ± 17.8	
	CR _{min(n)}	7.5 ± 1.9	7.2 ± 2.3	9.4 ± 0.5	9.6 ± 0.4	9.9 ± 0.3	9.0 ± 0.6	8.7 ± 0.3	
	Result	PASS							

Table 75 Image polarity		PASS/FAIL/(N/A:not applicable)/*(with comments)					
Pass/Fail criterion based on requirements and intended context of use. PASS							
Depending on the type of information shown, the visual display shall fulfil the following requirement. a) Artificial information If the display provides positive and negative polarity, it shall meet all requirements of this compliance route for each image polarity.							
Measuring method :	Not applicable.						
Assessment and reporting	Check requirements for unwanted regative polarity.	eflection and character attributes for positi	ve and				
	Image polarity used in display: Both						
Image polarity evaluated:	Both						

Compliance assessment

Table 75 Character height PASS/FAIL/(N/A:not applicable)/*(with comments)
Pass/Fail criterion based on requirements and intended context of use.

PASS

Depending on the type of information shown, the visual display shall fulfil the following requirements.

a) Artificial information

For Latin-origin characters, the minimum character height shall be 16' of arc at the design viewing distance. The preferred character height is 20' to 22' of arc.

Measuring method : ISO 9241-305, P20.5
Assessment and reporting Refer to following

Measure the character height in millimeters and calculate the character height in minutes of arc at the design viewing distance. Report the resulting value for passed or failed.

Report the font used as well as the number of pixels, NH,Height, in the height of an unaccented, uppercase letter H. Evaluate the default mode and report the character height in millimeters, character height in minutes of arc, the font used and the character height number, NH,Height.

Character Height $(\psi) = \frac{180x60xV_{pitch}xN_{H,Height}}{\pi xDview}$ Font type: Vpitch = NH,Height = Dview =

 Vpitch =
 0.270 mm/pixel

 NH, Height =
 12 pixels

 Dview =
 500.0 mm

 Chr (Ψ) =
 22.3'

Large Arial 10

Table 75 Text size constancy PASS/FAIL/(N/A:not applicable)/*(with comments) N/A

Table 75 Character stroke width

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

PASS

Depending on the type of information shown, the visual display shall fulfil the following requirement.

a) Artificial information

for Latin-origin characters, the stroke width shall be within the range of 10% to 17% of character height.

Measuring method: ISO 9241-305, P20.7

Assessment and reporting Evaluate the character matrix and calculate the character stroke width.

 $10\%xN_{H,Height} \le \frac{N_{H,hz_stroke} + N_{H,vt_stroke}}{2} \le 17\%xN_{H,Height}$ Average of stroke width (mm)= 0.54 mm

 $A \le A$ *verage of Stroke Width* $\le B$

Table 75 character width to height ratio

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements and intended context of use.

Pass/Fall criterion based on requirements.

Pass/Fall criterion based on requirement

Compliance assessment

Table 75 Character format		PASS/FAIL/(N/A:not applicable)/*(with comments)				
Pass/Fail criterion based on requirements and intended context of use.						
Depending on the type of information shown, the visual display shall fulfil the following requirement.						
Measuring method:	ISO 9241-305					
Assessment and reporting Evaluate the character matrix and information (width to width) below.						
			·			

- 1) For Latin-origin characters, the minimum character matrix for continuous reading is 7×9 .
- 2) For Latin-origin characters, the minimum character matrix for numeric and upper-case-only presentations is 5 × 7.
- 3) For Latin-origin characters, the character matrix shall be increased upwards by at least two pixels if diacritics are used.
- 4) If lower case is used with Latin-origin characters, the character matrix shall be increased downwards by at least two pixels.
- 5) For Latin-origin characters and for higher density character matrices, the number of pixels used for diacritics should follow conventional designs for printed text.
- 6) For Latin-origin characters, a 4×5 character matrix shall be the minimum used for subscripts and superscripts, and for numerators and denominators of fractions displayed in a single character position.
- 7) For Latin-origin characters, the 4 × 5 matrix may also be used for alphanumeric information not related to the operator's task, such as copyright information.
- 8) For Japanese characters, a minimum matrix of 11 × 11 elements is recommended, whereas a matrix of 15 × 15 elements is preferred.

Font type used during evaluation: Large Arial 10
Resolution: 1920x1200
Character matrix: 12x9

	THE STATE OF THE S	70.00.000	THE STATE OF THE S		-	
Table 75 Between-charact	er spacing		PASS/FAII	_/(N/A:not applicat	ole)/*(with co	mments)
Pass/Fail criterion based or	requirements and int	tended conte	ext of use.			PASS
Depending on the type of in a) Artificial information The minimum between					equirement.	
Measuring method:	ISO 9241-305, P20.12	2		7 / /		Her.
Assessment and reporting	Evaluate the characte	er matrix and re	eport the be	etween-character :	spacing.	
The spacing between-ch	aracter is: 2 pixels					

Table 75 Between-word spacing PASS/FAIL/(N/A:not applicable)/*(with comments)							
Pass/Fail criterion based on	requirements and intended conte	ext of use.	PASS				
Depending on the type of information shown, the visual display shall fulfil the following requirement. a) Artificial information The minimum number of pixels between words shall be the number of pixels in the width of an unaccented uppercase letter H. The number of pixels in the width of the letter N shall be used for proportionally spaced fonts.							
Measuring method:	ISO 9241-305, P20.13						
Assessment and reporting	Evaluate the character matrix and r	eport the between-character spacing.					
The spacing between-word is: 6 pixels							

Table 75 Between-line spacing PASS/FAIL/(N/A:not applicable)/*(with comments)						
Pass/Fail criterion based on requirements and intended context of use. PASS						
Depending on the type of information shown, the visual display shall fulfil the following requirement.						
a) Artificial information						
For tasks that require cont	tinuous reading of text, a minimum o	of one pixel shall be used for spacing betwe	en lines of			
text. This area shall not co	ontain parts of characters or diacritic	s, but may contain underscores.				
Measuring method:	ISO 9241-305, P20.14					
Assessment and reporting Evaluate the character matrix and report the between-character spacing.						
The spacing between-word is: 1 pixels						

Compliance assessment

Table 76 Luminance coding PASS/FAIL/(N/A:ne

PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

PASS

Depending on the type of information shown, the visual display shall fulfil the following requirement.

a) Artificial information

Over all relevant viewing directions (see design viewing direction), the ratio between area-luminances of adjacent levels of a single area shall exceed 1.5:1 under ambient illumination.

Measuring method: ISO 9241-305, P17.6

Assessment and reporting Refer to table 78(information below)

Table 78- Assessment and reporting for luminance coding							
Ratio Requirement PASS/							
L2/L1	2.49 ±0.19	≥ 1.5	PASS				
L3/L2	1.94 ±0.15	≥ 1.5	PASS				

^{*}Absolute luminance coding only suitable apply for design viewing direction.

Fable 79 Blink coding PASS/FAIL/(N/A:not applicable)/*(with cor								
Pass/Fail criterion based on requirements and intended context of use. N/A								
Depending on the type of information shown, the visual display should meet the following recommendations.								
Measuring method:	ISO 9241-305, P15.5							
Assessment and reporting	Applicable only in software applicat	ions.						

	81181		313			
Table 79 Color coding		PASS/FAIL/(N/A:not applic	able)/*(with comments)			
Pass/Fail criterion based on requirements and intended context of use.						
Depending on the type of information shown, the visual display shall fulfil the following requirement.						
a) Artificial information	a) Artificial information					
Over all relevant viewing of	Over all relevant viewing directions (see design viewing direction), coded colours shall have a minimum					
colour difference of $\Delta E^*uv \geq 20$ under ambient illumination.						
Measuring method:	ISO 9241-305, P19.4, P19.	4a				
Assessment and reporting	Refer to Table 80					

Table80	- Assessment a	and reporting for	colour coding			
Color n=	YEs,colour-n(CL-7)	U' Es, colour-n(CL-7)	V'Es,colour-n(CL-7)	L*Es,colour-n(CL-7)	U* Es, colour-n(CL-7)	V*Es,colour-n(CL-7)
0	0.7 ±0.2	-	-	2.4 ±0.9	-	-
1	55.3 ±2.9	0.437 ±0.028	0.525 ±0.005	53.9 ±1.7	167.8 ±21.6	45.9 ±13.7
2	178.8 ±9.0	0.122 ±0.008	0.566 ±0.002	87.4 ±2.4	-86.0 ±14.5	121.5 ±21.8
3	17.6 ±1.1	0.187 ±0.012	0.139 ±0.008	31.8 ±1.2	-4.5 ±6.2	-132.3 ±9.9
4	250.0 ±12.5	0.198 ±0.012	0.459 ±0.007	99.6 ±2.7	0.1 ±19.9	0.0 ±26.0
5	195.7 ±9.8	0.140 ±0.009	0.444 ±0.008	90.5 ±2.5	-67.2 ±15.2	-18.5 ±23.9
6	72.4 ±3.8	0.301 ±0.017	0.313 ±0.010	60.5 ±1.8	81.1 ±15.7	-114.8 ±17.1
7	233.3 ±11.7	0.201 ±0.013	0.556 ±0.003	97.0 ±2.7	4.1 ±20.6	122.3 ±24.2
8	128.8 ±6.5	0.196 ±0.012	0.462 ±0.007	76.7 ±2.2	-1.0 ±15.4	2.5 ±20.0
9	10.9 ±0.7	0.426 ±0.034	0.520 ±0.006	24.7 ±1.1	73.4 ±11.7	19.6 ±6.4
10	36.5 ±2.0	0.123 ±0.010	0.565 ±0.002	44.9 ±1.5	-43.2 ±7.9	61.7 ±11.3
11	4.0 ±0.4	0.184 ±0.014	0.156 ±0.013	13.1 ±1.0	-2.4 ±2.9	-51.7 ±5.7
12	51.8 ±2.7	0.195 ±0.013	0.464 ±0.007	52.4 ±1.6	-2.0 ±10.8	2.9 ±13.7
13	40.2 ±2.2	0.140 ±0.010	0.448 ±0.008	46.8 ±1.5	-34.7 ±8.3	-7.0 ±12.5
14	14.7 ±0.9	0.297 ±0.019	0.320 ±0.012	29.0 ±1.2	37.5 ±8.2	-52.7 ±8.6
15	47.7 ±2.5	0.197 ±0.014	0.556 ±0.003	50.5 ±1.6	-0.5 ±11.1	63.7 ±12.7

Test Report Compliance assessment

Calculat	te del	ta E*	uv for	all co	olour i	nairs				Min.	Δu'v':		23.1	± 5.1		1
Color n=		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1																
2		266.9 ± 25.8														
3		248.8 ± 19.7	272.3 ± 22.8													
4		179.7 ± 28.4	149.4 ± 31.0	148.8 ± 24.8		_										
5		246.4 ± 26.2	141.2 ± 32.2	142.6 ± 21.9	70.4 ± 25.7											
6		182.6 ± 23.1	290.6 ± 25.6	92.0 ± 16.2	145.8 ± 28.3	179.4 ± 24.0						h.				
7		185.7 ± 28.7	90.6 ± 25.0	263.0 ± 25.3	122.4 ± 35.5	158.0 ± 32.4	251.9 ± 29.0	e Cappani	_		***************************************					
8		175.7 ± 26.2	146.6 ± 26.9	142.2 ± 21.2	23.1 ± 5.1	70.9 ± 22.3	144.1 ± 24.8	121.6 ± 30.9		21121	•	···	L	h.		
9		102.3 ± 23.0	199.3 ± 18.9	170.8 ± 12.1	106.6 ± 16.7	159.8 ± 17.9	139.2 ± 17.7	143.4 ± 21.3	92.3 ± 16.1				1			
10		211.7 ± 23.0	85.0 ± 19.2	198.2 ± 14.8	93.1 ± 21.3	95.3 ± 22.7	216.4 ± 19.5	92.8 ± 20.8	79.3 ± 19.5	125.5 ± 13.8						
11		200.3 ± 19.9	206.2 ± 19.8	82.7 ± 11.1	100.8 ± 13.9	106.3 ± 12.3	114.8 ± 15.3	193.3 ± 22.4	83.6 ± 13.6	104.6 ± 10.5	124.6 ± 11.8		_		1	Contraction of the Contraction o
12		175.1 ± 23.9	149.5 ± 22.8	136.8 ± 16.7	47.4 ± 3.8	78.5 ± 17.3	144.3 ± 21.0	127.6 ± 26.1	24.3 ± 2.9	82.0 ± 14.9	72.2 ± 16.4	67.3 ± 12.1				AND REPORT OF THE PARTY OF THE
13		209.4 ± 22.8	144.1 ± 23.1	129.8 ± 15.6	63.6 ± 12.5	55.7 ± 11.8	158.8 ± 19.3	144.0 ± 25.2	46.0 ± 13.8	113.5 ± 14.0	69.2 ± 16.7	64.7 ± 10.5	34.6 ± 13.9	,		
14		165.2 ± 20.6	221.4 ± 20.6	90.1 ± 12.5	95.7 ± 17.4	126.2 ± 16.0	82.1 ± 17.3	190.7 ± 23.9	82.5 ± 16.8	80.8 ± 11.5	140.9 ± 13.2	42.9 ± 8.1	72.1 ± 14.5	87.3 ± 12.5		
15		169.3 ± 24.2	109.6 ± 19.5	197.0 ± 16.0	80.4 ± 23.0	113.1 ± 22.6	196.5 ± 20.9	74.9 ± 21.5	66.5 ± 21.8	89.9 ± 15.0	43.0 ± 13.6	121.4 ± 13.2	60.8 ± 18.7	78.6 ± 17.1	124.3 ± 14.9	

Table 81 Geometrical coding PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

N/A

Depending on the type of information shown, the visual display should meet the following recommendation. a) Artificial information

Geometrical coding is a particular type of graphical coding. The distinction of different classes of information in a graph may be facilitated by the use of different geometrical shapes, such as triangles or circles. These shapes should be easy to distinguish, which means that their number should be limited.

Measuring method : Not applicable

Assessment and reporting Applicable only in software applications.

Table 82 Monochrome and multicolour object size PASS/FAIL/(N/A:not applicable)/*(with comments)
Pass/Fail criterion based on requirements and intended context of use.

N/A

Depending on the type of information shown, the visual display should meet the following requirements.

- a) Artificial information
 - 1) Critical details, such as symbols or text within the icon, should have a minimum height of 20 ´ of arc. Heights subtending 25'of arc to 35'of arc are preferred.
 - 2) For graphical objects and other small objects where legibility is the primary concern, refer to luminance contrast.
 - 3) For isolated images where accurate colour identification is required, the image shall subtend 30'of arc; 45'of arc is preferred.

Measuring method:

See character height, luminance contrast.

Assessment and reporting

Applicable only in software applications.

Compliance assessment

Fable 82 Contrast for object legibility PASS/FAIL/(N/A:not applicable)/*(with comments)						
Pass/Fail criterion based on requirements and intended context of use. N/A						
Depending on the type of information shown, the visual display should meet the following requirements. a) Artificial information						
Where accurate identification of an isolated, multicolour image (e.g. a single character or a symbol) is required, the same conditions for display luminance and luminance contrast shall apply.						
Measuring method : See display luminance, luminance contrast.						
Assessment and reporting Applicable only in software applications.						

Table 82 colour consideration	ons for graphics	PASS/FAIL/(N/A:not applicable)/*(v	vith comments)			
Pass/Fail criterion based on	Pass/Fail criterion based on requirements and intended context of use. N/A					
Depending on the type of info	Depending on the type of information shown, the visual display should meet the following recommendation.					
a) Artificial information	a) Artificial information					
1) Where accurate colour ide	1) Where accurate colour identification of characters or symbols is required, the minimum size of them shall be at least					
20' of arc at the design viewir	ig distance.					
When an application requi	es the user to discriminate	e or identify colours, it shall offer a default set	of colours.			
3) Colour pairs that are to be	discriminated shall have va	alues of *∆Euv > 20.				
	4) Negative polarity, Spectrally extreme blue (v' < 0,2) on a dark background shall not be used. Spectrally extreme red					
(u' > 0,4) shall not be used on a spectrally extreme blue (v' < 0,2) background.						
5) Positive polarity, Spectrally extreme blue (v' < 0,2) shall not be used on a spectrally extreme red (u' > 0,4)						
background. Spectrally extreme red (u' >0,4) shall not be used on a spectrally extreme blue (v' < 0,2) background.						
Measuring method :	See character height, colo	our coding. ISO 9241-305, 19.1				
Assessment and reporting	Applicable only in software	e applications.				

Table 82 Background and s	surrounding image effects	PASS/FAIL/(N/A:not applical	ble)/*(with comments)			
Pass/Fail criterion based on requirements and intended context of use.						
Depending on the type of information shown, the visual display should meet the following requirements.						
a) Artificial information						
To better discriminate and ide	To better discriminate and identify colours, systems and applications should use an achromatic background behind					
chromatic foreground image colours or achromatic foreground image colours on chromatic backgrounds.						
Measuring method:	Not applicable.					
Assessment and reporting	Applicable only in software ap	pplications.				

Table 82 Number of colours	3	PASS/FAIL/(N/A:not applicable)/*(with cor	nments)			
Pass/Fail criterion based on requirements and intended context of use. N/A						
Depending on the type of information shown, the visual display should meet the following requirements.						
a) Artificial information						
Simultaneous colour prese	1) Simultaneous colour presentation: for accurate identification, the default colour set(s) for colour coding should					
consist of no more than eleve	consist of no more than eleven colours for each set.					
2) Visual search for colour	images: when a rapid visual se	arch based on colour discrimination is	required,			
	no more than six colours should be used.					
3) Colour interpretation from memory: if the meaning of each colour of a set of colours is to be recalled						
from memory, no more than six colours should be used.						
Measuring method:	Not applicable.					
Assessment and reporting Applicable only in software applications.						

Compliance assessment

Table 83 Colour gamut and reference white PASS/FAIL/(N/A:not applicable)/*(with comments)
Pass/Fail criterion based on requirements and intended context of use.

PASS

Depending on the type of information shown, the visual display should meet the following requirements. a) Artificial information

- 1) Colour gamut: Over all relevant viewing directions (see design viewing direction), the chromaticity diagram area under ambient illumination shall exceed a minimum of 5 % of the total area of the CIE 1976 UCS chromaticity diagram, centred about the chromaticity of the reference white.
- 2) Reference white: A reference white shall be displayable on the visual display with a maximum deviation of the correlated colour temperature of \pm 500 K. Preferred correlated colour temperatures are e.g.5 000 K, 5 500 K, 6 500 K, 7 500 K and/or 9 300 K.
- 3) The reference white shall be adjustable by the user.

,	,
Measuring method:	ISO 9241-305, P19.7, P19.15
Assessment and reporting	Refer to Table 84 a) 1), Table 84 a) 2), a) 3)

		411		1000
		gamut under ambi	ent illuminant	Result
conditio	n (ln %)		PASS	
CLn	R/G/B Es	S U'Es	V 'Es	Gamut
	R_Es	0.437 ±0.029	0.525 ±0.005	
CL1	G_Es	0.121 ±0.008	0.567 ±0.002	34.1 ± 3.3
	B_Es	0.187 ±0.012	0.138 ±0.008	
	R_Es	0.437 ±0.028	0.525 ±0.005	
CL2	G_Es	0.121 ±0.008	0.567 ±0.002	34.0 ± 3.3
	B_Es	0.187 ±0.012	0.139 ±0.008	
	R_Es	0.440 ±0.029	0.526 ±0.005	
CL3	G_Es	0.121 ±0.008	0.567 ±0.002	34.5 ± 3.4
	B_Es	0.187 ±0.012	0.137 ±0.008	
	R_Es	0.439 ±0.029	0.525 ±0.005	
CL4	G_Es	0.121 ±0.008	0.567 ±0.002	34.5 ± 3.4
	B_Es	0.187 ±0.012	0.137 ±0.008	
	R_Es	0.439 ±0.029	0.525 ±0.005	
CL5	G_Es	0.121 ±0.008	0.567 ±0.002	34.4 ± 3.4
	B_Es	0.186 ±0.012	0.138 ±0.008	
	R_Es	0.439 ±0.029	0.525 ±0.005	
CL6	G_Es	0.121 ±0.008	0.567 ±0.002	34.3 ± 3.4
	B_Es	0.187 ±0.012	0.139 ±0.008	
	R_Es	0.437 ±0.028	0.525 ±0.005	
CL7	G_Es	0.122 ±0.008	0.566 ±0.002	33.9 ± 3.3
	B_Es	0.186 ±0.012	0.140 ±0.008	

Table 84 a)2.	Table 84 a)2, a)3) Reference White Result: PASS							
Mode	Measur	ed CCT	l	ג'	1	/'	ΔCCT	Result
Warm	7094	± 755	0.198	±0.009	0.460	±0.019	N/A	N/A
Normal	7367	± 795	0.198	±0.009	0.456	±0.019	N/A	N/A
Cool	9978	± 1000	0.192	±0.009	0.439	±0.018	N/A	N/A
sRGB	6147	± 700	0.203	±0.010	0.469	±0.019	N/A	N/A
User	7105	± 755	0.198	±0.009	0.460	±0.019	N/A	N/A

Compliance assessment

Table 85 Electro-Optical transfer function (EOTF) and grey scale PASS/FAIL/(N/A:not applicable)/*(with comments)

Pass/Fail criterion based on requirements and intended context of use.

PASS

Depending on the type of information shown, the visual display shall fulfil the following requirements.

- a) Artificial information
 - 1) Over all relevant viewing directions (see design viewing direction), the EOTF and its first derivative for each of the three primary colours shall be ascending in a monotonous way.
 - 2) Over all relevant viewing directions (see design viewing direction), the chromaticity uniformity difference, $\Delta u'v'$, between grey levels shall not exceed 0,04.

Measuring method:	ISO 9241-305, P14.1, P14.2, P17.5, P19.2, P19.3
Assessment and reporting	Refer to table 88, table 88 a) 1), table 88 a) 2).

Table 88 a) 1) Assessment and reporting for EOTF.			
Gamma Value:	1.9		
Correction coefficient:	0.99		

aff								
Table 8	Table 88 a) 2) Assessment and reporting for chromaticity uniformity.							
%	RGB V	u'	٧'	Maximum Δu	'v' for chromatic	ity uniformity:	0.006 ±0.026	
100%	255	0.197 ±0.009	0.459 ±0.019	Levels	100%	75%	50%	
75%	192	0.196 ±0.009	0.462 ±0.019	75%	0.003 ±0.025			
50%	128	0.195 ±0.009	0.463 ±0.019	50%	0.005 ±0.023	0.002 ±0.020		
25%	64	0.196 ±0.009	0.458 ±0.019	25%	0.003 ±0.022	0.005 ±0.026	0.006 ±0.026	

Test Report Compliance assessment

Table 8	Table 88 Measurement data for EOTF and Grey scale measurement.						
Lb	lb 01						
	RGB V	Lum. L	Net Lum. L-Lb	Log (V)	Log (L-Lb)	u'	v'
Level 40	255	248.8 ± 12.5	248.7 ± 12.5	2.4	2.4	0.197 ±0.009	0.459 ±0.019
Level 39	250	232.4 ± 11.7	232.2 ± 11.7	2.4	2.4	0.197 ±0.009	0.461 ±0.019
Level 38	243	216.6 ± 10.9	216.5 ± 10.9	2.4	2.3	0.197 ±0.009	0.462 ±0.019
Level 37	237	204.5 ± 10.3	204.4 ± 10.3	2.4	2.3	0.197 ±0.009	0.462 ±0.019
Level 36	230	190.2 ± 9.6	190.1 ± 9.6	2.4	2.3	0.197 ±0.009	0.461 ±0.019
Level 35	224	179.4 ± 9.1	179.3 ± 9.1	2.4	2.3	0.196 ±0.009	0.462 ±0.019
Level 34	218	168.9 ± 8.6	168.8 ± 8.5	2.3	2.2	0.197 ±0.009	0.462 ±0.019
Level 33	211	157.3 ± 8.0	157.2 ± 8.0	2.3	2.2	0.196 ±0.009	0.462 ±0.019
Level 32	205	146.6 ± 7.5	146.5 ± 7.4	2.3	2.2	0.197 ±0.009	0.461 ±0.019
Level 31	198	136.7 ± 7.0	136.6 ± 7.0	2.3	2.1	0.196 ±0.009	0.462 ±0.019
Level 30	192	127.8 ± 6.5	127.7 ± 6.5	2.3	2.1	0.196 ±0.009	0.462 ±0.019
Level 29	186	117.8 ± 6.0	117.7 ± 6.0	2.3	2.1	0.197 ±0.009	0.462 ±0.019
Level 28	179	108.3 ± 5.6	108.2 ± 5.6	2.3	2.0	0.197 ±0.009	0.462 ±0.019
Level 27	173	99.9 ± 5.1	99.8 ± 5.1	2.2	2.0	0.196 ±0.009	0.463 ±0.019
Level 26	166	90.7 ± 4.7	90.5 ± 4.7	2.2	2.0	0.198 ±0.009	0.463 ±0.019
Level 25	160	83.1 ± 4.3	83.0 ± 4.3	2.2	1.9	0.197 ±0.009	0.463 ±0.019
Level 24	154	76.0 ± 4.0	75.9 ± 4.0	2.2	1.9	0.197 ±0.009	0.463 ±0.019
Level 23	147	68.3 ± 3.6	68.2 ± 3.6	2.2	1.8	0.197 ±0.009	0.462 ±0.019
Level 22	141	63.2 ± 3.3	63.1 ± 3.3	2.2	1.8	0.196 ±0.009	0.463 ±0.019
Level 21	134	57.1 ± 3.0	57.0 ± 3.0	2.1	1.8	0.196 ±0.009	0.464 ±0.019
Level 20	128	51.0 ± 2.7	50.8 ± 2.7	2.1	1.7	0.195 ±0.009	0.463 ±0.019
Level 19	122	45.9 ± 2.5	45.7 ± 2.5	2.1	1.7	0.195 ±0.009	0.464 ±0.019
Level 18	115	39.4 ± 2.2	39.2 ± 2.1	2.1	1.6	0.195 ±0.009	0.463 ±0.019
Level 17	109	35.2 ± 2.0	35.1 ± 1.9	2.0	1.5	0.194 ±0.009	0.464 ±0.019
Level 16	102	29.8 ± 1.7	29.7 ± 1.7	2.0	1.5	0.195 ±0.009	0.463 ±0.019
Level 15	96	25.8 ± 1.5	25.6 ± 1.5	2.0	1.4	0.194 ±0.009	0.463 ±0.019
Level 14	90	22.2 ± 1.3	22.1 ± 1.3	2.0	1.3	0.194 ±0.009	0.463 ±0.019
Level 13	83	18.5 ± 1.1	18.4 ± 1.1	1.9	1.3	0.194 ±0.009	0.463 ±0.019
Level 12	77	15.5 ± 1.0	15.4 ± 1.0	1.9	1.2	0.195 ±0.009	0.463 ±0.019
Level 11	70	12.4 ± 0.8	12.3 ± 0.8	1.9	1.1	0.194 ±0.009	0.462 ±0.019
Level 10	64	10.1 ± 0.7	10.0 ± 0.7	1.8	1.0	0.196 ±0.009	0.458 ±0.019
Level 9	58	8.3 ± 0.6	8.1 ± 0.6	1.8	0.9	0.195 ±0.009	0.460 ±0.019
Level 8	51	6.2 ± 0.5	6.1 ± 0.5	1.7	0.8	0.195 ±0.009	0.460 ±0.019
Level 7	45	4.7 ± 0.4	4.6 ± 0.4	1.7	0.7	0.194 ±0.009	0.454 ±0.019
Level 6	38	3.3 ± 0.4	3.1 ± 0.4	1.6	0.5	0.191 ±0.009	0.454 ±0.019
Level 5	32	2.3 ± 0.3	2.2 ± 0.3	1.5	0.3	0.197 ±0.009	0.453 ±0.019
Level 4	26	1.6 ± 0.3	1.5 ± 0.3	1.4	0.2	0.189 ±0.009	0.446 ±0.018
Level 3	19	0.9 ± 0.3	0.8 ± 0.3	1.3	-	-	-
Level 2	13	0.6 ± 0.2	0.4 ± 0.2	1.1	-	-	-
Level 1	6	0.3 ± 0.2	0.3 ± 0.2	0.8	-	-	-

Compliance assessment

Table 91 Rendering of mov	ing images	PASS/FAIL/(N/A:not applicable)/*(with comments)					
Pass/Fail criterion based on requirements and intended context of use.							
The visual display shall have suf	The visual display shall have sufficient temporal fidelity to show moving images without any blur, smear or other						
noticeable artefacts.	noticeable artefacts.						
Measuring method: ISO 9241-305							
Assessment and reporting Visual inspection							
Inspection result Any blur smear and other noticeable artefacts didn't found with visual inspection.							

Table 91 Colour misconver	able 91 Colour misconvergence PASS/FAIL/(N/A:not applicable)/*(with comments)						
Pass/Fail criterion based on requirements and intended context of use. N/A							
The level of misconvergence at	The level of misconvergence at any location on the visual display shall not be greater than 3,4' of arc and preferably						
should be less than 2.3' of arc a	should be less than 2.3' of arc at the design viewing distance.						
Measuring method: ISO 9241-305, M21.8							
Assessment and reporting	Not applicable.						

Table 91 Image formation time (IFT)	PASS/FAIL/(N/A:not applicable)/*(with comments)				
Pass/Fail criterion based on requirements and intended context of use.					
Depending on the income time the IET shall fillfill to	ha fallaccina va su irana anta				

Depending on the image type, the IFT shall fulfil the following requirements.

a) Still imagesNot applicable.

b) Quasi-static images

IFT > 200 ms:

Noticeable loss of contrast observed during key entry, scrolling, animation and blink coding. Pointing devices with rapid cursor positioning can be used only with special techniques.

55 ms < IFT \leq 200 ms:

Applications using scrolling, animation and pointing devices lose detectable contrast. Blink coding from 0,33 Hz to 5 Hz is operable.

10 ms < IFT \leq 55 ms:

Contrast is stable for most applications. Motion artefacts can be distracting

c) Moving images

IFT \leq 10 ms:

However, for displays that keep displaying each part of the image over a large part of the frame period, the duration of the frame period is also a limiting factor. If the IFT or frame period duration is too long while the display produces the image during a large part of the frame period, then blurred or jerky images result, and contrast may be reduced.

Measuring method:	ISO 9241-305, P15.2, P15.2A
Assessment and reporting	Refer to the response time measurement result below.

Respon	Response Time measurement result					PASS
Image ap	oplication type:	Still image and Qu	uasi-static image.			
IFT Crite	rion levels:	1	'0ms < IF	T ≤ 55ms	5	
Contrast	is stable for most	applications. Moti	on artefacts can b	e distracting.		
Levels	0%	25%	50%	75%	10	0%
0%	XX	15.1 ± 0.7ms	14.8 ± 0.7ms	15.0 ± 0.7ms	18.5	± 0.8ms
25%	15.1 ± 0.7ms	XX	18.9 ± 0.8ms	18.1 ± 0.8ms	19.1	± 0.8ms
50%	14.8 ± 0.7ms	18.9 ± 0.8ms	XX	15.4 ± 0.7ms	16.9	± 0.7ms
75%	15.0 ± 0.7ms	18.1 ± 0.8ms	15.4 ± 0.7ms	XX	14.1	± 0.6ms
100%	18.5 ± 0.8ms	19.1 ± 0.8ms	16.9 ± 0.7ms	14.1 ± 0.6ms	Х	Χ

Compliance assessment

Fable 91 Spatial resolution PASS/FAIL/(N/A:not applicable)/*(with comments)							
Pass/Fail criterion based on i	Pass/Fail criterion based on requirements and intended context of use. PASS*						
a) Resolution of the visual displa	a) Resolution of the visual display should enable a satisfying reproduction of the original image. The minimum resolution						
of the display should be (horizon	ital × vertical):						
— for VGA: ≥ 640 × 48	80;						
— for PAL: 768 × 576;							
— for NTSC: 720 × 480							
b) The visual display should have	e a spatial resolution of less than 1 r	minute of arc at the design viewing distance	Э.				
*Not applicable to Design, View =500mm which is referred to EK1-ITB 2000:2016Annex 4.1.							
Measuring method:	Measuring method: Intended context of use/supplier specification, ISO 9241-305, P20.10						
Assessment and reporting	Assessment and reporting Use the pixel size as a basis for evaluation of the spatial resolution.						
Display resolution: 1920X1200							
Spatial resolution:	Spatial resolution: 1.9' (Horizontal) X 1.9' (Vertical)						

Table 91 Raster modulation		PASS/FAIL/(N/A:not app	licable)/*(with comments)		
Pass/Fail criterion based on requirements and intended context of use.					
For visual displays having a pixel density of less than 30 pixels per degree at the design viewing distance, the lumina modulation in the direction perpendicular to adjacent raster lines shall not exceed Cm = 0,4 for monochrome displays Cm = 0,7 for multicolour displays, when all pixels are in their high state.					
Measuring method:	ISO 9241-305, P21.9				
Assessment and reporting	Not applicable.				

Table 91 Fill factor		PASS/FAIL/(N/A:not applicable)/	(*(with comments)				
Pass/Fail criterion based on requirements and intended context of use.							
For a visual display having a pixel density of less than 30 pixels per degree at the design viewing distance, the fill factor							
shall exceed 0,3.	shall exceed 0,3.						
The supplier shall submit the su	bpixel drawing or specify the fill facto	or.					
Measuring method:	Supplier specification, ISO 9241-30	5, M21.10					
Assessment and reporting	Pixels per degree are more than 30	pixels.					
Pixels per degree:	32Pix./Deg.						

Table 91 Pixel density		PASS/FAIL/(N/A:not applicable)/*(with comments)			
Pass/Fail criterion based on requirements and intended context of use.					
The supplier shall specify the pixel density.					
Measuring method : Supplier specification					
Assessment and reporting 94.1ppi (Horizontal) x 94.1ppi (Vertical)					