

CE EMC Test Report

Project No.	:	1904C060
Equipment	:	LCD Monitor
Test Model	:	24B2
Series Model	:	**24B2*******(*=0-9,A-Z,a-z,+,-,/,\ or blank)
Applicant	:	TPV Electronics (Fujian) Co., Ltd.
Address	:	Rongqiao Economic and Technological Development
		Zone, Fuqing City, Fujian Province, P.R. China

Date of Receipt :	•
	Apr. 16, 2019 ~ Apr. 29, 2019
	May 13, 2019 BTL Inc.
Tested by :	DIL IIIC.

Testing Engineer

Jakov

(Jason Yang)

Technical Manager

Authorized Signatory

(Bill Zhang)

セレッシ

(Kevin Li)

BTL INC.

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China. TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Certificate #5123.02

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	6
1. GENERAL SUMMARY	7
2. SUMMARY OF TEST RESULTS	8
2.1 TEST FACILITY	10
2.2 MEASUREMENT UNCERTAINTY	10
3 . GENERAL INFORMATION	12
3.1 GENERAL DESCRIPTION OF EUT	12
3.2 DESCRIPTION OF TEST MODES	13
3.3 EUT OPERATING CONDITIONS	14
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED) 14
3.5 DESCRIPTION OF SUPPORT UNITS	15
4 . EMC EMISSION TEST- EN55032:2012+AC:2013 & 2015	16
4.1 RADIATED EMISSION	16
4.1.1 LIMITS	16
4.1.2 MEASUREMENT INSTRUMENTS LIST 4.1.3 TEST PROCEDURE	17 18
4.1.4 DEVIATION FROM TEST STANDARD	19
4.1.5 TEST SETUP	19
4.1.6 MEASUREMENT DISTANCE	20
4.1.7 TEST RESULTS (UP TO 1 GHZ)	21
4.1.8 TEST RESULTS (ABOVE 1 GHZ)	29
4.2 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS	37
4.2.1 LIMITS 4.2.2 MEASUREMENT INSTRUMENTS LIST	37 37
4.2.3 TEST PROCEDURE	38
4.2.4 DEVIATION FROM TEST STANDARD	38
4.2.5 TEST SETUP	38
4.2.6 TEST RESULTS	39
5 . EMC EMISSION TEST- EN 55032:2015+AC:2016	47
5.1 RADIATED EMISSION	47
5.1.1 LIMITS	47
5.1.2 MEASUREMENT INSTRUMENTS LIST	49 50
5.1.3 TEST PROCEDURE 5.1.4 DEVIATION FROM TEST STANDARD	50 51
5.1.5 TEST SETUP	51
5.1.6 MEASUREMENT DISTANCE	52

Table of Contents	Page
5.1.7 TEST RESULTS (UP TO 1 GHZ) 5.1.8 TEST RESULTS (ABOVE 1 GHZ) 5.2 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS 5.2.1 LIMITS 5.2.2 MEASUREMENT INSTRUMENTS LIST 5.2.3 TEST PROCEDURE 5.2.4 DEVIATION FROM TEST STANDARD 5.2.5 TEST SETUP 5.2.6 TEST RESULTS	53 55 57 57 57 58 58 58 58 58 58
6 . HARMONIC AND FLICKER TEST	61
 6.1 HARMONIC CURRENT EMISSIONS 6.1.1 LIMITS 6.1.2 MEASUREMENT INSTRUMENTS LIST 6.1.3 TEST PROCEDURE 6.1.4 DEVIATION FROM TEST STANDARD 6.1.5 TEST SETUP 6.1.6 TEST RESULTS 6.2 VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER TEST 6.2.1 LIMITS 6.2.2 MEASUREMENT INSTRUMENTS LIST 6.2.3 TEST PROCEDURE 6.2.4 DEVIATION FROM TEST STANDARD 6.2.5 TESTSETUP 6.2.6 TEST RESULTS 	61 61 62 62 62 63 66 66 66 66 66 66 66
7 . EMC IMMUNITY TEST	69
 7.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA 7.2 GENERAL PERFORMANCE CRITERIA 7.3 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD) 7.3.1 TEST SPECIFICATION 7.3.2 MEASUREMENT INSTRUMENTS 7.3.3 TEST PROCEDURE 7.3.4 DEVIATION FROM TEST STANDARD 7.3.5 TEST SETUP 7.3.6 TEST RESULTS 7.4 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS) 7.4.1 TEST SPECIFICATION 7.4.2 MEASUREMENT INSTRUMENTS 	69 71 72 72 72 73 73 73 74 78 78 78 78
7.4.3 TEST PROCEDURE 7.4.4 DEVIATION FROM TEST STANDARD	78 78

Table of Contents	Page
7.4.5 TEST SETUP	79
7.4.6 TEST RESULTS	80
7.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT/BURST)	81
7.5.1 TEST SPECIFICATION	81
7.5.2 MEASUREMENT INSTRUMENTS 7.5.3 TEST PROCEDURE	81 81
7.5.4 DEVIATION FROM TEST STANDARD	81
7.5.5 TEST SETUP	82
7.5.6 TEST RESULTS	83
7.6 SURGE IMMUNITY TEST	84
7.6.1 TEST SPECIFICATION	84
7.6.2 MEASUREMENT INSTRUMENTS	84
7.6.3 TEST PROCEDURE	84
7.6.4 DEVIATION FROM TEST STANDARD 7.6.5 TEST SETUP	85 85
7.6.6 TEST RESULTS	86
7.7 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY	00
	07
RADIO-FREQUENCY FIELDS TEST (CS) 7.7.1 TEST SPECIFICATION	87 87
7.7.2 MEASUREMENT INSTRUMENTS	87
7.7.3 TEST PROCEDURE	87
7.7.4 DEVIATION FROM TEST STANDARD	87
7.7.5 TEST SETUP	88
7.7.6 TEST RESULTS	89
7.8 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF)	90
7.8.1 TEST SPECIFICATION	90
7.8.2 MEASUREMENT INSTRUMENTS	90
7.8.3 TEST PROCEDURE 7.8.4 DEVIATION FROM TEST STANDARD	90 90
7.8.5 TEST SETUP	91
7.8.6 TEST RESULTS	92
7.9 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS	
IMMUNITY TEST	93
7.9.1 TEST SPECIFICATION	93
7.9.2 MEASUREMENT INSTRUMENTS	93
7.9.3 TEST PROCEDURE 7.9.4 DEVIATION FROM TEST STANDARD	93 93
7.9.5 TEST SETUP	93 94
7.9.6 TEST RESULTS	94 95
8.EUT TEST PHOTO	96

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Apr. 30, 2019
R01	Changed the series model name.	May 13, 2019

1. GENERAL SUMMARY

Applicant:Date of Test:Test Sample:	N/A 24B2 **24B2******(*=0-9,A-Z,a-z,+,-,/,\ or blank) TPV Electronics (Fujian) Co., Ltd. Apr. 16, 2019 ~ Apr. 29, 2019 Engineering Sample No.: D190403878 EN 55032:2012+AC:2013 Class B EN 55032:2015 Class B EN 55032:2015+AC:2016 Class B AS/NZS CISPR 32: 2015 / CISPR 32: 2015+C1:2016 AS/NZS CISPR 32: 2015 / CISPR 32: 2012 IEC 61000-3-2:2014 / EN 61000-3-2:2014 Class D IEC 61000-3-3:2013 / EN 61000-3-2:2014 Class D IEC 61000-4-3:2015 / EN 61000-4-2:2009 IEC 61000-4-2:2008 / EN 61000-4-2:2009 IEC 61000-4-3:2006+A1:2007+A2:2010 / EN 61000-4-3:2006+A1:2008+A2:2010 IEC 61000-4-5:2005 / EN 61000-4-5:2006 IEC 61000-4-6:2008 / EN 61000-4-6:2009
	IEC 61000-4-8:2009 / EN 61000-4-8:2010 IEC 61000-4-11:2004 / EN 61000-4-11:2004

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-EMC-1-1904C060) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of A2LA according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Emission						
Standard(s)	Test Item		Limit	Judgment	Remark	
	Radiated emissions up to 1 GHz		Class B	PASS		
	Radiated emissions above 1 GHz		Class B	PASS	NOTE (2)	
EN 55032: 2012+AC:2013 EN 55032:2015	Radiated emissions from FM receivers			N/A	NOTE (1) NOTE (6)	
EN 55032:2015+AC:2016 AS/NZS CISPR 32: 2015 /		d emissions s power port	Class B	PASS	NOTE (7)	
CISPR 32: 2015+C1:2016 AS/NZS CISPR 32: 2013 /	Asymmetric	AAN		N/A		
CISPR 32: 2012	mode conducted emissions	Current Probe		N/A	NOTE (1) NOTE (8)	
		CVP		N/A		
		d differential emissions		N/A	NOTE (1) NOTE (9)	

Standard	Test Item	Limit	Judgment	Remark
EN 61000-3-2:2014	Harmonic current emissions	Class D	PASS	NOTE (3)
EN 61000-3-3:2013	Voltage changes, voltage fluctuations and flicker		PASS	

Immunity EN 55024: 2010/ EN 55024: 2010+A1:2015					
Section(s)	Section(s) Test Item		Judgment	Remark	
EN 61000-4-2:2009	Electrostatic discharge immunity	В	PASS		
EN 61000-4-3: 2006+A1:2008+A2:2010	Radiated, radio-frequency, electromagnetic field immunity	A	PASS		
EN 61000-4-4:2004	Electrical fast transient/burst immunity	В	PASS		
EN 61000-4-5:2006	Surge immunity	B/C	PASS	NOTE (4)	
EN 61000-4-6: 2009	Immunity to conducted disturbances, induced by radio-frequency fields	A	PASS		
EN 61000-4-8:2010	Power frequency magnetic field immunity	A	PASS		
EN 61000-4-11:2004	Voltage dips, short interruptions and voltage variations immunity	B/C/C	PASS	NOTE (5)	

NOTE:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The EUT's max operating frequency is 148.5 MHz which does exceed 108 MHz, so the test will be performed.
- (3) If the power consumption is less than 75W, there is no limit applied.
- (4) Performance Criterion C for signal ports and telecommunication ports. Performance Criterion B for input d.c. power port and a.c. power ports.
- (5) Voltage Dips: >95% reduction Performance Criterion B
 Voltage Dips: 30% reduction Performance Criterion C
 Voltage Interruptions: >95% reduction Performance Criterion C
- (6) If the EUT has FM function the test will be performed.
- (7) If the EUT has AC power mains port the test will be performed.
- (8)

Cable Type	Number of pairs	Measurement type	Procedures
Balanced Unscreened	1 (2 wire) ;2 (4 wire); 3 (6 wire) ;4 (8 wire)	Voltage	AAN
Balanced Unscreened	See a)	Voltage and Current	CP+CVP
Screened or Coaxial	n/a	Voltage	AAN
Screened or Coaxial	n/a	Voltage or Current	CP or CVP
Unbalanced cables	n/a	Voltage and Current	CP+CVP

Ports connected to cables with more than 4 balanced pairs or where the port is unable to function correctly when connected through an AAN.

(9) If the EUT has tuner port the test will be performed.

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2, The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

A. Radiated emissions up to 1 GHz measurement:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
DG-CB08 (10m)	CISPR	30MHz ~ 200MHz	V	4.54
		30MHz ~ 200MHz	Н	3.98
		200MHz ~ 1,000MHz	V	3.98
		200MHz ~ 1,000MHz	Н	3.76

B. Radiated emissions above 1 GHz measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	
DG-CB08		CISPR 1 ~ 6 GHz		4.02
(3m)	CISPR	6 ~18 GHz	5.10	

C. Conducted emissions AC mains power port measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C01	CISPR	150 kHz ~ 30MHz	3.16

D. Harmonic current emissions / Voltage changes, voltage fluctuations and flicker measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C01	EN 61000-3-2	Voltage	0.774
DG-C01	EN 61000-3-3	Current	0.782

E. Immunity Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)
		Rise time tr	14.60 %
DG-SR02	EN 61000-4-2	Peak current lp	1.72 %
DG-SRUZ	EN 01000-4-2	Current at 30 ns	2.0 %
		Current at 60 ns	1.84 %
		80 MHz~1 GHz	2.175 dB
		Electrical measurements	2.267 dB
		Measuring the demodulation on analogue	2.267 dB
DG-CB05	EN 61000-4-3	wired network lines	2.207 UD
DG-CD03	LN 01000-4-3	Audio breakthrough measurement, test	2.349 dB
		set-up for RS 2G/3G	2.349 UD
		Audio breakthrough measurement, test	
		set-up for RS 4G	2.413 dB
	EN 61000-4-4	Voltage rise time (tr)	
DG-SR05		Voltage peak value(V _P)	8.20 %
		Voltage pulse width(tw)	6.0 %
		Voltage front time (T _{fv})	5.80 %
DG-SR05	EN 61000-4-5	Voltage peak value(V _P)	3.90 %
		Voltage duration(t _d)	0.60 %
	EN 61000-4-6	CDN	3.25 dB
		EM clamp	4.410 dB
DG-CB06		Electrical measurements	3.258 dB
		measuring the demodulation on analogue	3.258 dB
		wired network lines	
DG-SR05	EN 61000-4-8	Magnetic Field Level	3.787 %
DG-SR05	EN 61000-4-11	voltage fall time (T _f)	2.0 %

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LCD Monitor	
Brand Name	N/A	
Test Model	24B2	
Series Model	**24B2*******(*=0-9,A-Z,a-z,+,-,/,\ or blank)	
Model Difference(s)	Only differ in model name due to marketing purpose.	
Power Source	DC Voltage supplied from AC/DC adapter. Model: ADPC1925EX	
Power Rating	I/P:100-240V~, 1.3A Max 50-60Hz O/P:19V1.31A	
Connecting I/O Port(s)	1* D-SUB port 1* DC port 1* HDMI port 1* Earphone port	

Cable Type	Shielded Type	Ferrite Core	Length(m)	Note
D-SUB	Shielded	YES	1.8/1.5/1.2	Bonded two Ferrite Cores
HDMI	Shielded	NO	1.8/1.5/1.2	
AC Power Cord	Non-shielded	NO	1.8/1.5/1.2	1.8m is worst case Detachable (3 Pin)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Power cable 1.8m, 1.5m, 1.2m length, worst case is Power cable 1.8m with D-SUB+HDMI 1.8m length testing and recording in test report.

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	D-SUB 1920*1080/60Hz	
Mode 2	HDMI 1920*1080/60Hz	
Mode 3	HDMI 1080P	
Mode 4	HDMI 1280*1024/60Hz	
Mode 5	HDMI 640*480/60Hz	

For Radiated Test			
Final Test Mode	Description		
Mode 1	D-SUB 1920*1080/60Hz		
Mode 2	HDMI 1920*1080/60Hz		
Mode 3	HDMI 1080P		

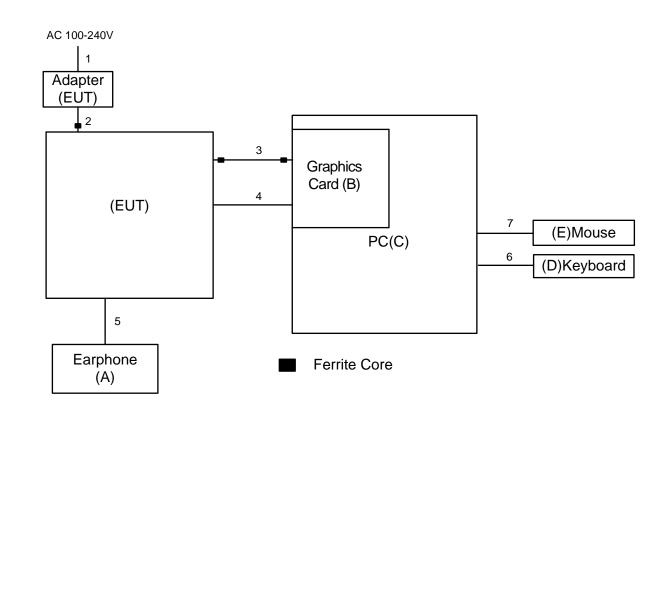
For Conducted Test			
Final Test Mode	Description		
Mode 1	D-SUB 1920*1080/60Hz		
Mode 2	HDMI 1920*1080/60Hz		
Mode 3	HDMI 1080P		

For Harmonics / Flickers Test		
Final Test Mode Description		
Mode 2	HDMI 1920*1080/60Hz	

For EMS Test			
Final Test Mode Description			
Mode 2 HDMI 1920*1080/60Hz			

Evaluation description:

- 1. The maximum resolution is evaluated Mode 1-3. The worst case is Mode 2 and evaluated the middle and low resolution Mode 4 and mode 5.
- 2. According to the client's requirement, choose Mode 1, Mode 2, Mode 3 and recorded in test report.



3.3 EUT OPERATING CONDITIONS

The EUT exercise program used during radiated and/or conducted emission measurement was designed to exercise the various system components in a manner similar to a typical use. The standard test signals and output signal as following:

- 1. EUT connected to PC via D-SUB & HDMI cable.
- 2. PC connected to Mouse and Keyboard via USB cable.
- 3. EUT connected to Earphone via Earphone cable.
- 4. EUT connected to adapter via DC cable.

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.
А	Earphone	Apple	N/A	N/A
В	Graphics Card	DELL	ATI 3650	260832000932
С	PC	DELL	Vostro 470	28747261333
D	Keyboard	DELL	KB212-B	CN0HTXH97158125004DXA01
E	Mouse	DELL	MS111-P	CN011D3V71581279OLOT

Item	Shielded Type	Ferrite Core	Length	Note
1	NO	NO	1.8m/1.5m/1.2m	AC Cable
2	NO	YES	1m	DC Cable
3	YES	YES	1.8m/1.5m/1.2m	D-SUB Cable
4	YES	NO	1.8m/1.5m/1.2m	HDMI Cable
5	NO	NO	1.5m	Earphone Cable
6	YES	NO	1.8m	USB Cable
7	YES	NO	1.8m	USB Cable

4. EMC EMISSION TEST- EN55032:2012+AC:2013 & 2015

4.1 RADIATED EMISSION

4.1.1 LIMITS

Class A equipment up to 1000MHz

	Table	Frequency	Mea	surement	Class A limit dB(uV/m)
	clause	MHz	Distance m	Detector type/bandwidth	OATS/SAC
	A2.1	30-230 230-1000	10	Quasi peak /	40 47
	A2.2	30-230 230-1000	3	120 kHz	50 57
С	lass A equ	uipment above 1000M	IHz		
	Table	Frequency	Measurement		Class A limit dB(uV/m)
	clause	MHz	Distance m	Detector type/bandwidth	FSOATS
	A3.1	1000-3000 3000-6000	3	Average / 1 MHz	56 60
	A3.2	1000-3000 3000-6000	0	Peak / 1 MHz	76 80
С	lass B eq	uipment up to 1000M	Ηz		
	Table	Frequency	Mea	surement	Class B limit dB(uV/m)
	clause	MHz	Distance m	Detector type/bandwidth	OATS/SAC
	A4.1	30-230 230-1000	10	Quasi peak /	30 37
	A4.2	30-230 230-1000	3 120 kHz		40 47
С	lass B eq	uipment above 1000N	1Hz		
	Table	Frequency	Меа	surement	Class B limit dB(uV/m)

clause	MHz	Distance m	Detector type/bandwidth	FSOATS
A5.1	1000-3000		Average /	50
A5.1	3000-6000	3	1 MHz	54
	1000-3000	5	Peak /	70
A5.2	3000-6000		1 MHz	74

Notes:

- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Required highest frequency for radiated measurement

Highest internal frequency (F _x) MHz	Highest measured frequency MHz
F _x ≦108	1000
108 <f<sub>x ≦500</f<sub>	2000
500< F _x ≦1000	5000
F _x >1000	5 th up to a maximum 6 GHz,

Note for FM and TV broadcast receiver, F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

4.1.2 MEASUREMENT INSTRUMENTS LIST

Up to 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Receiver	Keysight	N9038A	MY54450004	Aug. 11, 2019
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
3	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980284	Mar. 10, 2020
4	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980283	Mar. 10, 2020
5	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	946	Nov. 24, 2019
6	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	947	Nov. 24, 2019
7	Cable	emci	LMR-400(5m+ 11m+15m)	N/A	Aug. 07, 2019
8	Cable	emci	LMR-400(5m+ 8m+8m)	N/A	Aug. 07, 2019
9	Measurement Software	Farad	EZ-EMC Ver.BTL-2ANT- 1	N/A	N/A
10	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
11	Attenuator	EMCI	EMCI-N-6-06	N0670	Nov. 24, 2019
12	Attenuator	EMCI	EMCI-N-6-06	N0671	Nov. 24, 2019

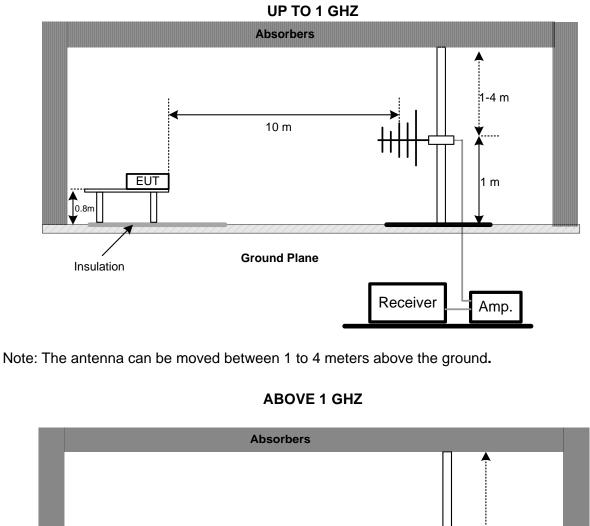
Remark: "N/A" denotes no model no., no serial no. or no calibration specified. All calibration period of equipment list is one year.

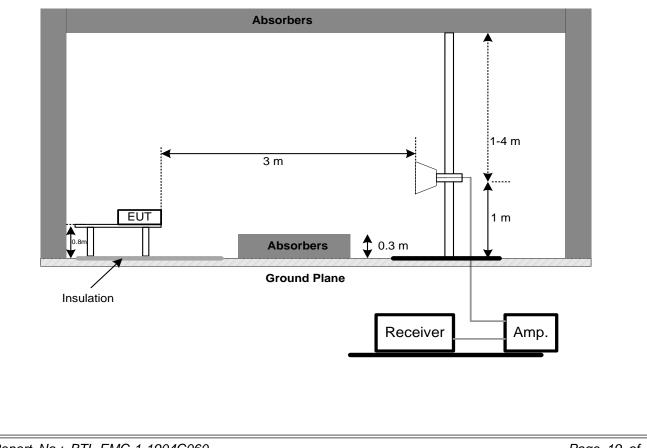
Above 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
			× 1		
	Horn Antenna	EMCO	3115	9605-4803	Mar. 23, 2020
2	Amplifier	Agilent	8449B	3008A02584	Aug. 11, 2019
3	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
4	Measurement Software	Farad	EZ-EMC Ver.BTL-2AN N/A T-1		N/A
5	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
6	Controller	MF	MF-7802	MF780208159	N/A
7	Cable	MIcable Inc.	B10-01-01-5 M	18047123	Mar. 01, 2020
8	Cable	MIcable Inc.	B10-01-01-10 M	18072746	Mar. 01, 2020
9	Cable	N/A	A50-3.5M3.5 M-1.5M-AT	18041824	Mar. 01, 2020

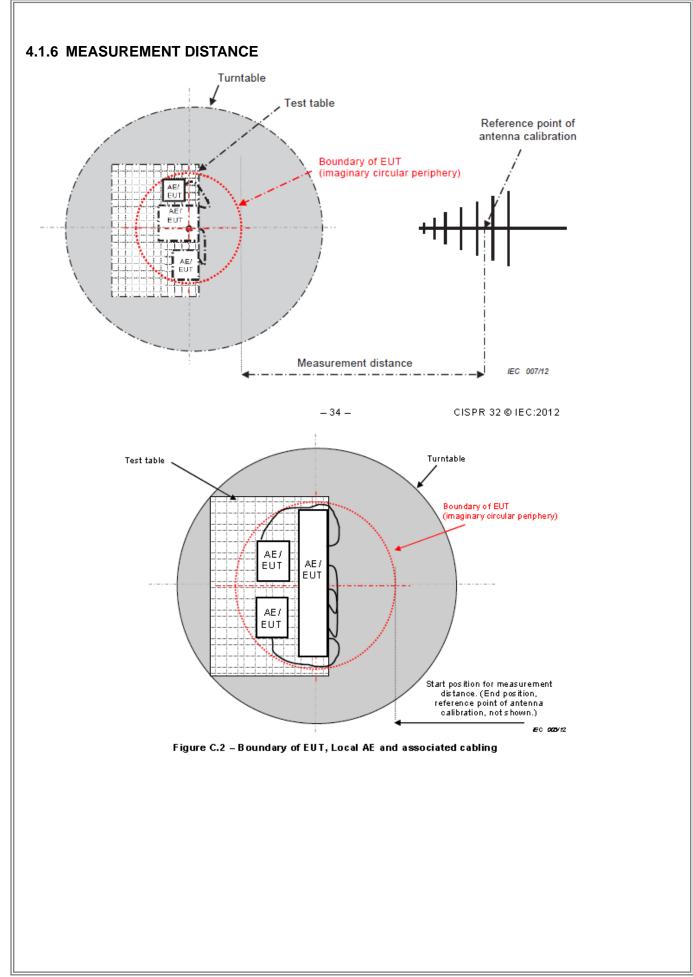
Remark: "N/A" denotes no model no., no serial no. or no calibration specified. All calibration period of equipment list is one year.

4.1.3 TEST PROCEDURE

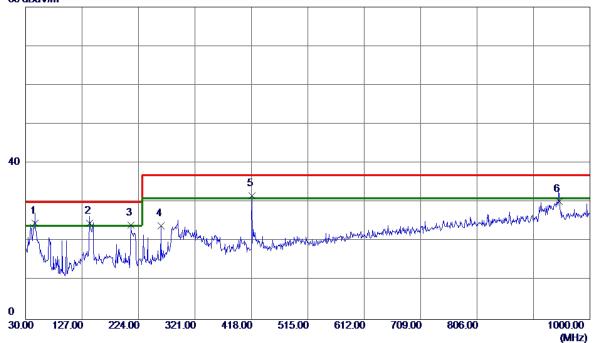

- a. The measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz).
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- f. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- g. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.4).



4.1.4 DEVIATION FROM TEST STANDARD


No deviation

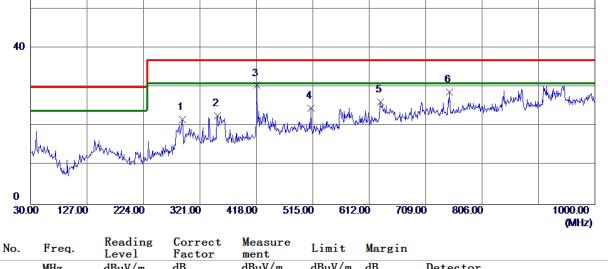
4.1.5 TEST SETUP



4.1.7 TEST RESULTS (UP TO 1 GHZ)

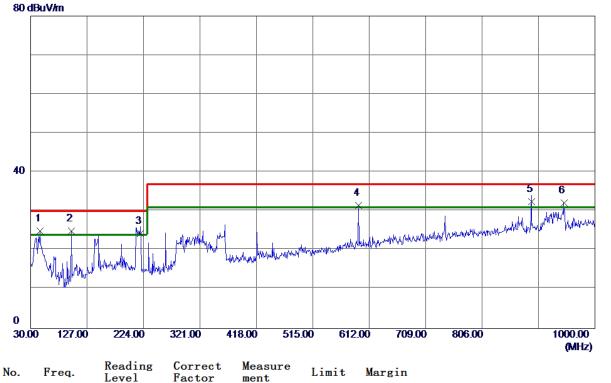
EUT	LCD Monitor	Model Name	24B2			
Temperature	25°C	Relative Humidity	60%			
Test Voltage	AC 230V/50Hz	Polarization	Vertical			
Test Mode	D-SUB 1920*1080/60Hz					
Test Engineer	Jason Yang					

80 dBuV/m



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1 *	46.4900	41.38	-16.69	24.69	30.00	-5.31	QP
2	139.6100	41.20	-16. 57	24.63	30.00	-5. 37	QP
3	210. 9050	43.25	-19. 10	24.15	30.00	- 5. 8 5	QP
4	262.3150	40.62	-16.55	24.07	37.00	-12.93	QP
5	418.9700	43.97	-12.28	31.69	37.00	-5.31	QP
6	946.6500	33.76	-3. 55	30.21	37.00	-6.79	QP

EUT	LCD Monitor	Model Name	24B2				
Temperature	25°C	Relative Humidity	60%				
Test Voltage AC 230V/50Hz		Polarization	Horizontal				
Test Mode	D-SUB 1920*1080/60Hz						
Test Engineer	Jason Yang						
80 dBuV/m							



	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	290. 9300	37.31	-15. 50	21.81	37.00	-15. 19	QP
2	351.0700	36.74	-14.06	22.68	37.00	-14.32	QP
3 *	418.9700	42.97	-12.49	30.48	37.00	-6.52	QP
4	512.0900	35.50	-10.87	24.63	37.00	-12.37	QP
5	631.4000	34.48	-8.18	26.30	37.00	-10.70	QP
6	749.7400	35.13	-6.33	28.80	37.00	-8.20	QP

LCD Monitor	Model Name	24B2		
25°C	Relative Humidity	60%		
AC 230V/50Hz	Polarization	Vertical		
Test Mode HDMI 1920*1080/60Hz				
Jason Yang				
	AC 230V/50Hz HDMI 1920*1080/60Hz	AC 230V/50Hz Polarization HDMI 1920*1080/60Hz		

		Level	ractor	ment			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	46. 4900	41.62	-16.69	24.93	30.00	-5 . 07	QP
2	99.8399	45.91	-20.98	24.93	30.00	-5 . 0 7	QP
3	218.6650	43.45	-19.08	24.37	30.00	-5.63	QP
4	594.0550	40.22	-8.63	31.59	37.00	-5.41	QP
5 *	890.8750	37.08	- 4. 59	32.49	37.00	-4.51	QP
6	946.6500	35.68	-3. 55	32.13	37.00	-4.87	QP

0

30.00

127.00

EUT	LCD Monitor	Model Name	24B2		
Temperature	25°C	Relative Humidity	60%		
Test Voltage	AC 230V/50Hz	Polarization	Horizontal		
Test Mode	HDMI 1920*1080/60Hz	2			
Test Engineer	Jason Yang				
80 dBuV/m					
40					

1

X

321.00

418.00

224.00

5

Ж

4

709.00

Ann

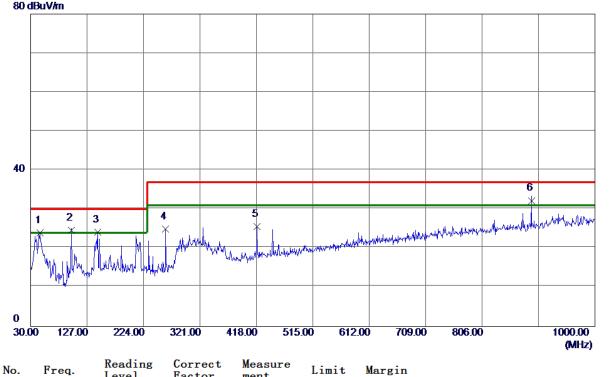
1000.00 (MHz)

w/w

806.00

× 4

612.00


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	296.7500	39.53	-15. 37	24.16	37.00	-12.84	QP
2	418.9700	39.65	-12.49	27.16	37.00	-9.84	QP
3 *	593. 5700	41.65	-8.73	32.92	37.00	-4. 0 8	QP
4	631.4000	38.41	-8.18	30.23	37.00	-6.77	QP
5	741.9800	39.15	-6.46	32.69	37.00	-4.31	QP
6	911.7300	37.01	-4.66	32.35	37.00	-4.65	QP

515.00

EUT	LCD Monitor	Model Name	24B2
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 230V/50Hz	Polarization	Vertical
Test Mode	HDMI 1080P		
Test Engineer	Jason Yang		
90 dBul/kg			

	•	Level	ractor	ment		-	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	46. 4900	40.75	-16. 69	24.06	30.00	-5 . 9 4	QP
2	99.8399	45. 59	-2 0. 9 8	24.61	30.00	-5.39	QP
3	145.4299	40.33	-16.22	24.11	30.00	-5.89	QP
4	261.8299	41.46	-16. 57	24.89	37.00	-12.11	QP
5	418.9700	37.95	-12.28	25.67	37.00	-11.33	QP
6 *	890.8750	36.83	-4.59	32.24	37.00	-4.76	QP

EUT			LCD Mo	onito	r		Mod	del I	Name		24B2	2	
Temp	perature		25°C				Rela	Relative Humidity			60%		
Test	Voltage		AC 230	V/50	Hz		Pola	ariz	ation		Horiz	zontal	
Test	Mode		HDMI 1	080F	2								
Test	Engineer		Jason Y	′ang									
00.4	10.4 <i>1</i>												
0.08	1BuV/m												
								_					
								+					
40								_					
							4			5		6	
						3	;	X		X		X	
				2		×.				din la i	dia .	MAN	Manthanta
			4	k.			il ash	U.	Mathburned	MAN MAN	~ may	MILL ANK	where the second
			×	abola ala	للتعليماني	Munnith	WIC MAN MUT	909 M90 T					
	Which will	Mar Mary	I AN MART	n na markan	(MManera)								
	" "When here here here here here here here h	" "Whyte	walker war					_					
0													
30.0	0 127.00	224.0	0 321.0	0	418.00	515.0	0 612	.00	709.0	0 80	6.00		1000.00 (MHz)
No.	Freq.	Readi Level	ng Cor Fac	rect tor	Me: mei	asure nt	Limit	Ma	rgin				
	MHz	dBuV/1	n dB		dBı	uV/m	dBuV/m	dB		Detect	tor		
1		0 38.17	-18				37.00		6.93	QP			
2		0 37.30	-14.				37.00		4.21	QP			
3	445.160	0 40.49	-11			. 62	37.00		5. 38	QP			

-4.59

-4.25

-4.52

QP QP

QP

QP

37.00

37.00

37.00

593. 5700 41. 14

741.9800 39.21

890.3900 37.48

4

6

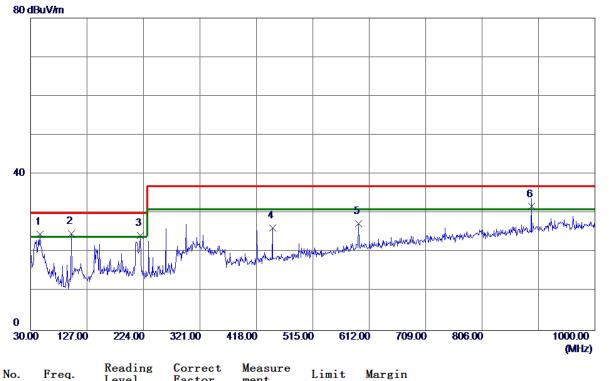
5*

-8.73

-**6.** 46

-5.00

32.41


32.75

32.48

EUT	LCD Monitor	Model Name	24B2
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 110V/60Hz	Polarization	Vertical
Test Mode	HDMI 1920*1080/60Hz		
Test Engineer	Jason Yang		

	-	Level	ractor	ment		-	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	46.4900	41.37	-16. 69	24.68	30.00	-5.32	QP
2	99.8399	45.73	-2 0. 98	24.75	30.00	-5.25	QP
3	218.6650	43.39	-19.08	24.31	30.00	-5. 69	QP
4	445.6450	37.75	-11.52	26.23	37.00	-10.77	QP
5	594.0550	36.06	-8.63	27.43	37.00	- 9. 57	QP
6 *	890.8750	36.35	-4.59	31.76	37.00	-5.24	QP


EUT			LCD Mo	onito	r		Mod	del Name		24B2		
Temp	perature		25°C				Rela	ative Hur	nidity	60%		
Test	Voltage		AC 110	V/60	Hz		Pola	arization		Horizor	ntal	
Test	Mode		HDMI 1	920*	1080/	60Hz	•			•		
Test	Engineer		Jason Y	'ang								
80 d	lBuV <i>i</i> m	·										
40												
						4			6 ¥			
				2		×		K Manhadranaw	J.I.	Mul M	Mili	Munum Lunin Au
		1	₽ 			allumat	nantration	Handrahana	W MARY	No from March 14	. A fantes	
	Mary mar	when when w	Warman Marin	WAY GUN	Norman	e description of	n					
	Winne	<u>••</u> •••••••	ψ ^{,,}									
0		001.0			140.00	E4E 0	0.010	00 700		00.00		4000.00
30.0	0 127.00	224.0	0 321.0	U	418.00	515.0	0 612	.00 709	UU 8	06.00		1000.00 (MHz)
No.	Freq.	Readin Level	ng Cor: Fac	rect tor	men		Limit	Margin				
1	MHz	dBuV/1	n dB -15.		dBu 17		dBuV/m 30,00	dB -12,86	Deteo QP	tor		

1 148. 3400 33. 07 -15. 93 17. 14 30. 00 -12. 86 QP 2 325. 8500 36. 64 -14. 51 22. 13 37. 00 -14. 87 QP 3 418. 9700 38. 87 -12. 49 26. 38 37. 00 -10. 62 QP 4 445. 1600 40. 27 -11. 87 28. 40 37. 00 -8. 60 QP 5 * 593. 5700 41. 37 -8. 73 32. 64 37. 00 -4. 36 QP 6 741. 9800 38. 27 -6. 46 31. 81 37. 00 -5. 19 QP		MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	
3 418.9700 38.87 -12.49 26.38 37.00 -10.62 QP 4 445.1600 40.27 -11.87 28.40 37.00 -8.60 QP 5 * 593.5700 41.37 -8.73 32.64 37.00 -4.36 QP	1	148. 3400	33.07	-15.93	17.14	30.00	-12.86	QP	
4 445.1600 40.27 -11.87 28.40 37.00 -8.60 QP 5 * 593.5700 41.37 -8.73 32.64 37.00 -4.36 QP	2	325.8500	36.64	-14.51	22.13	37.00	-14.87	QP	
5 * 593. 5700 41. 37 -8. 73 32. 64 37. 00 -4. 36 QP	3	418.9700	38.87	-12.49	26.38	37.00	-10.62	QP	
	4	445. 1600	40.27	-11.87	28.40	37.00	-8.60	QP	
6 741.9800 38.27 -6.46 31.81 37.00 -5.19 QP	5 :	⊧ <u>593. 5700</u>	41.37	-8.73	32.64	37.00	-4.36	QP	
	6	741.9800	38.27	-6.46	31.81	37.00	-5.19	QP	

4.1.8 TEST RESULTS (ABOVE 1 GHZ)

EUT	LCD Monitor	Model Name	24B2
Temperature	25°C	Relative Humidity	60%
Test Voltage	AC 230V/50Hz	Polarization	Vertical
Test Mode	D-SUB 1920*1080/60	Hz	
Test Engineer	Jason Yang		
86.9 dBuV/m			
			11
1 	3 * 5		9
MAN PANAMANA	1 www.	7	man the main and the main and the
WWWWWWWWWW	the whether the standard of th	wand wat the and a second wat the second wat the second se	

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	1290.0000	57.72	-8.32	49.40	70.00	-20.60	Peak
2 *	1290.0000	47.97	-8.32	39.65	50.00	-10.35	AVG
3	1995. 0000	53.67	-6.31	47.36	70.00	-22.64	Peak
4	1995. 0000	43.47	-6.31	37.16	50.00	-12.84	AVG
5	2837.5000	47.02	-3.15	43.87	70.00	-26.13	Peak
6	2837.5000	36.20	-3.15	33.05	50.00	-16.95	AVG
7	3957.5000	40.91	-1.54	39.37	74.00	-34.63	Peak
8	3957.5000	31.09	-1.54	29.55	54. 00	-24.45	AVG
9	4995.0000	44.26	0.78	45.04	74.00	-28.96	Peak
10	4995.0000	35.63	0.78	36.41	54.00	-17.59	AVG
11	5925.0000	50.93	0.61	51.54	74.00	-22.46	Peak
12	5925.0000	41.54	0.61	42.15	54.00	-11.85	AVG

EUT	•	l	_CD Monitor		Mod	el Name		24B2	
Tem	perature	2	25°C		Rela	tive Hum	idity	60%	
	Voltage		AC 230V/50	Hz		rization		Horizonta	al
	Mode	[D-SUB 1920	*1080/60H	Z				
Test	Engineer		Jason Yang						
1031	Lingineer	,	ason rang						
86.9	dBuV/m								
	1								11
		3		<u></u>					
	2	¥ - ₹		· *					112
	L AMM M	¶v î	و المقارب	MA I			9		
	HAALL W		Who who who who	× Jashansunder	- Mar markthe providence	Approximation	#Annte Contraction	househan	- Anthensenser
	WVU	" ***U**	4ª "			·	10		
							×		
-13.1		0000 00	0500.00	0000 00 050	0.00 1000	00 4500		000 00	0000 00
100	0.00 1500.00	2000.00	2500.00	3000.00 350	0.00 4000	.00 4500.	00 5	00.00	6000.00 (MHz)
		n 1-							(MILLZ)
No.	Freq.	Readir Level	ng Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/n		dBuV/m	dBuV/m	dB	Dete	ector	
1	1222. 5000		-8.62	50. 32	70.00	-19.68	Peak		
2 *	1222. 5000		-8.62	41.36	50.00	-8.64	AVG	•	
3	1677. 5000		-7.01	48.09	70.00	-21.91	Peak	τ	
4	1677. 5000		-7.01	38.62	50.00	-11. 38	AVG	-	
5	2000. 0000		-6. 30	44.87	70.00	-25.13	Peak	<u> </u>	
6	2000. 0000		-6. 30	34.15	50.00	-15.85	AVG		
7	2810.0000		-3.26	45.77	70.00	-24.23	Peak	(
8	2810.0000		-3.26	35.26	50.00	-14.74	AVG		
	4660.0000		-0.25	38. 37	74.00	-35.63	Peak		
9			-0.25	28.66	54.00	-25.34	AVG		
9 10	4660.0000	20.91	0.20	20.00					
	<u>4660.0000</u> 5975.0000		0.60	50.99	74.00	-23.01	Peak	C	

EUT		LC	D Monitor		Mode	el Name		24B2		
Temp	perature	25	°C		Rela	tive Humi	dity	60%		
Test	Voltage	AC	230V/50H	z	Pola	rization		Vertical		
Test	Mode	HC	OMI 1920*1	080/60Hz						
Test	Engineer	Ja	son Yang							
86.0.4	lBuV/m									
00.3 0										
		5							11	
	1 7	¥							X	
			- 7					-9	12	
	2 NABAL	M. X	له 🖈 ال الساليات	AL .				1	, ×	
		Malum hole	put in my stand with the	"When all and the second second second	weter when the week of	Maller of Carles and and	all and a second and a	www.ll.ll.	in Brown and and the	
		Current day with	×					1		
12.1										
-13.1	0.00 1500.00	2000.00	2500.00 34	000.00 3500.	.00 4000.	00 4500.0	0 50	00.00	6000.00	
100	0.00 1000.00	2000.00	2000.00 0				~	00.00	(MHz)	
									(nam rsc)	
	_	Reading	Correct	Measure					(iau rz.)	
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			(min iz)	
No.	Freq. MHz		Factor dB	ment dBuV/m	dBuV/m	Margin dB	Deteo	tor	(min iz)	
1	MHz 1142.500	Level dBuV/m 0 55.71	Factor dB -8.97	ment dBuV/m 46.74	dBuV/m 70.00	Margin dB -23.26	Peak	tor	(101112.)	
1 2	MHz 1142.500 1142.500	Level dBuV/m 0 55.71 0 45.22	Factor dB -8.97 -8.97	ment dBuV/m 46.74 36.25	dBuV/m 70.00 50.00	Margin dB -23.26 -13.75	Peak AVG	etor	(11112)	
1 2 3	MHz 1142.500 1142.500 1355.000	Level dBuV/m 0 55.71 0 45.22 0 52.43	Factor dB -8.97 -8.97 -8.04	ment dBuV/m 46.74 36.25 44.39	dBuV/m 70.00 50.00 70.00	Margin dB -23.26 -13.75 -25.61	Peak AVG Peak	tor	(1112)	
1 2 3 4	MHz 1142.500 1142.500 1355.000 1355.000	Level dBuV/m 0 55.71 0 45.22 0 52.43 0 42.22	Factor dB -8.97 -8.97 -8.04 -8.04	ment dBuV/m 46.74 36.25 44.39 34.18	dBuV/m 70.00 50.00 70.00 50.00	Margin dB -23.26 -13.75 -25.61 -15.82	Peak AVG Peak AVG	etor	(WILE)	
1 2 3 4 5	MHz 1142.500 1142.500 1355.000 1355.000 1995.000	Level dBuV/m 0 55.71 0 45.22 0 52.43 0 42.22 0 57.69	Factor dB -8.97 -8.97 -8.04 -8.04 -6.31	ment dBuV/m 46.74 36.25 44.39 34.18 51.38	dBuV/m 70.00 50.00 70.00 50.00 70.00	Margin dB -23.26 -13.75 -25.61 -15.82 -18.62	Peak AVG Peak AVG Peak	etor	(vm iz.)	
1 2 3 4 5 6 *	MHz 1142. 500 1142. 500 1355. 000 1355. 000 1995. 000 1995. 000	Level dBuV/m 0 55.71 0 45.22 0 52.43 0 42.22 0 57.69 0 48.86	Factor dB -8.97 -8.97 -8.04 -8.04 -6.31 -6.31	ment dBuV/m 46.74 36.25 44.39 34.18 51.38 42.55	dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00	Margin dB -23.26 -13.75 -25.61 -15.82 -18.62 -7.45	Peak AVG Peak AVG Peak AVG	etor	(vm iz.)	
1 2 3 4 5 6 * 7	MHz 1142. 500 1142. 500 1355. 000 1355. 000 1995. 000 2495. 000	Level dBuV/m 0 55.71 0 45.22 0 52.43 0 42.22 0 57.69 0 48.86 0 45.88	Factor dB -8.97 -8.97 -8.04 -8.04 -6.31 -6.31 -4.52	ment dBuV/m 46.74 36.25 44.39 34.18 51.38 42.55 41.36	dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00	Margin dB -23.26 -13.75 -25.61 -15.82 -18.62 -7.45 -28.64	Peak AVG Peak AVG Peak AVG Peak	etor	(vm iz.)	
1 2 3 4 5 6 * 7 8	MHz 1142. 500 1142. 500 1355. 000 1355. 000 1995. 000 2495. 000 2495. 000	Level dBuV/m 0 55.71 0 45.22 0 52.43 0 42.22 0 57.69 0 48.86 0 45.88 0 37.40	Factor dB -8.97 -8.97 -8.04 -8.04 -6.31 -6.31 -4.52 -4.52	ment dBuV/m 46.74 36.25 44.39 34.18 51.38 42.55 41.36 32.88	dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00	Margin dB -23.26 -13.75 -25.61 -15.82 -18.62 -7.45 -28.64 -17.12	Peak AVG Peak AVG Peak AVG Peak AVG			
1 2 3 4 5 6 * 7 8 9	MHz 1142. 500 1142. 500 1355. 000 1355. 000 1995. 000 2495. 000 2495. 000 4985. 000	Level dBuV/m 0 55.71 0 45.22 0 52.43 0 42.22 0 57.69 0 48.86 0 45.88 0 37.40 0 42.37	Factor dB -8.97 -8.97 -8.04 -8.04 -6.31 -6.31 -4.52 -4.52 0.75	ment dBuV/m 46.74 36.25 44.39 34.18 51.38 42.55 41.36 32.88 43.12	dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00 74.00	Margin dB -23.26 -13.75 -25.61 -15.82 -18.62 -7.45 -28.64 -17.12 -30.88	Peak AVG Peak AVG Peak AVG Peak AVG Peak			
1 2 3 4 5 6 * 7 8	MHz 1142. 500 1142. 500 1355. 000 1355. 000 1995. 000 2495. 000 2495. 000	Level dBuV/m 0 55.71 0 45.22 0 52.43 0 42.22 0 57.69 0 48.86 0 45.88 0 37.40 0 42.37 0 32.66	Factor dB -8.97 -8.97 -8.04 -8.04 -6.31 -6.31 -4.52 -4.52	ment dBuV/m 46.74 36.25 44.39 34.18 51.38 42.55 41.36 32.88	dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00	Margin dB -23.26 -13.75 -25.61 -15.82 -18.62 -7.45 -28.64 -17.12	Peak AVG Peak AVG Peak AVG Peak AVG			

EUT	•	L	CD Monitor		Mode	Model Name			24B2			
Tem	perature	2	5°C		Rela	Relative Humidity						
Test	Voltage	A	C 230V/50H	lz	Pola	rization	-	Horizon	tal			
	Mode		HDMI 1920*1080/60Hz									
	Test Engineer		Jason Yang									
iesi	Engineer	Ja	ason rang									
86.9 c	dBuV/m											
		5							11			
	1 3	1	7	·				-9				
	L HMMAN MU	, ¶.	اللا المراجا					X	12			
	APPE SM	han an the	with the state of	multur	Maryanteliphications	Mayhongo and	the man the second	appli o when the	www.whentherenter			
	W W X W	Martha Mar		<				×				
-13.1												
	0.00 1500.00	2000.00	2500.00 3	000.00 3500	.00 4000.	.00 4500.	00 50	00.00	6000.00			
	1000	2000.00							(MHz)			
	_	Reading	g Correct	Measure								
No.	Freq.	Level	Factor	ment	Limit	Margin						
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Dete	ctor				
1	1272. 5000		-8.40	43.40	70.00	-26.60	Peak					
2	1272. 5000		-8.40	33. 52	50.00	-16.48	AVG					
3	1457.5000		-7.59	43.03	70.00	-26.97	Peak					
4	1457.5000		-7.59	34.15	50.00	-15.85	AVG					
5	1995.0000		-6.31	48.95	70.00	-21.05	Peak					
6* 7	1995.0000		-6.31	38.62	50.00	-11.38	AVG					
1	2780.0000		-3.38	42.94	70.00 50.00	-27.06	Peak AVG					
	2780.0000		-3. 38 0. 70	32.47 42.83	74.00	-17.53 -31.17	Peak					
8		44.10	0.70									
8 9	4967.5000		0 70	32 05	54 00	-21 95	AVC-					
8	4967.5000 4967.5000 5970.0000	31.35	0.70	32.05 45.30	54.00 74.00	-21.95 -28.70	AVG Peak					

EUT		LC	D Monitor		Mode	el Name		24B2	
Temp	perature	25	°C		Rela	tive Humi	idity	60%	
Test '	Voltage	AC	230V/50H	Z	Pola	rization		Vertical	
Test	Mode	HD	MI 1080P						
Test	Engineer	Jas	son Yang						
86.9 d	BuV/m	·							
[
									11
	<u>1³</u>	5						9	Ϋ́ν
	MÅQ.						+		12
	14 P M	۱, 🖌	WW	MA L.				- Paratar	. *
	AN MA Calle	- Uni Warth	are way when an	" What have a second	alawasangan	and the second	the weather the second	- Kanalan Kanal	Mar 1944 W. M. Margara Mayor
			\uparrow						
-13.1									
100	0.00 1500.00	2000.00	2500.00 30	00.00 3500	.00 4000.	.00 4500.0	00 50	00.00	6000.00
									(MHz)
No.	Freq.	Reading	Correct	Measure	Limit	Margin			
	MHz	Level dBuV/m	Factor dB	ment dBuV/m	dBuV/m	dB	Detec	tor	
1	1212. 500		-8.67	47.55	70.00	-22.45	Peak		
2	1212. 500		-8.67	37.16	50.00	-12.84	AVG		
3	1290.000		-8.32	48.90	70.00	-21.10	Peak		
4 *	1290.000		-8.32	38.15	50.00	-11.85	AVG		
5	1995.000		-6.31	46.86	70.00	-23.14	Peak		
6	1995.000		-6.31	36.25	50.00	-13.75	AVG		
0	2500.000) 48.08	-4. 50	43. 58	70.00	-26.42	Peak		
7	2000.000		-4.50	33.22	50.00	-16.78	AVG		
7 8	2500.000								
7 8 9	2500.000 4995.000) 44.76	0.78	45.54	74.00	-28.46	Peak		
7 8 9 10	2500.000 4995.000 4995.000) 44.76) 36.06	0.78 0.78	45. 54 36. 84	54.00	-17.16	AVG		
7 8 9	2500.000 4995.000) 44.76) 36.06) 50.93	0.78	45.54					

EUT			LCD I	Monitor	r		Mode	Model Name			24B2		
Temp	erature		25°C				Rela	Relative Humidity					
•	Voltage		AC 230V/50Hz					Polarization			ntal		
							1 014			1101120			
Test Mode				HDMI 1080P									
Test Engineer			Jasor	n Yang									
86.9 dF	D-1/1												
00.9 UI													
-			<u> </u>										
-	3										11		
	×	5									×		
1	AM		1		9 X						12		
ł	K . H MAL A	61.	K	da i i	M					مار.	×		
2	AALIYNY	_ ″Ц¶	hal well word	"Hademore and	X	whether		Mary Mary Mary	androwed	harry Mutheren	www.ndowers.yudeed.go		
Ţ	www.ii	*****	Kha										
F													
Γ													
F													
-13.1													
	0.00 1500.00	2000.0	10 25	00.00	3000.00) 3500.	00 4000.	00 4500.0	00 5	000.00	6000.00		
	0.00 1500.00	2000.0	10 25	00.00	3000.00	3500.	00 4000.	00 4500.0	00 5	000.00	6000.00 (MHz)		
1000		2000.0		00.00 Correct) 3500 . easure			00 5	000.00			
	Freq.	Readi Level	ing (l l	Correct Factor	t Me me	easure ent	Limit	Margin					
1000 No.	Freq. MHz	Readi Level dBuV/	ing (l] /m (Correct Factor dB	t Me me dB	easure ent buV/m	Limit dBuV/m	Margin dB	Dete	ector			
1000 No.	Freq. MHz 1020.0000	Readi Level dBuV/ 52.02	ing (1] /m (2 -	Correct Factor dB -9.51	t Me me dB 42	easure ent SuV/m .51	Limit dBuV/m 70.00	Margin dB -27.49	Dete Peak	ector			
1000 No.	Freq. MHz 1020.0000 1020.0000	Readi Leve dBuV/ 52.02 41.56	ing (1] /m (2 - 5 -	Correct Factor dB -9.51 -9.51	t Me me dB 42 32	easure ent GuV/m 2.51 2.05	Limit dBuV/m 70.00 50.00	Margin dB -27.49 -17.95	Dete Peak AVG	ector C			
1000 No. 1 2 3	Freq. MHz 1020.0000 1020.0000 1222.5000	Readi Level dBuV/ 52.02 41.56 59.72	ing (1) / <u>m (</u> 2 -	Correct Factor dB -9.51 -9.51 -8.62	t Me me dB 42 32 51	easure ent 	Limit dBuV/m 70.00 50.00 70.00	Margin dB -27.49 -17.95 -18.90	Dete Peak AVG Peak	ector C			
1000 No. 1 2 3 4 *	Freq. MHz 1020.0000 1020.0000 1222.5000 1222.5000	Readi Level dBuV/ 52.02 41.56 59.72 50.73	ing (1) /m (2 - 3 - 3 -	Correct Factor dB -9.51 -9.51 -8.62 -8.62	t Me me dB 42 32 51 42	easure ent 5uV/m .51 .05 .10 .11	Limit dBuV/m 70.00 50.00 70.00 50.00	Margin dB -27.49 -17.95 -18.90 -7.89	Dete Peak AVG Peak AVG	ector c			
1000 No. 1 2 3 4 * 5	Freq. MHz 1020.0000 1020.0000 1222.5000 1222.5000 1662.5000	Readi Level dBuV/ 52.02 41.56 59.72 50.73 50.73	ing (1] /m (2 - 3 - 2 - 2 - 2 -	Correct Factor dB -9.51 -9.51 -8.62 -8.62 -7.04	t Me me dB 42 32 51 42 42 46	easure ent 	Limit dBuV/m 70.00 50.00 70.00 50.00 70.00	Margin dB -27.49 -17.95 -18.90 -7.89 -23.82	Dete Peak AVG Peak AVG Peak	ector c			
1000 No. 1 2 3 4 * 5 6	Freq. MHz 1020.0000 1020.0000 1222.5000 1222.5000 1662.5000 1662.5000	Readi Level dBuV/ 52.02 41.56 59.72 50.73 53.22 43.45	ing (1 1 /m (2 - 3 - 2 - 5 - 5 - 5 -	Correct Factor dB -9.51 -9.51 -8.62 -8.62 -7.04 -7.04	t Me me dB 42 32 51 42 46 36	easure ent 	Limit dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00	Margin dB -27.49 -17.95 -18.90 -7.89 -23.82 -13.59	Dete Peak AVG Peak AVG Peak AVG	ector c c			
1000 No. 1 2 3 4 * 5 6 7	Freq. MHz 1020.0000 1222.5000 1222.5000 1662.5000 1662.5000 1995.0000	Readi Level dBuV/ 52.02 41.56 59.72 50.73 53.22 43.45 0 49.95	ing (/m (2 - 3 - 2 - 5 - 5 - 5 -	Correct Factor dB -9.51 -9.51 -8.62 -8.62 -7.04 -7.04 -6.31	t Me me dB 42 32 51 42 46 36 36 43	easure ouV/m . 51 . 05 . 10 . 11 . 18 . 41 . 64	Limit dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00	Margin dB -27.49 -17.95 -18.90 -7.89 -23.82 -13.59 -26.36	Dete Peak AVG Peak AVG Peak AVG Peak	ector c c			
1000 No. 1 2 3 4 * 5 6 7 8	Freq. MHz 1020.0000 1222.5000 1222.5000 1662.5000 1662.5000 1995.0000	Readi Level dBuV/ 52.02 51.50 59.72 50.73 53.22 143.45 149.95 140.19	ing (]]] 	Correct Factor dB -9.51 -9.51 -8.62 -8.62 -7.04 -7.04 -6.31 -6.31	t Me me dB 42 32 51 42 46 36 43 33	easure auV/m . 51 . 05 . 10 . 11 . 18 . 41 . 64 . 88	Limit dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00	Margin dB -27.49 -17.95 -18.90 -7.89 -23.82 -13.59 -26.36 -16.12	Dete Peak AVG Peak AVG Peak AVG Peak	ector c c c			
1000 No. 1 2 3 4 * 5 6 7 8 9	Freq. MHz 1020.0000 1022.5000 1222.5000 1662.5000 1662.5000 1995.0000 2840.0000	Readi Level dBuV/ 52.02 41.56 59.72 50.73 53.22 43.45 49.95 40.19 40.19 48.25	ing () 1) 2 - 3 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Correct Factor dB -9.51 -9.51 -8.62 -7.04 -7.04 -6.31 -6.31 -3.14	t Me me dB 42 32 51 42 46 36 43 33 45	easure auV/m . 51 . 05 . 10 . 11 . 18 . 41 . 64 . 88 . 11	Limit dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00 70.00	Margin dB -27.49 -17.95 -18.90 -7.89 -23.82 -13.59 -26.36 -16.12 -24.89	Dete Peak AVG Peak AVG Peak AVG Peak AVG Peak	ector c c c			
1000 No. 1 2 3 4 * 5 6 7 8	Freq. MHz 1020.0000 1222.5000 1222.5000 1662.5000 1662.5000 1995.0000	Readi Level dBuV/ 52. 02 41. 56 59. 72 50. 73 53. 22 43. 45 343. 45 49. 95 40. 19 48. 25 38. 20	ing () 1] 2 - 5 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	Correct Factor dB -9.51 -9.51 -8.62 -8.62 -7.04 -7.04 -6.31 -6.31	t Me me dB 42 32 51 42 46 36 43 33 45 35	easure auV/m . 51 . 05 . 10 . 11 . 18 . 41 . 64 . 88	Limit dBuV/m 70.00 50.00 70.00 50.00 70.00 50.00 70.00 50.00	Margin dB -27.49 -17.95 -18.90 -7.89 -23.82 -13.59 -26.36 -16.12	Dete Peak AVG Peak AVG Peak AVG Peak	ector c c c			

EUT	•	L	CD Monitor		Mode	el Name		24B2			
Tem	perature	2	5°C		Rela	tive Hum	idity	60%			
Test	Voltage	A	C 110V/60H	łz	Pola	rization		Vertical			
Test	Mode	Н	HDMI 1920*1080/60Hz								
Test	Engineer	J	Jason Yang								
	<u> </u>		<u> </u>								
86.9 (dBuV/m				1	1	1				
		a X									
		<u> </u>						9	Ă		
	2 . WA	9	. *					X	× ×		
	MARIN	Mr	Burn May	Helichel Manushie marine	Anthony and and a	my when here good	June to day while	, and the second second	with the many many of		
		"Unit My My	Mane Magerman		- Martin Contraction	. W. March Marrie R.					
-13.1											
100	00.00 1500.00	2000.00	2500.00	3000.00 3500	.00 4000.	.00 4500.	00 50	00.00	6000.00		
									(MHz)		
No.	Freq.	Reading			Limit	Margin					
	MHz		Factor dB	ment dBuV/m	dBuV/m	dB	Dete	-			
1	1142. 500	$\frac{dBuV/m}{0.56.02}$	-8.97	47.05	70.00	-22.95	Peak				
				38.65	50.00	-11. 35	AVG				
	1142 500	0 47 62	-8 47		00.00		Peak				
2	1142.500		-8.97		70,00	-24 74	Peak				
2 3	1360.000	0 53.28	-8.02	45.26	70.00 50.00	-24.74					
2 3 4	1360.000 1360.000	0 53.28 0 43.28	-8.02 -8.02	45.26 35.26	50.00	-14.74	AVG				
3 4 5	1360.000 1360.000 1992.500	0 53.28 0 43.28 0 58.23	-8.02 -8.02 -6.32	45.26 35.26 51.91		-14.74 -18.09					
2	1360.000 1360.000	0 53.28 0 43.28 0 58.23 0 47.54	-8.02 -8.02	45.26 35.26	50.00 70.00	-14.74	AVG Peak				
2 3 4 5 6 * 7	1360.000 1360.000 1992.500 1992.500	0 53.28 0 43.28 0 58.23 0 47.54 0 46.39	-8.02 -8.02 -6.32 -6.32	45.26 35.26 51.91 41.22	50.00 70.00 50.00	-14.74 -18.09 -8.78	AVG Peak AVG				
2 3 4 5 6 *	1360.000 1360.000 1992.500 1992.500 2495.000	0 53.28 0 43.28 0 58.23 0 47.54 0 46.39 0 39.78	-8.02 -8.02 -6.32 -6.32 -4.52 -4.52 0.78	45. 26 35. 26 51. 91 41. 22 41. 87 35. 26 45. 36	50.00 70.00 50.00 70.00 50.00 74.00	-14.74 -18.09 -8.78 -28.13 -14.74 -28.64	AVG Peak AVG Peak				
2 3 4 5 6 * 7 8	1360.000 1360.000 1992.500 2495.000 2495.000 4995.000 4995.000	0 53.28 0 43.28 0 58.23 0 47.54 0 46.39 0 39.78 0 44.58 0 34.84	-8. 02 -8. 02 -6. 32 -6. 32 -4. 52 -4. 52 0. 78 0. 78	45. 26 35. 26 51. 91 41. 22 41. 87 35. 26 45. 36 35. 62	50.00 70.00 50.00 70.00 50.00 74.00 54.00	-14.74 -18.09 -8.78 -28.13 -14.74 -28.64 -18.38	AVG Peak AVG Peak AVG Peak AVG				
2 3 4 5 6 * 7 8 9	1360.000 1360.000 1992.500 1992.500 2495.000 2495.000 4995.000	0 53.28 0 43.28 0 58.23 0 47.54 0 46.39 0 39.78 0 44.58 0 34.84 0 49.41	-8.02 -8.02 -6.32 -6.32 -4.52 -4.52 0.78	45. 26 35. 26 51. 91 41. 22 41. 87 35. 26 45. 36	50.00 70.00 50.00 70.00 50.00 74.00	-14.74 -18.09 -8.78 -28.13 -14.74 -28.64	AVG Peak AVG Peak AVG Peak				

EUT		LC	D Monitor	Mode	el Name		24B2					
Temp	perature	25	°C		Rela	tive Hum	idity	60%				
· ·	Voltage	AC	; 110V/60H		Polarization			al				
	Mode		HDMI 1920*1080/60Hz									
				000/00112								
Test	Engineer	Jas	Jason Yang									
86.9 d	BuV/m											
[
	1 3	7							11			
		5 *							Â			
	I I MAMM	Μ, 8,	أسلان المتعرا	10 million and a stranger				withmension	12			
		6 Wenter Hall	AND IN THE PROPERTY AND	LEPHALING, AND A CONTRACTOR	and a stranger way	Havenderston	and a start and	ward t karnen (karken)	awer when the second of the			
		×		^								
-13.1												
	0.00 1500.00	2000.00	2500.00 30	000.00 3500	.00 4000.	.00 4500.	00 5	00.00	6000.00			
									(MHz)			
		Reading	Correct	Measure								
No.	Freq.	Level	Factor	ment	Limit	Margin						
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Dete					
1	1165.000		-8.87	43.46	70.00	-26.54	Peak					
2	1165.000		-8.87	33. 25	50.00	-16.75	AVG					
3	1305.000		-8.26	43.81	70.00	-26.19	Peak					
4 5	1305.000		-8.26	34.15	50.00	-15.85	AVG					
	1650.000		-7.07	42.86	70.00	-27.14	Peak					
6	1650.000		-7.07 -6.32	32.68 46.76	50.00	-17.32	AVG					
7	1992. 500		-6. 32	<u>46.76</u> 36.28	70.00 50.00	-23. 24 -13. 72	Peak AVG					
7		n 19 cn	0.02									
8 *	1992. 500			43 19	70 00	-26 ×1	Poor					
8 * 9	1992. 500 2822. 500	0 46. 40	-3.21	43.19	70.00	-26.81	Peak AVG					
8 *	1992. 500	0 46.40 0 36.66		43. 19 33. 45 48. 08	70.00 50.00 74.00	-26.81 -16.55 -25.92	AVG Peak					

4.2 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS

4.2.1 LIMITS

Requirements for conducted emissions from AC mains power ports of Class A equipment

Table clause	Frequency Range MHz	Coupling Device	Detector Type / bandwidth	Class A Limits (dB(µV))
A8.1	0.15 - 0.5	AMN	Quasi Peak /	79
A0.1	0.5 - 30	Aivin	9 kHz	73
A8.2	0.15 - 0.5	AMN	Average /	66
A0.2	0.5 - 30		9 kHz	60

Requirements for conducted emissions from AC mains power ports of Class B equipment

Table clause	Frequency Range MHz	Coupling Device	Detector Type / bandwidth	Class B Limits (dB(µV))
	0.15 - 0.5			66-56
A9.1	0.5 - 5	AMN	Quasi Peak / 9 kHz	56
	5 - 30		5 KHZ	60
	0.15 - 0.5			56-46
A9.2	0.5 - 5	AMN	Average / 9 kHz	46
	5 - 30			50

NOTE:

 The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value

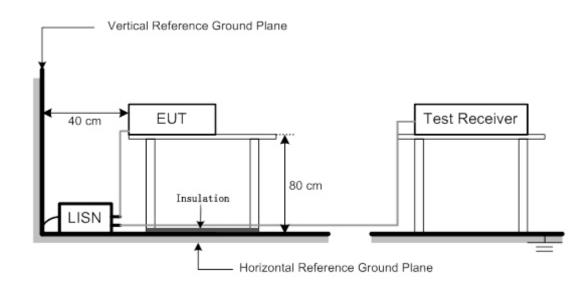
4.2.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1*	LISN	EMCO	3816/2SH	52766	Mar. 10, 2022
2	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 10, 2020
3	TWO-LINE V-NETWORK	R&S	ENV216	100526	Mar. 10, 2020
4	EMI Test Receiver	R&S	ESR3	101862	Aug. 11, 2019
5	Cable	N/A	N/A(6m)	N/A	Mar. 12, 2020
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

"*" calibration period of equipment list is three year.

Except * item, all calibration period of equipment list is one year.


4.2.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

4.2.6 TEST RESULTS

EUT			LCD	Mon	itor		Μ	odel N	lame)	24	IB2	
Temp	perature		25°C	;			R	elative	Hur	nidity	53	3%	
Test '	Voltage		AC 2	230V/	50F	łz	Pl	nase			Li	ne	
Test	Mode		D-Sl	JB 19	920'	1080/60H	z						
Test	Engineer		Jaso	n Yar	ng								
b 08	lBuV												
	1												
	× 3		~										
	1 5	_									11		
							_				×H		
	2 4 6		X							and and			
40	XVX	$L \Lambda \Lambda$	$\gamma/\downarrow \downarrow$	h			hn.	$\Lambda \Delta A$	W	V V V		$ \land $	
		 8	V	\mathbb{N}^{1}	3	$[\ \ \ \ \ \ \ \ \ \ \ \ \ $	$\Lambda \Lambda \Lambda$	V I			12	1 James	
		× v	10	*		1 V -	V 1				׾ľ	~	N MM
			<u> </u>			γ							+
					√								1/
													×
0													
0.15			0.50		1.0	0			5.00		10.0	00	30.00(MHz
						-			0.00				22.20 from 12
		Readir	na C	orrec	+	Measure							
No.	Freq.	Level		actor		measure	Limit	Mar	gin				
	MHz	dBuV	dl			dBuV	dBuV	dB		Detec	tor		
1	0.1613	46.11	9.	81		55.92	65.40	-9.4	8	QP			
2	0.1613	31.15	9.	81		40.96	55.40	-14.	44	AVG			
3	0.2040	42.59	9.	80		52.39	63.45	-11.	06	QP			
4	0 0040	01 15	^	00		40.05	E0 4E	10	FO	AUC			

0.2040

0.2445

0.2445

0.2827

0.2827

0.5076

0.5076

8.3760

8.3760

4

5

6 7

8

9 *

10

11

12

31.15

40. 51

30.69

37.45

25.65

36.86

22.46

38.00

23.54

9.80

9.81

9.81

9.82

9.82

9.86

9.86

10.37

10.37

40.95

50.32

40.50

47.27

35.47

46.72

32.32

48.37

33.91

-12.50

-11.62

-11.44

-13.47

-15.27

-**9.** 28

-13.68

-11.63

-16.09

AVG

AVG

AVG

AVG

QP

QP

AVG

QP

QP

53.45

61.94

51.94

60.74

50.74

56.00

46.00

60.00

50.00

EUT			LC	D	Мо	ni	tor			Mo	del N	Vam	ne		2	4B2		
Temp	erature		25	5°C						Rel	ative	e Hu	umic	lity	5	3%		
Test	Voltage		A	C 2	30\	V/5	50H	łz		Pha	ase			-	Ν	leutral		
Test I	Mode		D-	SL	JB ·	19	20	*1080/60H	z									
Test I	Engineer		Ja	ISO	n Y	'n	g											
80 d	lBuV																	
-	1					_	_											
ŀ	× 3 5					+	-					_						
				9		+	+								11			
	× \4 _	Mr. A	7	X		_	+							and a	N			
40	Y \/×	8/1/	~	10	А	ſ		$ \neg \land$	h	\mathcal{A}	VN	m	γYY	¥ -	12	$+\Lambda$		
				×	۲.		Ŋ	(V '	V V	V	·				$ \times $		AM	
-						+	N							_		$Y \to \zeta$		
																Y 1	W	
-						+	+			_				_				
-						+	+							_				
0																		
0.15	, ;		0.5	0			1.0	0				5.0	0		10	0.00	30.00(MHz	Z)
No.	Freq.	Readir Level	ng		orre acto		5	Measure ment	Limi	t	Mar	gin						
	MHz	dBuV		dB	3			dBuV	dBuV		dB			etec	tor			
1 2	0.1613	47.21			90 90			57.11 45.05	65.40 55.40		-8.2 -10.		Q	P VG				
2 3	0. 1613	35.15 44.10			90 89			45.05 53.99	63.4		-9.4							
1	0.2040	32.16		9.	89			42.05	53.4	5	-11.	40	A	VG				
5	0.2445	42.15			91			52. 06	61.94		-9.8		Q					
6	0.2445	30.15			91			40.06	51.94		-11.			VG				
7 8	0.2872 0.2872	39.37 28.19			93 93			49.30 38.12	60.60 50.60		-11. -12.		Q]	P VG				
5 9 *	0. 2872	38.01			93). 01	1		48.02	56.0		-7.9							
<u>.</u> .	0.5020	07.00			. 01			07.00	40.0									

-8. 31 -11. 17 -13. 55

AVG

AVG

QP

46.00

60.00

50.00

0.5325 27.68

8.4548 38.20

8.4548 25.82

10.01

10.63

10.63

37.69

48.83

36.45

10

11

EUT			LC	D	Мо	nite	or		Ν	lodel I	Nam	ne			24	1B2		
Temp	perature		25	°C					R	elativ	e Hu	umi	dity		53	3%		
Test	Voltage		AC	23	30\	//5	0H	z	Р	hase					Li	ne		
Test	Mode		нс	DMI	19	20)*1	080/60Hz	<u> </u>									
Test	Engineer		Ja	sor	n Ya	ang	3											
80 c	lBuV																	
						+	\square						-	+				
	1					_	$\left \right $							_				-
	× ³ 5																	
	1 TX	<u>7</u>		9										11				
		X		X			\square							J.M				
		(IN m	nT	Ń								1	www		V	L.		
40	2 × ×	8	V.	10	Д	7		$ \sim $	ha	AAV	$\gamma \gamma$	¥۲	~	12	K	_ <u>M</u>	with Aut	_
	×	V		×		M		r sz v	(V)	1 1 1	V 4			×		11 .	1111111	1
							V	V	v i						$ \rangle$	/ \ 州	₩ YWY Y	
						+	+							+	H			-
																W		
				-+		+	+			_		$\left - \right $		+	$\left \cdot \right $			-
0																		
0.15	ō		0.50)			1.0	0	·		5.0	0			10.0	00	30.00(M	Hz)
		D 11		c				м										
No.	Freq.	Readir Level	ıg		rre cto			Measure ment	Limit	Mar	gin							
	MHz	dBuV		dB				dBuV	dBuV	dB)ete	cto	or			
1	0.1613	47.33		9. 9				57.23	65.40	-8.)P					
2	0.1613	26.15		9. 9				36.05	55.40	-19			VG					
3	0.2040	43.96		9.8	89			53.85	63.45	-9.	60	()P					
4 5	0.2040	29.34		9.8				39.23	53.45	-14			VG					
5	0.2445	42.18		9.9				52.09	61.94	-9.)P					
6	0.2445	30.16		9.9				40.07	51.94	-11			VG					
7	0.2895	39.34		9.9				49.27	60.54	-11			P VO					
8	0.2895	27.20		9.9				37.13	50.54	-13			VG					
9*	0.5325	38.13			. 01			48.14 37.84	56.00 46.00	-7.)P VG					
								N/ 84	46 00				VI-					
10	0.5325	27.83		10						-8.								
	0. 5325 8. 1690 8. 1690	27.83 39.77 27.15		10	. 61 . 61			50. 38 37. 76	60.00 50.00	-9. -12	62	Ģ	P VG					

EUT			LC	CD	Мо	nit	tor		N	lodel I	Nam	ne		2	24B2			
Temp	perature		25	5°C					R	elative	e Hu	umic	lity	5	53%			
Test	Voltage		A	C 2	30\	V/5	50H	łz	Р	hase				٢	Veutral			
Test	Mode		н	DM	119	92(0*1	080/60Hz	2									
Test	Engineer		Ja	soi	n Ya	an	g											
80 d	lBuV																	
[
						1												
	1				_	+	_											
	\times 3 5					+								11				
		7		9														
				Х										2				
	2 4	INN	\sim	h	pro-				~ ~	hour			and the	I N	h.		1 A.L	
40		8 7 7		10	$\forall +$	\mathbf{h}	<u></u>	$ \frown $	AA	/ ∀_∀	VV	V Y		12	+/+	M		
		~		X	<u>۲</u>	- ·	ŲĮ	1 1/	V V V	'					1/1	dehel	MM W	
							μ								VY	MUN	10° 1	
															4	1		
															1			
					_	_	_						_	$\left \right $				
0			0.5				1.0	0			EO				0.00		20.00040	
0.15)		0.5	U			1.0	U			5.0	U		10	0.00		30.00(MH	Z)
No.	Freq.	Readir	ng		orre		;	Measure	Limit	Mar	gin							
	MHz	Level dBuV		dB	icto	or		ment dBuV	dBuV	dB		D	etec	1	r			
1	0. 1613	47.38			90			57.28	65.40	-8.	12	QI		01	L			
2	0. 1613	32.15		9.				42.05	55.40	-13		A						
3	0. 2017	44.01		9.				53.90	63.54	-9.		QI						
	0. 2017	31.15			89			41.04	53.54	-12			/G					
4 5	0. 2445	42.31		9.				52.22	61.94	-9.		QI						
6	0.2445	29.27		9.				39.18	51.94	-12			/G					
7	0.2782	39.52			93			49.45	60 . 87	-11		QI	2					
8	0.2782	27.91			93			37.84	50.87	-13		A	/G					
0 *	0.5325	37.93			. 01			47.94	56.00	-8.		QI						
9*					0.1			26 20	46.00	0	~~		/G					
10	0.5325	26.37			. 01			36. 38		-9.								
9 * 10 11 12	0. 5325 8. 2342 8. 2342	26. 37 40. 17 25. 82		10	. 01 . 62 . 62	2		50. 79 36. 44	40.00 60.00 50.00	-9. -9. -13	21	QI						

EUT			LC	D	Mo	oni	tor		N	1ode	l Nar	ne			24	4B2		
Tempe	rature		25	5°C					R	elat	ive H	um	idit	v	53	3%		
Test Vo				C 2		V/5	50F	17		has		-	- ·.	,		ne		
			-					12	•	nuo	0							
Test Mo	ode		-	DM														
Test Er	ngineer		Ja	ISO	n Y	′an	g											
80 dBu	v																	
]
		_				+	+			_					+			
-																		
1							_			_		-						
×	3					_						4						
	1 And		_	,										1	1			
2 ×	(1)			k.								厂		$\mathbf{\lambda}$	۲.			
	V (6	Inm	m []					9		hr	nha	w	w	<u></u>	11	~		
40	X	F W V ⁴	\forall	2	\uparrow	$\overline{\mathbf{v}}$	5	MM	\mathcal{T}	∕∣₹	v 1 -	-			1			
		· • • •		k	Y		1	/ V 10	γľ					ľ	ΊY	∼ ≁	1 AM	
-		_				+	+			_			$\left \right $		+		+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
							V										₩	
		_				_	_			_		_					_	
0																		
0.15			0.5	0			1.0	0			5.	00			10.	00	30.00(MH	z)
No.	Freq.	Readir Level	ıg		orr		t	Measure ment	Limit	М	argin	L						
1	MHz	dBuV		dB				dBuV	dBuV	d	3		Det	ect	or			
1 (0. 1613	46.10			81			55. 91	65.40		9.49		QP					
2	0. 1613	35.69			81			45.50	55.40		9.90		AVG					
	0. 2017	42.70			80			52.50	63.54		11.04		QP					
	0. 2017 0. 2423	32.50 40.68			80 81			42.30 50.49	53.54 62.02		11.24 11.53		AVG QP					
	0. 2423	30.16			81			39.97	52.02		12.05		AVG					

7*

8

9

10

11

12

0.5100

0.5100

1.7160

1.7160

8.4862

8.4862

36.94

24.23

31.39

19.18

38.30

27.15

9.86

9.86

9.95

9.95

10. 37 10. 37 46.80

34.09

41.34

29.13

48.67

37.52

56. **00**

46.00

56. 00

46.00

60.00

50.00

-9.20

-11.91

-14.66

-16.87

-11. 33 -12. 48 QP

AVG

QP

QP

AVG

AVG

EUT			LC	D N	lon	itor		N	lodel N	ame		2	4B2	
Temp	perature		25	°C				R	elative	Humi	dity	5	3%	
Test	Voltage		AC	230)V/	50F	Ηz	Р	hase			N	leutral	
Test	Mode		HC	DMI	108	30P								
Test	Engineer		Jas	son	Yar	ng								
80 d	lBuV													
					-									
	1													
	× 3 5													
		7	g									11		
		X		ĸ								X		
	2 4 6	IMA	n/T	Υ,	-h				- ~~		m			
40	× ^ V×	HV		1 0 /	\uparrow	m	$ \frown $	$\mathcal{A}\mathcal{A}$	<u>AV VI</u> V	NY ^N	r –	12	$+\Lambda$	
		`8 '		× '				יין	' `			$ \times $	17 1	A M
		×				V	1						V V prim	
													$ \vee $	- I V/ I
					-									
0														
0.15)		0.50)		1.0	0			5.00		10	.00	30.00(MHz)
No.	Frea.	Readir	ıg	Cor			Measure	Limit	Marg	in				
	-	Level		Fac	tor		ment JR.V	dBuV)	h c -		
1	MHz 0.1613	dBuV 47.37		dB 9.90	0		dBuV 57.27	65.40)etec JP	tor		
1 2							39.85	55.40	-15.		۷۲ ۱۷G			
<i>.</i>	0.1613	79 MD		9.90					10.	1				
	0. 1613	29.95 43.79		9.90			53.68	63.35	-9.6	7 (QΡ			
3 4	0.2063	29.95 43.79 32.15			9				-9.6 -11.		QP AVG			
3 4 5		43.79		9.89 9.89 9.9	9 9 1		53.68 42.04 51.89	63.35 53.35 61.86	-11. -9. 9	31 <i> </i> 7 (AVG QP			
3 4 5 6	0. 2063 0. 2063 0. 2468 0. 2468	43.79 32.15 41.98 30.16		9.89 9.89 9.91 9.91	9 9 1 1		53.68 42.04 51.89 40.07	63.35 53.35 61.86 51.86	-11. -9.9 -11.	31 7 (79	AVG QP AVG			
3 4 5 6 7	0. 2063 0. 2063 0. 2468 0. 2468 0. 2850	43.79 32.15 41.98 30.16 39.53		9.89 9.89 9.91 9.91 9.91	9 9 1 1 3		53.68 42.04 51.89 40.07 49.46	63. 35 53. 35 61. 86 51. 86 60. 67	-11. -9.9 -11. -11.	31 <i>A</i> 7 (79 <i>A</i> 21 (AVG QP AVG QP			
3 4 5 6 7 8	0. 2063 0. 2063 0. 2468 0. 2468 0. 2850 0. 2850	43.79 32.15 41.98 30.16 39.53 23.46		9.89 9.89 9.97 9.97 9.97 9.93	9 9 1 1 3 3		53.68 42.04 51.89 40.07 49.46 33.39	63.35 53.35 61.86 51.86 60.67 50.67	-11. -9.9 -11. -11. -17.	31 4 7 0 79 4 21 0 28 4	AVG QP AVG QP AVG			
3 4 5 6 7 8 9 *	0. 2063 0. 2063 0. 2468 0. 2468 0. 2850 0. 2850 0. 2850 0. 5257	43.79 32.15 41.98 30.16 39.53 23.46 37.98		9.89 9.93 9.97 9.93 9.93 9.93 10.0	9 9 1 1 3 3 01		53. 68 42. 04 51. 89 40. 07 49. 46 33. 39 47. 99	63.35 53.35 61.86 51.86 60.67 50.67 56.00	-11. -9.9 -11. -11. -17. -8.0	31 1 7 0 79 1 21 0 28 1 1 0	AVG QP AVG QP AVG QP			
3 4 5 6 7 8	0. 2063 0. 2063 0. 2468 0. 2468 0. 2850 0. 2850	43.79 32.15 41.98 30.16 39.53 23.46		9.89 9.89 9.97 9.97 9.97 9.93	9 9 1 3 3 01 01		53.68 42.04 51.89 40.07 49.46 33.39	63.35 53.35 61.86 51.86 60.67 50.67	-11. -9.9 -11. -11. -17.	31 A 7 0 79 A 21 0 28 A 1 0 5 A	AVG QP AVG QP AVG			

EUT				LC	D	Mc	oni	tor		Μ	odel l	Nan	ne			2	24B2		
Temp	perature	e		25	5°C	,				R	elativ	e Hi	umi	dity	y	5	53%		
Test	Voltage	;		A	C 1	10	V/6	50H	łz	PI	nase			-		L	ine		
	Mode			н	DM	1 1	92	<u>۰</u> *۵	1080/60Hz	,									
									1000/00112	-									
lest	Engine	er		Ja	aso	n Y	ar	ng											
80 d	dBuV																		
]
								+											-
	1	-																	
				5									Į –			.			
	3	_		5											_{				
	2	5		\square				+							4		9	11	
	$[\times]$	hm	many		n N										M	٦.	9	× M	
40	∀4			(M	\cap		m.	1 mm	man	mon		. John	And and		h	<u> </u>	MUNIN	4
40				6		V	W	-m				- and all			8	<u> </u> h	U/N w	12	1
				$ $ \times											}	< [\/10 \\/ [™]	× "	
								_											_
																	1 12		
								+								+			-
																\top			1
0																			
0.15	5			0.5	0			1.)0			5.0	0			10	0.00	30.00(MI	Hz)
No.	Freq.		Readin	ng		orre		t	Measure	Limit	Mar	gin							
10.			Level			acto	or		ment			8111							
-	MHz		lBuV		dE				dBuV	dBuV	dB			Det	ec	tor	<u> </u>		
1	0.163		7.93			90			57.83	65.28	-7.			QΡ					
2	0.163		85.69			90			45.59	55.28	-9.			AVG					
3	0.217		0.71			90			50.61	62.91	-12			QP					
4	0.217		80.45			90	0		40.35	52.91	-12			AVG					
5*	0.467		1.73). 00			51.73	56.56	-4.			QP					
6	0.467		25.69). 00			35.69	46.56	-10	. 87		٩VG					
7	8.099	0 4	0.78		10). 61	1		51.39	60.00	-8.	C 1		QΡ					

36.40

44.23

32.19

44.65 34.38

10.61

10.83

10.83

11. 33 11. 33

5**0. 00**

60.00

50.00

60.00

50.00

-13.60

-15.77

-17.81

-15.35

-15.62

AVG QP

AVG

AVG

QP

8. 0993 25. 79

11.8793 33.40

11.8793 21.36

18.7643 33.32

18.7643 23.05

8

9

10

11

EUT			LC	D	Мо	nite	or		M	odel I	Nan	ne			24	B2			
Temp	perature		25	5°C					R	elativ	e Hi	umic	dity		53	3%			
Test '	Voltage		AC	C 1 [.]	10\	//6	0H	Z	Pł	nase					Ne	eutral			
Test	Mode		НС	DM	119	920)*1	080/60Hz	2										
Test	Engineer		Ja	sor	n Ya	ang	3												
80 d	lBuV		1																
[
	1																		
-	A 3	*											St. Market	9		11 ×		M	
40	2 4 × ×	6 ×	-×	- M	h	ľ	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	at the second	- Annale	and the second		10 ×	h		W	hill have	
0																			
0.15			0.50	0			1.00)		·	5.0	0		1	10.0	00		30.00(MH)	Z)
No.	Freq.	Readin Level	ıg		orre			Measure ment	Limit	Mar	gin								
	MHz	dBuV		dB				dBuV	dBuV	dB	0.1		ete	cto	or				
1 2	0. 1658 0. 1658	47.66 27.73		9. 9.	90 90			57.56 37.63	65.17 55.17	-7. -17		Q A	P VG						
<u>2</u> 3	0. 2243	39.97		9. 9.				49.87	62.66	-12									
	0. 2243	26.38			90			36.28	52.66	-16			VG						
4 5	0. 2940	37.22			94			47.16	60.41	-13		Q							
6	0.2940	26.34			94			36.28	50. 41	-14			VG						_
7 *	0.4605	41.66			. 00			51.66	56.68	-5.		Q							
8	0.4605	30.16		10	. 00			40.16	46.68	-6.			VG						
9	8.2342	41.44			. 62			52. 06	60.00	-7.		Q	P						
10	8.2342	26.35			. 62			36. 97	50.00	-13			VG						
	11 0700	00 00		10	. 83			43.79	60.00	-16	01	Q	D						
11 12	<u>11.8793</u> 11.8793				. 83			30. 22	50.00	-19	. 21		r VG						

5. EMC EMISSION TEST- EN 55032:2015+AC:2016

5.1 RADIATED EMISSION

5.1.1 LIMITS

Class A equipment up to 1000MHz

Table	Frequency		Measureme	ent	Class A limits
clause	range MHz	Facility (see Table A.1)	Distance m	Detector type/ bandwidth	dB(µV/m)
	30-230	OATS/SAC	10		40
A2.1	230-1000	UATS/SAC	10	Quasi peak /	47
	30-230	OATS/SAC	3	120 kHz	50
A2.2	230-1000	UATS/SAC	3		57
	30-230	FAR	10		42 to 35
A2.3	230-1000	FAN	10	Quasi peak /	42
	30-230	FAR	3	120 kHz	52 to 45
A2.4	230-1000	ΓΑΚ	3		52
Apply onl	y A2.1 or A2.2 or <i>J</i>	A2.3 or A2.4 acr	oss the entire f	frequency range.	

Class A equipment above 1000MHz

Table	Frequency		Class A limits				
clause	range MHz	Facility (see Table A.1)	Distance m	Detector type/bandwidth	dB(µV/m)		
_	1000-3000	·		Average /	56		
A3.1	3000-6000	FSOATS	3	1 MHz	60		
	1000-3000	FSUATS	3	Peak /	76		
A3.2	3000-6000			1 MHz	80		
	Apply A3.1 and A3.2 across the frequency range from 1000 MHz to the highest required frequency of measurement derived from Table 1.						

Class B equipment up to 1000MHz

Table	Frequency		Measurement				
clause	range MHz	Facility (see Table A.1)	Distance m	Detector type/ bandwidth	dB(µV/m)		
	30-230	OATS/SAC	10		30		
A4.1	230-1000		10	Quasi peak /	37		
	30-230	OATS/SAC	3	120 kHz	40		
A4.2	230-1000	UATS/SAC	5		47		
	30-230	FAR	10		32 to 25		
A4.3	230-1000	ГАК	10	Quasi peak /	32		
	30-230	FAR	3	120 kHz	42 to 35		
A4.4	230-1000	ГАК	3		42		
Apply onl	y table clause A4.	1 or A4.2 or A4.3	3 or A4.4 acros	s the entire frequence	y range.		

These requirements are not applicable to the local oscillator and harmonics frequencies of equipment covered by Table A.6.

Class B equipment above 1000MHz

Table	Frequency	ent	Class B limits		
clause	range MHz	Facility (see Table A.1)	Distance m	Detector type/bandwidth	dB(µV/m)
	1000-3000			Average /	50
A5.1	3000-6000	FSOATS	3	1 MHz	54
	1000-3000	FSUATS	3	Peak /	70
A5.2	3000-6000			1 MHz	74

Apply A5.1 and A5.2 across the frequency range from 1000 MHz to the highest required frequency of measurement derived from Table 1.

Notes:

- (1) The limit for radiated test was performed according to as following: EN 55032
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Required highest frequency for radiated measurement

Highest internal frequency (F _x)	Highest measured frequency
MHz	MHz
F _x ≦108	1000
108 <f<sub>x ≦500</f<sub>	2000
500< F _x ≦1000	5000
F _x >1000	5 th up to a maximum 6 GHz,

Note for FM and TV broadcast receiver, F_x is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.

5.1.2 MEASUREMENT INSTRUMENTS LIST

Up to 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Receiver	Keysight	N9038A	MY54450004	Aug. 11, 2019
2	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
3	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980284	Mar. 10, 2020
4	Pre-Amplifier	EMC INSTRUMENT	EMC 9135	980283	Mar. 10, 2020
5	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	946	Nov. 24, 2019
6	Trilog-Broadband Antenna	Schwarzbeck	VULB9168	947	Nov. 24, 2019
7	Cable	emci	LMR-400(5m+ 11m+15m)	N/A	Aug. 07, 2019
8	Cable	emci	LMR-400(5m+ 8m+8m)	N/A	Aug. 07, 2019
9	Measurement Software	Farad		N/A	N/A
10	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
11	Attenuator	EMCI	EMCI-N-6-06	N0670	Nov. 24, 2019
12	Attenuator	EMCI	EMCI-N-6-06	N0671	Nov. 24, 2019

Remark: "N/A" denotes no model no., no serial no. or no calibration specified.

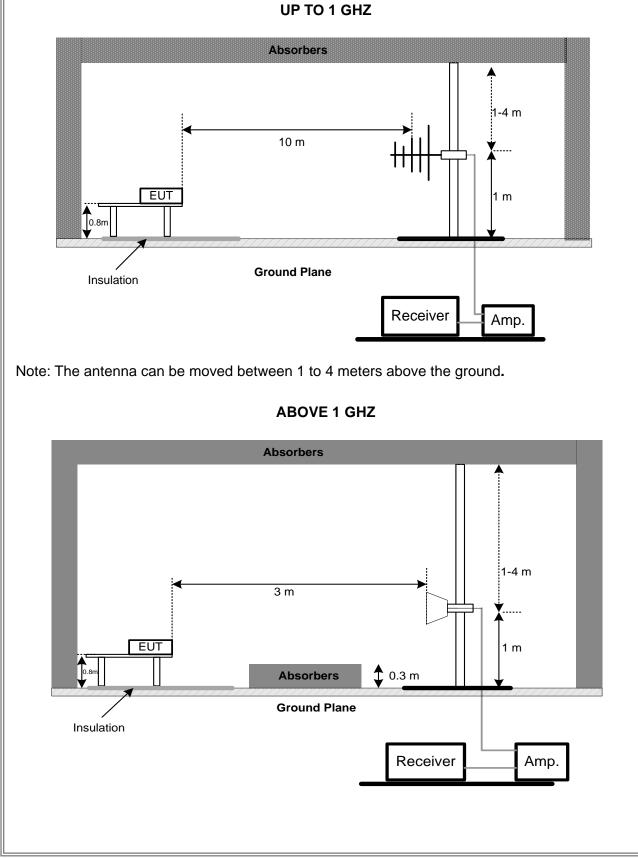
All calibration period of equipment list is one year.

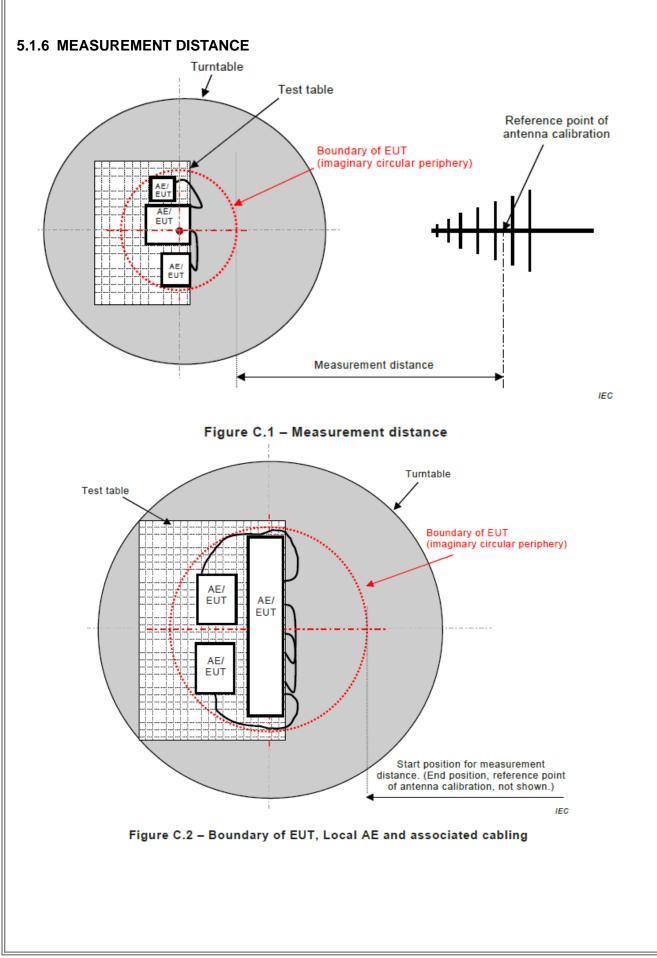
Above 1GHz:

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
nem					
1	Horn Antenna	EMCO	3115	9605-4803	Mar. 23, 2020
2	Amplifier	Agilent	8449B	3008A02584	Aug. 11, 2019
3	MXE EMI Receiver	Agilent	N9038A	MY53220133	Mar. 10, 2020
4	Measurement Software	Farad	EZ-EMC Ver.BTL-2AN T-1	N/A	N/A
5	Multi-Device Controller	ETS-Lindgren	2090	N/A	N/A
6	Controller	MF	MF-7802	MF780208159	N/A
7	Cable	MIcable Inc.	B10-01-01-5 M	18047123	Mar. 01, 2020
8	Cable	MIcable Inc.	B10-01-01-10 M	18072746	Mar. 01, 2020
9	Cable	N/A	A50-3.5M3.5 M-1.5M-AT	18041824	Mar. 01, 2020

Remark: "N/A" denotes no model no., no serial no. or no calibration specified. All calibration period of equipment list is one year.

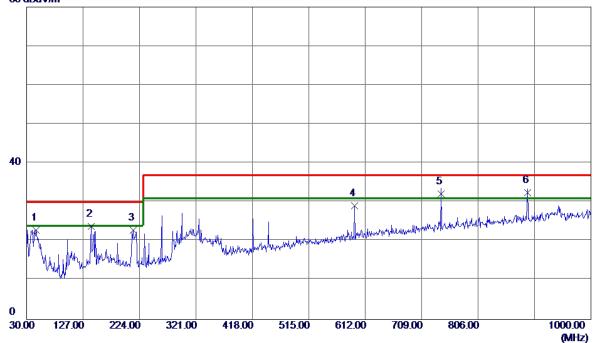
5.1.3 TEST PROCEDURE


- a. The measuring distance of 10 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz).
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- f. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- g. For the actual test configuration, please refer to the related Item Block Diagram of system tested (please refer to 3.4).


5.1.4 DEVIATION FROM TEST STANDARD

No deviation

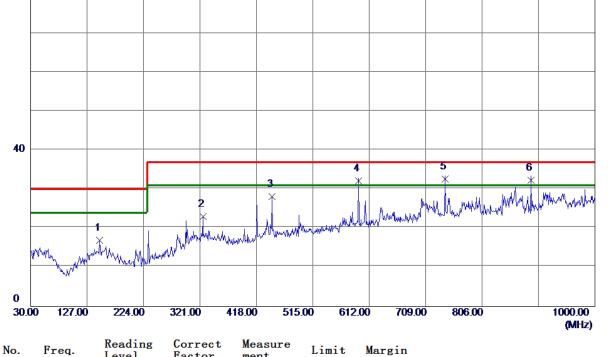
5.1.5 TEST SETUP



5.1.7 TEST RESULTS (UP TO 1 GHZ)

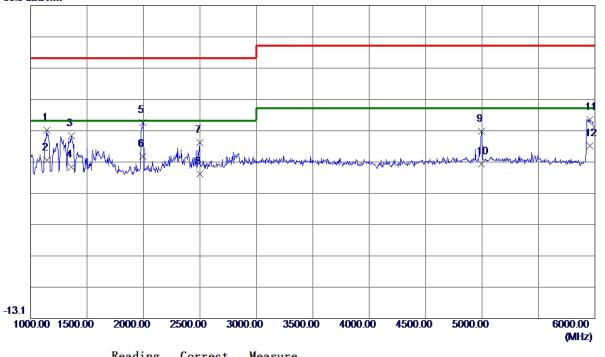
EUT	LCD Monitor	Model Name	24B2				
Temperature	25°C	Relative Humidity	60%				
Test Voltage	AC 230V/50Hz	Polarization	Vertical				
Test Mode	HDMI 1920*1080/60Hz						
Test Engineer	Jason Yang						

80 dBuV/m



No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	46. 4900	39.64	-16. 69	22.95	30.00	-7.05	QP
2	140. 5800	40.27	-16. 50	23.77	30.00	-6.23	QP
3	213. 3300	41.96	-19.10	22.86	30.00	-7.14	QP
4	594.0550	37.69	-8.63	29.06	37.00	-7.94	QP
5	742.4650	38.54	- 6. 35	32.19	37.00	-4.81	QP
6 *	890.8750	37.05	-4.59	32.46	37.00	-4.54	QP

EUT	LCD Monitor	Model Name	24B2			
Temperature	erature 25°C		60%			
Test Voltage	AC 230V/50Hz	Polarization	Horizontal			
Test Mode	HDMI 1920*1080/60Hz					
Test Engineer	Test Engineer Jason Yang					
80 dBuV/m						



	-	Level	Factor	ment		-	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	148.3400	32.93	-15.93	17.00	30.00	-13.00	QP
2	325.8500	37.60	-14.51	23.09	37.00	-13.91	QP
3	445.1600	39.98	-11.87	28.11	37.00	-8.89	QP
4	593. 5700	40.88	-8.73	32.15	37.00	-4.85	QP
5 *	741.9800	39.03	-6.46	32.57	37.00	-4.43	QP
6	890. 3900	37.29	-5.00	32.29	37.00	-4.71	QP

5.1.8 TEST RESULTS (ABOVE 1 GHZ)

EUT	LCD Monitor	Model Name	24B2				
Temperature	25°C	Relative Humidity	60%				
Test Voltage	AC 230V/50Hz	Polarization	Vertical				
Test Mode	HDMI 1920*1080/60Hz						
Test Engineer	Jason Yang						
86.9 dBuV/m							

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector
1	1142. 5000	56.02	- 8. 9 7	47.05	70.00	-22.95	Peak
2	1142. 5000	46.42	- 8. 9 7	37.45	50.00	-12.55	AVG
3	1360.0000	53.28	-8. 0 2	45.26	70.00	-24.74	Peak
4	1360.0000	43.28	-8. 0 2	35.26	50.00	-14.74	AVG
5	1992. 5000	55.73	-6.32	49.41	70.00	-20. 59	Peak
6 *	1992. 5000	44.97	-6. 32	38.65	50.00	-11.35	AVG
7	2497.5000	47.62	-4.51	43.11	70.00	-26.89	Peak
8	2497.5000	37.66	-4.51	33.15	50.00	-16.85	AVG
9	4995.0000	45.88	0.78	46.66	74.00	-27.34	Peak
10	4995.0000	35.44	0.78	36.22	54. 00	-17.78	AVG
11	5955. 0000	49.98	0.60	50. 58	74.00	-23.42	Peak
12	5955. 0000	41.55	0.60	42.15	54. 00	-11.85	AVG

EUT			LCD Monito	r	Mode	el Name		24B2	
Tem	perature		25°C		Rela	tive Hum	idity	60%	
Test	Voltage		AC 230V/50	Hz	Pola	rization		Horizon	ital
Test	Mode		HDMI 1920*	1080/60Hz					
Test	Engineer		Jason Yang						
86.9 c	1BuV/m								
		– – – –	7					9	
			- *					Ť	
	MAMERANNE	b	Bullion Allerate	www.www.	1000 Martin Martin Mar	man providence	waterward	ruhy 1 6 your who	www.howpotentichty
	×1,1,1,5,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1	Murmut	We willing a second second					×	
-13.1									
	0.00 1500.00	2000.00) 2500.00	3000.00 3500	.00 4000.	.00 4500.	00 50	00.00	6000.00
									(MHz)
N	P	Readi	ng Correct	t Measure		и .			
No.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/1		dBuV/m	dBuV/m	dB	Dete		
1	1345.0000		-8.08	39.68	70.00	-30.32	Peak		
2	1345.0000		-8.08	29.66	50.00	-20.34	AVG		
3	1612.5000		-7.15	40.45	70.00 50.00	-29.55	Peak AVG		
4 5	<u>1612.5000</u> 1992.5000		-7.15	32.00 45.19	70.00	-18.00 -24.81	Peak		
5 6 *	1992. 5000		-6. 32	35.69	50.00	-24.81 -14.31	AVG		
7	2227. 5000		-5.48	41.71	70.00	-28.29	Peak		
8	2227. 5000		-5.48	32.10	50.00	-17.90	AVG		
0	4952. 5000		0.65	43.79	74.00	-30. 21	Peak		
							AVG		
9		32.97	0.65	33.62	54.00	-20. 38	AVG		
	4952.5000 5977.5000		0.65	45. 24	54.00 74.00	-20. 38	Peak		

5.2 CONDUCTED EMISSION MEASUREMENT AT AC MAINS POWER PORTS

5.2.1 LIMITS

Requirements for conducted emissions from AC mains power ports of Class A equipment

Table clause	Frequency Range MHz	Coupling Device	Detector Type / bandwidth	Class A Limits (dB(µV))
A9.1	0.15 - 0.5	AMN	Quasi Peak /	79
A9.1	0.5 - 30	Aivin	9 kHz	73
A9.2	0.15 - 0.5	AMN	Average /	66
A9.2	0.5 - 30	Aivin	9 kHz	60
Apply A9.1 an	d A9.2 across the en	tire frequen	cy range.	

Requirements for conducted emissions from AC mains power ports of Class B equipment

Table clause	Frequency Range MHz	Coupling Device	Detector Type / bandwidth	Class B Limits (dB(µV))
	0.15 - 0.5		Over Deals /	66-56
A10.1	0.5 - 5	AMN	Quasi Peak / 9 kHz	56
	5 - 30		5 KHZ	60
	0.15 - 0.5		A	56-46
A10.2	0.5 - 5	AMN	Average / 9 kHz	46
	5 - 30		5 1112	50
Apply A10.1 a	nd A10.2 across the	entire frequ	ency range.	

NOTE:

(1) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value – Limit Value

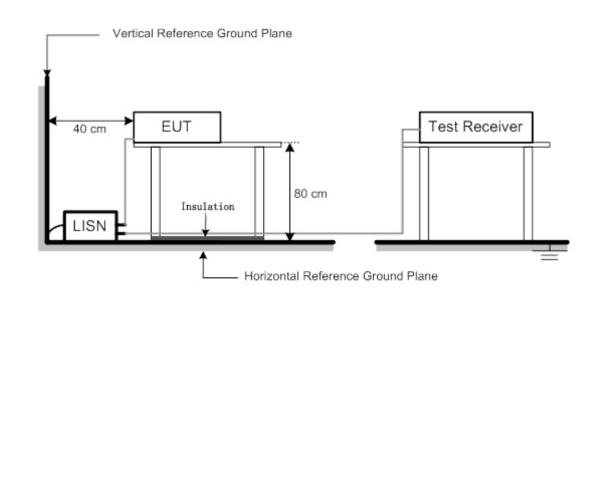
5.2.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1*	LISN	EMCO	3816/2SH	52766	Mar. 10, 2022
2	50Ω Terminator	SHX	TF2-3G-A	8122901	Mar. 10, 2020
3	TWO-LINE V-NETWORK	R&S	ENV216	100526	Mar. 10, 2020
4	EMI Test Receiver	R&S	ESR3	101862	Aug. 11, 2019
5	Cable	N/A	N/A(6m)	N/A	Mar. 12, 2020
6	Measurement Software	Farad	EZ-EMC Ver.NB-03A 1-01	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

"*" calibration period of equipment list is three year.

Except * item, all calibration period of equipment list is one year.

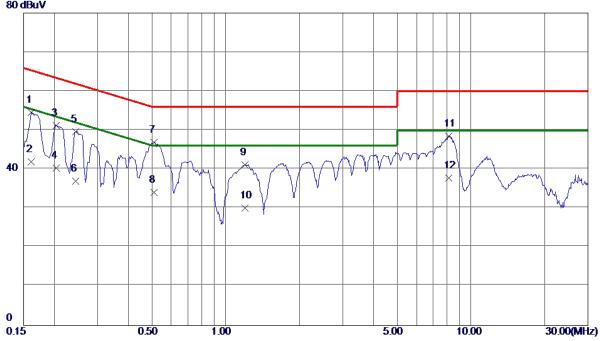

5.2.3 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.2.4 DEVIATION FROM TEST STANDARD

No deviation

5.2.5 TEST SETUP



5.2.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2
Temperature	25°C	Relative Humidity	53%
Test Voltage	AC 230V/50Hz	Phase	Line
Test Mode	HDMI 1920*1080/60Hz		
Test Engineer	Jason Yang		

No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1613	44.73	9.81	54.54	65.40	-10.86	QP
2	0.1613	32.15	9.81	41.96	55. 40	-13.44	AVG
3	0.2040	41.46	9.80	51.26	63.45	-12.19	QP
4	0.2040	30.58	9.80	40.38	53.45	-13. 07	AVG
5	0.2445	39.76	9.81	49.57	61.94	-12.37	QP
6	0.2445	27.19	9.81	37.00	51.94	-14 . 9 4	AVG
7 *	0.5100	37.04	9.86	46.90	56.00	-9.10	QP
8	0.5100	24.16	9.86	34.02	46.00	-11. 98	AVG
9	1.1985	31.28	9.91	41.19	56. 00	-14.81	QP
10	1.1985	20.15	9.91	30.06	46.00	-15. 94	AVG
11	8.1015	38.16	10.35	48.51	60.00	-11.49	QP
12	8. 1015	27.36	10.35	37.71	50.00	-12.29	AVG

EUT			LC	DN	/lon	itor		Ν	/lodel N	Name		2	4B2		
Temp	perature		25	°C				F	Relative	e Hum	nidity	5	3%		
Test	Voltage		AC	23	0V/	/50ŀ	Ηz	F	hase			N	leutral		
Test	Mode		нс	DMI	192	20*′	1080/60Hz	<u>,</u>							
Test	Engineer		Ja	son	Ya	ng									
80 d	lBuV														
[
															1
	1				_	$\left \right $									•
	× ³ 5			_											
		7		9								11			
		X		X								ΧT			
	2 16	Ind	'nΠ	1	m				N. 14 0		and				
40	XXX	8 1 1 1	V .	10	HΨ	h-	MM	$-\Lambda A$	VAV V	$\gamma \gamma \gamma \gamma$		12	$+ \wedge -$		-
		'× ' /		× V		TV.		$V \mid V$	V 1	× 1		$ \times $	/	/wh	
						M	' ¥	v i				$ \rangle$	↓/ \ .	MM	
													$f \rightarrow f$	y yr yr	1
													V		
						$\left \right $			_						-
0															
0.15	j		0.50)		1.0	0			5.00		10	.00	30.00(MH	lz)
No.	Freq.	Readir Level	ng		rec tor		Measure ment	Limit	Mar	gin					
	MHz	dBuV		dB			dBuV	dBuV	dB		Detec	tor			
1	0. 1613	45.93		9.9	0		55.83	65.40			QP				
2	0. 1613	29.68		9.9			39.58	55.40			AVG				
3	0.2040	43.01		9.8			52.90	63.45			QP				
	0.2040	32.15		9.8	-		42.04	53.45			AVG				
4 5	0.2535	41.56		9.9	2		51.48	61.64	-10		QP				
6	0.2535	30.18		9.9	2		40.10	51.64	-11.	. 54	AVG				
7	0.2850	39.15		9.9	3		49.08	60.67			QP				
8	0.2850	27.19		9.9	3		37.12	5 0. 67	-13.	. 55	AVG				
<u> </u>	0 5000	07 70		10.	01		47.73	56.00	-8. 2	27	QP				
9*	0.5302	37.72		10.											
9*	0.5302	26.38		10.	01		36. 39	46.00	-9. (61	AVG				
					01 62			46.00 60.00 50.00	-9. -10.	61 . 73					

6. HARMONIC AND FLICKER TEST

6.1 HARMONIC CURRENT EMISSIONS

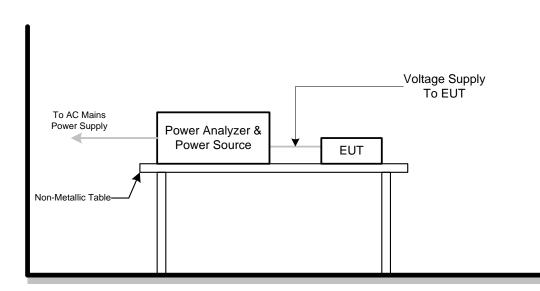
6.1.1 LIMITS

		E	EN 61000-3-2	2		
Equipment Category	Harmonic Order	Max. Permissible Harmonic Current	Equipment Category	Harmonic Max. Permissi Order Harmonic Curr		
	n	A		n	A	mA/w
	Odd Ha	rmonics		Odd	d Harmonics of	only
	3	2.30		3	2.30	3.4
	5	1.14		5	1.14	1.9
	7	0.77	Class D	7	0.77	1.0
	9	0.40	Class D	9	0.40	0.5
	11	0.33		11	0.33	0.35
Class A	13	0.21		13	0.21	0.30
	15≤n≤39	0.15 x 15/n		15≤n≤39	0.15 x 15/n	3.85/n
	Even Ha	armonics				
	2	1.08				
	4	0.43				
	6	0.30				
	8≤n≤40	0.23 x 8/n				

6.1.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Harmonics and Flicker Analyzer	California Instruments	PACS-1	72344	Aug. 13, 2019
2	3KVA AC Power source	California Instruments	3001ix	56309	Aug. 11, 2019
3	Measurement Software	California	CTS4.0 Version 4.21	N/A	N/A

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

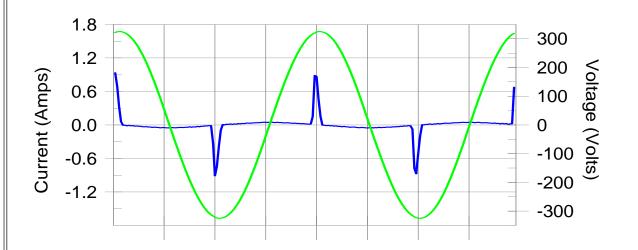

6.1.3 TEST PROCEDURE

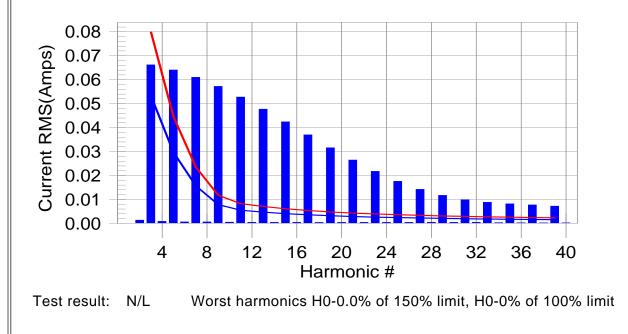
- a. The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions.
- b. The classification of EUT is according to of EN 61000-3-2. The EUT is classified as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class B: Portable tools; Arc welding equipment which is not professional equipment.
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.
- c. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

6.1.4 DEVIATION FROM TEST STANDARD

No deviation

6.1.5 TEST SETUP




6.1.6 TEST RESULTS

	Harmon	ic - Class D	
EUT	LCD Monitor	Model Name	24B2
Temperature	25°C	Relative Humidity	55%
Test Voltage	AC 230V/50Hz		
Test Mode	HDMI 1920*1080/60Hz		

Current & voltage waveforms

Harmonics and Class D limit line European Limits

Note: The EUT power level is below 75.0 Watts and therefore has no defined limits

Т		age Source Verifi Ionitor	Model Na	,	24B2
nperat	ure 25°C		Relative	Humidity	55%
st Volta		0V/50Hz		2	
st Mode	•	1920*1080/60Hz			
Vc I_I I_I	arameter values d oltage (Vrms):229.9 Peak (Amps):0.980 Fund (Amps):0.079 ower (Watts): 15.7 Harmonics V-rms	99 Fre) I_R 9 Cre Po	equency(Hz): 50 RMS (Amps): 0.1 est Factor: 6.8 wer Factor: 0.3 % of Limit	87 880	
•	o 4 4-				
2 3 4 5 6 7 8 9 0 11 12 13 14 15 6 7 8 9 0 11 12 13 14 15 6 7 8 9 0 11 12 13 14 15 6 7 8 9 0 11 12 13 14 15 6 7 8 9 0 11 12 13 14 15 6 7 8 9 0 11 12 22 22 24 5 6 7 8 9 0 11 12 13 14 15 16 7 8 9 0 11 12 13 14 15 16 7 8 9 0 11 12 13 14 15 16 7 8 9 0 11 12 13 14 15 16 7 18 9 0 11 12 13 14 15 16 7 18 9 0 11 12 13 14 15 16 17 18 9 0 11 12 13 14 15 16 17 18 9 0 11 12 13 14 15 16 17 18 9 0 11 12 12 22 12 22 22 22 22 22 22 22 22	0.147 0.541 0.055 0.057 0.024 0.043 0.025 0.037 0.026 0.043 0.011 0.026 0.014 0.026 0.014 0.026 0.014 0.026 0.006 0.026 0.006 0.026 0.006 0.026 0.006 0.026 0.006 0.026 0.006 0	$\begin{array}{c} 2.070\\ 0.460\\ 0.920\\ 0.460\\ 0.690\\ 0.460\\ 0.460\\ 0.460\\ 0.230\\ 0.$	$\begin{array}{c} 31.91\\ 26.16\\ 12.06\\ 6.21\\ 5.21\\ 7.09\\ 5.49\\ 8.09\\ 5.73\\ 18.86\\ 4.71\\ 11.24\\ 5.95\\ 16.01\\ 8.79\\ 12.49\\ 7.09\\ 14.70\\ 9.08\\ 10.05\\ 5.26\\ 12.59\\ 2.47\\ 9.63\\ 3.39\\ 9.81\\ 3.45\\ 9.78\\ 2.48\\ 6.83\end{array}$	ОК ООООООООООООООООООООООООООООООООООО	
32 33	0.005 0.020		2.35 8.52	OK OK	
34	0.003	0.230	1.36	OK	
35	0.013		5.87	OK	
36 37	0.003 0.016		1.12 6.96	OK OK	
38	0.004		1.54	OK	
39 40	0.012	0.230	5.31	OK	
	0.007		2.90	OK	

6.2 VOLTAGE CHANGES, VOLTAGE FLUCTUATIONS AND FLICKER TEST

6.2.1 LIMITS

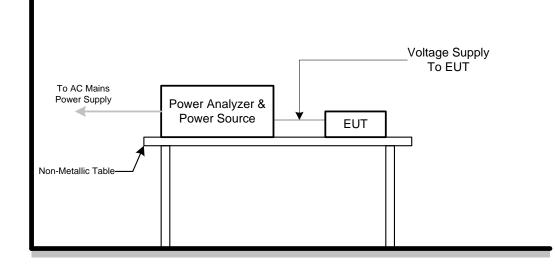
Tests	Limits EN 61000-3-3	Descriptions
Pst	≤ 1.0, Tp= 10 min.	Short Term Flicker Indicator
Plt	≤ 0.65, Tp=2 hr.	Long Term Flicker Indicator
dc	\leq 3.3%	Relative Steady-State V-Chang
dmax	≤ 4%	Maximum Relative V-change
d (t)	≤ 500 ms	Relative V-change characteristic

6.2.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Harmonics and Flicker Analyzer	California Instruments	PACS-1	72344	Aug. 13, 2019
2	3KVA AC Power source	California Instruments	3001ix	56309	Aug. 11, 2019
3	Measurement Software	California	CTS4.0 Version 4.21	N/A	N/A

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

6.2.3 TEST PROCEDURE


- a. Tests was performed according to the Test Conditions/Assessment of Voltage Fluctuations specified in EN 61000-3-3 depend on which standard adopted for compliance measurement.
- b. All types of harmonic current and/or voltage fluctuation in this report are assessed by direct measurement using flicker-meter.

6.2.4 DEVIATION FROM TEST STANDARD

No deviation

6.2.5 TESTSETUP

6.2.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2
Temperature	25°C	Relative Humidity	55%
Test Voltage	AC 230V/50Hz		
Test Mode	HDMI 1920*1080/60Hz		

7. EMC IMMUNITY TEST

7.1 STANDARD COMPLIANCE/SEVERITY LEVEL/CRITERIA

Tests Standard No.	Test Specification Level / Test Mode	Test Ports	Criteria
Electrostatic discharge	±8 kV air discharge ±4 kV contact discharge (Direct Mode)	Enclosure	В
EN 61000-4-2 (ESD)	±4kV HCP discharge ±4kV VCP discharge (Indirect Mode)	Enclosure	В
Radiated, radio-frequency, electromagnetic field immunity EN 61000-4-3 (RS)	80 MHz to 1000 MHz 3V/m(unmodulated, r.m.s), 1 kHz, 80%, AM modulated	Enclosure	A
Electrical fast transient/burst	±0.5kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency (100kHz Repetition Frequency for xDSL port)	Signal ports and telecommunication ports (Only applicable to cable length>3 m)	В
immunity EN 61000-4-4 (EFT/Burst)	±0.5kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency	DC Power Ports	В
	±1 kV(peak) 5/50ns Tr/Th 5kHz Repetition Frequency	AC Power Ports	В
	±1 kV(peak) 10/700 Tr/Th μs (NOTE) (without primary protection)	Signal ports and telecommunication ports	С
	±4 kV(peak) 10/700 Tr/Th μs (Noτe) (with primary protectors fitted)	(applicable only to ports connect directly to outdoor cables)	С
Surge immunity EN 61000-4-5 (Surges)	±0.5 kV(peak) 1.2/50(8/20) Tr/Th μs	DC Power Ports (applicable only to ports connect directly to outdoor cables)	В
	±1 kV(peak) 1.2/50(8/20) Tr/Th μs (line to line)		В
	±2 kV(peak) 1.2/50(8/20) Tr/Th μs (line to earth or ground)	AC Power Ports	В

	0.15 MHz to 80 MHz 3V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance	Signal ports and telecommunication ports (Only applicable to cable length>3 m)	A
Immunity to conducted disturbances, induced by radio-frequency fields EN 61000-4-6 (Injected Current)	0.15 MHz to 80 MHz 3V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance	DC Power Ports	A
	0.15 MHz to 80 MHz 3V(unmodulated, r.m.s), 1kHz 80%, AM 150Ω source impedance	AC Power Ports	A
Power frequency magnetic field immunity EN 61000-4-8 (PFMF)	50 Hz or 60Hz, 1A/m(r.m.s)	Enclosure	A
Voltage dips, short interruptions and voltage variations immunity EN 61000-4-11 (Voltage Interruption/Dips)	Voltage reduction>95% 0.5 period Voltage reduction 30% 25 periods Voltage reduction>95% 250 periods	AC Power Ports	всс

Note.

Where the coupling network for the 10/700 μ s waveform affects the functioning of high speed data ports, the test shall be carried out using a 1,2/50 (8/20) μ s waveform and appropriate coupling network.

7.2 GENERAL PERFORMANCE CRITERIA

According to EN55024 standard, the general performance criteria as following:

Criterion A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criterion B	After the test, the equipment shall continue to operate as intended without operator Intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state if stored data allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criterion C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

7.3 ELECTROSTATIC DISCHARGE IMMUNITY TEST (ESD)

7.3.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-2		
Discharge Impedance	330 ohm / 150 pF		
Required Performance	В		
Discharge Voltage	Air Discharge: ±2 kV, ±4 kV, ±8 kV (Direct)		
	Contact Discharge: ±2 kV, ±4 kV (Direct/Indirect)		
Polarity	Positive & Negative		
Number of Discharge	Air Discharge: min. 20 times at each test point		
	Contact Discharge: min. 200 times in total		
Discharge Mode	Single Discharge		
Discharge Period	1 second minimum		

7.3.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	ESD Generator	TESEQ AG	NSG 437	450	Sep. 28, 2019

Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

All calibration period of equipment list is one year.

7.3.3 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Contact discharge was applied to conductive surfaces (Direct) and coupling planes (Indirect) of the EUT.

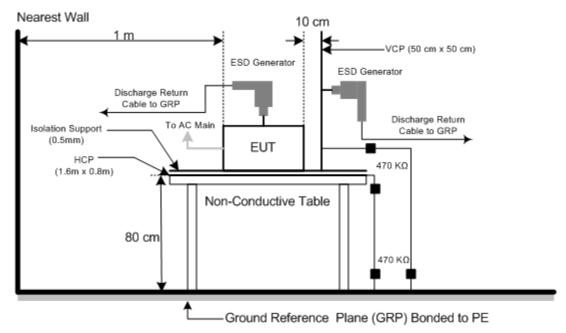
During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges.

If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge. Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.


b. Air discharges at insulation surfaces of the EUT.
 It was at least ten single discharges with positive and negative at the same selected point.

7.3.4 DEVIATION FROM TEST STANDARD

No deviation

7.3.5 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test was installed in a representative system as described in EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

7.3.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2
Temperature	22°C	Relative Humidity	52%
Test Voltage	AC 230V/50Hz	Pressure	1010hPa
Test Mode	HDMI 1920*1080/60Hz		

Mode		Air Discharge						Contact Discharge				arge		
	21	٢V	4	٢V	8	kV	-	κV	2k	ίV	4	٢V		٢V
Location	Р	Ν	Р	Ν	Р	Ν	Р	Ν	Р	Ν	Р	Ν	Р	Ν
1	Α	Α	Α	Α	В	В	-	-	Α	Α	В	В	-	-
2	А	Α	Α	Α	Α	Α	-	-	-	-	-	-	-	-
3	А	Α	Α	Α	В	В	-	1	-	-	-	-	-	-
4	А	Α	А	Α	Α	Α	-	-	-	-	-	-	-	-
5	А	Α	Α	Α	Α	Α	-	-	-	-	-	-	-	-
Criteria		В					-			В		-	-	
Result		В				-			В		-	-		
Judgment			PA	SS				-		PA	SS		-	-

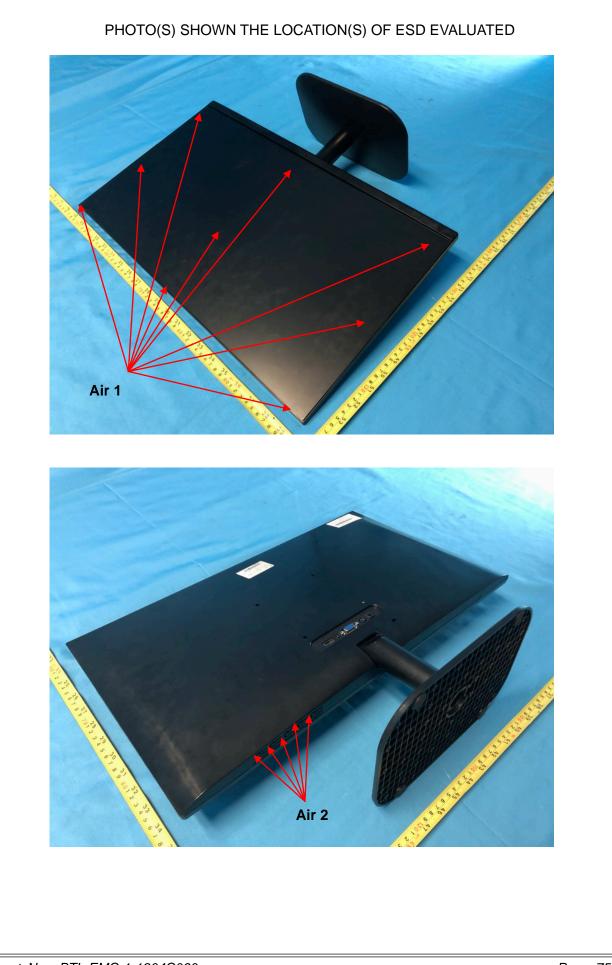
Mode	HCP Contact Discharge				VCP Contact Discharge							
	21	٢V	4	kV	-	kV	21	٢V	4	٢V	- ł	٢V
Location	Р	Ν	Р	N	Р	Ν	Р	N	Р	Ν	Р	Ν
1	А	Α	Α	Α	-	-	Α	Α	Α	А	-	-
2	А	Α	Α	Α	-	-	Α	Α	Α	А	-	-
3	А	Α	Α	Α	-	-	Α	Α	Α	А	-	-
4	А	Α	Α	Α	-	-	А	Α	Α	А	-	-
Criteria		B			В -			В				-
Result	А			-		ŀ	4			-		
Judgment		PASS				-		PA	SS			-

Note:

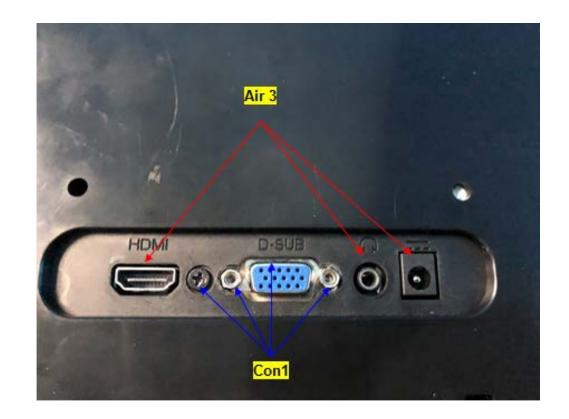
- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) Test condition:

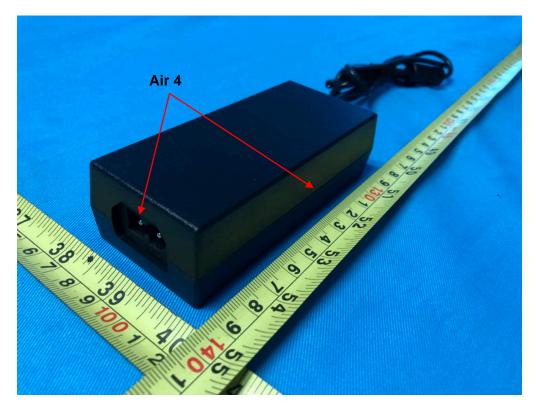
Direct/Indirect(HCP/VCP) discharges: Minimum 50 times (Positive/Negative) at eachpoint.

Air discharges: Minimum 20 times (Positive/Negative) at each point.


3) Test location(s) in which discharge (Air and contact discharge) to be applied illustrated

- by photos shown in next page(s)
- 4) The Indirect (HCP/VCP) discharges description of test point as following: 1.left side; 2.right side; 3.front side; 4.rear side.
- 5) N/A denotes test is not applicable in this test report
- 6) Criterion A: No observation of any performance degradation.
- 7) Criterion B: Some degradation of performance is observed but the equipment continues to operate as intended.


8) Criterion C: Loss of functionality, but self-recoverable by user, without loss of information or settings.



7.4 RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD IMMUNITY TEST (RS)

7.4.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-3
Required Performance	А
Frequency Range	80 MHz - 1000 MHz
Field Strength	3 V/m(unmodulated, r.m.s)
Modulation	1 kHz Sine Wave, 80%, AM Modulation
Frequency Step	1% of fundamental
Polarity of Antenna	Horizontal and Vertical
Test Distance	3 m
Antenna Height	1.55 m
Dwell Time	at least 3 seconds

7.4.2 MEASUREMENT INSTRUMENTS

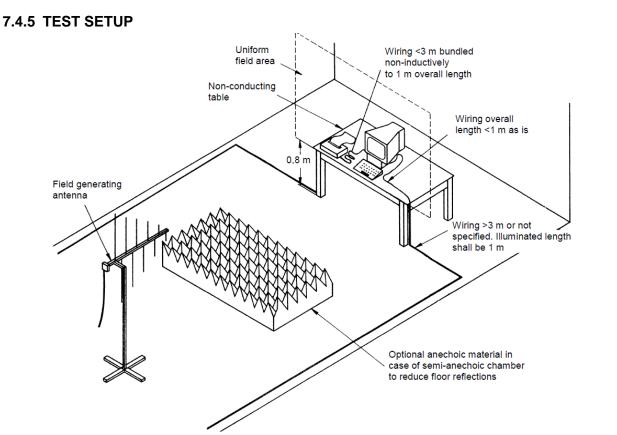
Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	MXG Analog Signal Generator	Agilent	N5181A	MY49060710	Aug. 11, 2019
2	Power amplifier	MILMEGA	80RF1000-250	1064833	Aug. 20, 2020
3	Antenna	ETS	3142C	47662	Mar. 23, 2020
4	Measurement Software	ΤΟΥΟ	IM5/RS Ver 3.8.050	N/A	N/A

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

7.4.3 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters.


The other condition as following manner:

- a. The field strength level was 3 V/m(unmodulated, r.m.s).
- b. The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

7.4.4 DEVIATION FROM TEST STANDARD

No deviation

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

7.4.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2		
Temperature	24°C	Relative Humidity	56%		
Test Voltage	AC 230V/50Hz				
Test Mode	HDMI 1920*1080/60Hz				

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Criterion	Result	Judgment
		3V/m	0			
80, 1000		(unmodulated, r.m.s)	90			54.00
80 - 1000	H/V	AM Modulated	180	A	A	PASS
		1000Hz, 80%	270			

- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) N/A denotes test is not applicable in this test report.
- 3) Criterion A: No observation of any performance degradation.
- 4) Criterion B: Some degradation of performance is observed but the equipment continues to operate as intended.
- 5) Criterion C: Loss of functionality, but self-recoverable by user, without loss of information or settings.

7.5 ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST (EFT/BURST)

7.5.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-4
Required Performance	В
Test Voltage	Power Line: ±1 kV
Polarity	Positive & Negative
Impulse Frequency	5 kHz: except for xDSL port
	100 kHz: only for single lines of xDSL port.
Impulse Wave shape	5/50 ns
Burst Duration	15 ms
Burst Period	300 ms
Test Duration	Not less than 1 min.

7.5.2 MEASUREMENT INSTRUMENTS

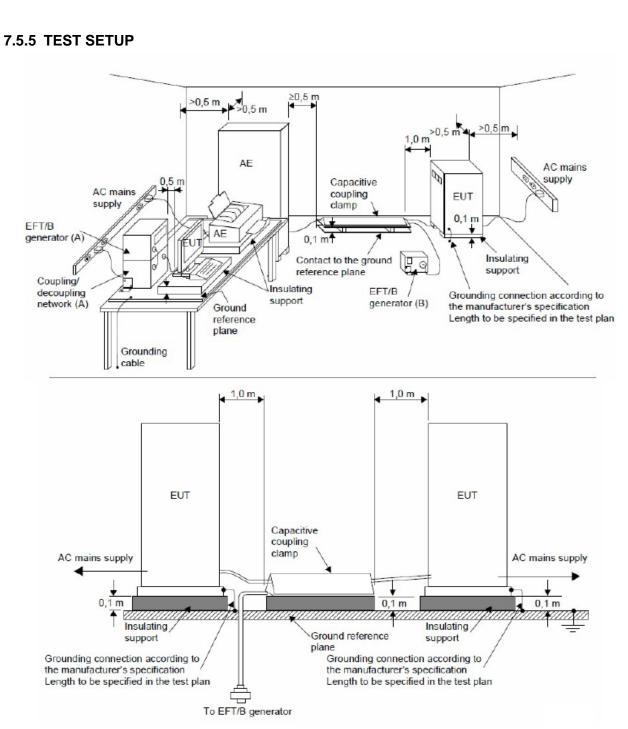
Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	THE MODULAR SOLUTION FOR 6 KV APPLICATIONS	Teseq	NSG 3060	1423	Aug. 11, 2019

Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

All calibration period of equipment list is one year.

7.5.3 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.


The other condition as following manner:

- a. Both positive and negative polarity discharges were applied.
- b. The duration time of each test sequential was 1 minute

7.5.4 DEVIATION FROM TEST STANDARD

No deviation

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table (0.8m high) standing on the Ground Reference Plane and should be located 0.1 m+/- 0.01m above the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in EN 61000-4-4 and its cables were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

7.5.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2			
Temperature	23°C	Relative Humidity	53%			
Test Voltage	AC 230V/50Hz					
Test Mode	HDMI 1920*1080/60Hz					

EUT Ports	Tested	Polarity	Repetition Frequency	Test Level 1kV	Criterion	Result	Judgment		
	Lino (L)	+	5 kHz	В	В	В	PASS		
	Line (L)	-	5 kHz	В	D	В	FASS		
AC Power Port	Neutral (N)	+	5 kHz	В	D	Р	DASS		
AC FOWEI FOIL			neullai (N)	-	5 kHz	В	В	В	PASS
	L+N	+	5 kHz	В	В	В	PASS		
		-	5 kHz	В	D	D	FA33		

- 1) P/N denotes the Positive/Negative polarity of the output voltage.
- 2) N/A denotes test is not applicable in this test report
- 3) Criterion A: No observation of any performance degradation.
- 4) Criterion B: Some degradation of performance is observed but the equipment continues to operate as intended.
- 5) Criterion C: Loss of functionality, but self-recoverable by user, without loss of information or settings.

7.6 SURGE IMMUNITY TEST

7.6.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-5
Required Performance	В
Wave-Shape	Combination Wave for power lines
	1.2/50 us Open Circuit Voltage
	8 /20 us Short Circuit Current
Test Voltage	Power Line: ±0.5 kV, ±1 kV
Surge Input/Output	L-N
Generator Source	2 Ω of the low-voltage power supply network.
Impedance	
Polarity	Positive/Negative
Phase Angle:	AC Port: 0°/90°/180°/270°
Pulse Repetition Rate	1 time / min. (maximum)
Number of Tests	5 positive and 5 negative at selected points

7.6.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	THE MODULAR SOLUTION FOR 6 KV APPLICATIONS	Teseq	NSG 3060	1423	Aug. 11, 2019

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

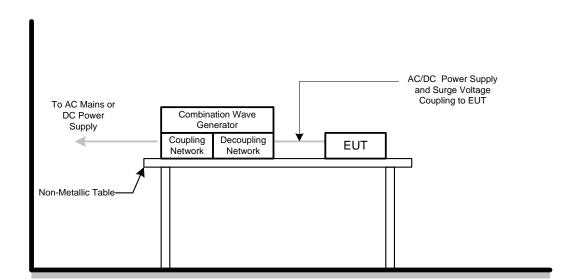
7.6.3 TEST PROCEDURE

a. For EUT power supply:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2meters in length (or shorter).

b. For test applied to unshielded unsymmetrically operated interconnection lines of EUT : The surge is applied to the lines via the capacitive coupling. The coupling /decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

c. For test applied to unshielded symmetrically operated interconnection /telecommunication lines of EUT :


The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

7.6.4 DEVIATION FROM TEST STANDARD

No deviation

7.6.5 TEST SETUP

7.6.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2			
Temperature	23°C	Relative Humidity	53%			
Test Voltage	AC 230V/50Hz					
Test Mode	HDMI 1920*1080/60Hz					

Wave Form EUT Ports Tested		1.2/50(8/20)Tr/Thµs								
		Delarity Dhase		Voltage			Criterion	Result	Judgment	
EUTF	Toris Testeu	Flianty	Fliase	0.5kV	1kV	kV	kV	/		-
		+/-	0°	А	А	-	-	В	A	PASS
AC	L–N	+/-	90°	А	А	-	-			
AC		+/-	180°	А	А	-	-			
		+/-	270°	А	А	-	-			

- 1) Polarity and Numbers of Impulses: 5 Pst / Ngt at each tested mode
- 2) N/A denotes test is not applicable in this Test Report
- 3) Criterion A: No observation of any performance degradation.
- 4) Criterion B: Some degradation of performance is observed but the equipment continues to operate as intended.
- 5) Criterion C: Loss of functionality, but self-recoverable by user, without loss of information or settings.

7.7 IMMUNITY TO CONDUCTED DISTURBANCES, INDUCED BY RADIO-FREQUENCY FIELDS TEST (CS)

7.7.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-6
Required Performance	A
Frequency Range	0.15 MHz - 80 MHz
Field Strength	3 V (unmodulated, r.m.s.)
Modulation	1 kHz Sine Wave, 80%, AM Modulation
Frequency Step	1% of fundamental
Dwell Time	at least 3 seconds

7.7.2 MEASUREMENT INSTRUMENTS

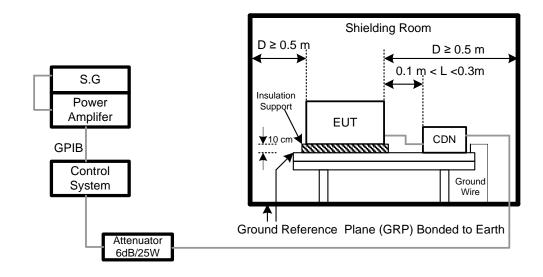
Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Power CDN	FCC	FCC-801-M 2/M3-16A	100270	Mar. 10, 2020
2	TEST SYSTEM FOR CONDUCTED AND RADIATED IMMUNITY	TESEQ	NSG 4070B	37513	Aug. 11, 2019
3	Measurement Software	Farad	EZ-CS(V2. 0.1.2)	N/A	N/A

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

7.7.3 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.

The other condition as following manner:


- a. The field strength level was 3 V (unmodulated, r.m.s.)
- b. The frequency range is swept from 150 kHz to 80 MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.

7.7.4 DEVIATION FROM TEST STANDARD

No deviation

7.7.5 TEST SETUP

NOTE:

FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

7.7.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2			
Temperature	24°C	Relative Humidity	55%			
Test Voltage	AC 230V/50Hz					
Test Mode	HDMI 1920*1080/60Hz					

Test Ports (Mode)	Freq.Range (MHz)	Field Strength	Criteria	Results	Judgment
Input/ Output AC.PowerPort	0.1580	3V(unmodulat ed, r.m.s) AM Modulated 1000Hz, 80%	А	A	PASS

- 1). N/A denotes test is not applicable in this test report.
- 2) Criterion A: No observation of any performance degradation.
- 3) Criterion B: Some degradation of performance is observed but the equipment continues to operate as intended.
- 4) Criterion C: Loss of functionality, but self-recoverable by user, without loss of information or settings.

7.8 POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST (PFMF)

7.8.1 TEST SPECIFICATION

Basic Standard	EN 61000-4-8
Required Performance	A
Frequency Range	50/60 Hz
Field Strength	1 A/m
Observation Time	1 minute
Inductance Coil	Rectangular type, 1mx1m

7.8.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	Magnetic Field test Generator	FCC	F-1000-4-8- G-125A	04032	Mar. 10, 2020
2	Magnetic Field immunity loop	Thermo KeyTek	F-1000-4-8/ 9/10-L-1M	04024	Mar. 10, 2020

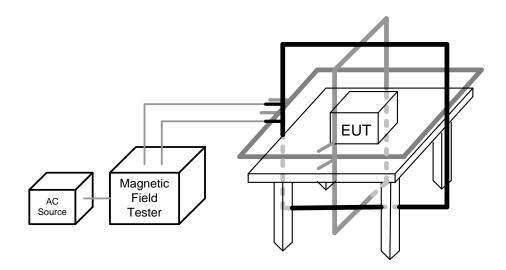
Remark: "N/A" denotes no model no., no serial No. or no calibration specified.

All calibration period of equipment list is one year.

7.8.3 TEST PROCEDURE

The EUT and support equipment, are placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m min. and 0.65mm thick min.

The other condition as following manner:


- a. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- b. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

7.8.4 DEVIATION FROM TEST STANDARD

No deviation

7.8.5 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 percent of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

7.8.6 TEST RESULTS

EUT	LCD Monitor	Model Name	24B2			
Temperature	23°C	Relative Humidity	53%			
Test Voltage	AC 230V/50Hz					
Test Mode	HDMI 1920*1080/60Hz					

50Hz

Test Mode	Test Level	Antenna aspect	Duration (s)	Criteria	Results	Judgment
Enclosure	1 A/m	х	60	А	A	PASS
Enclosure	1 A/m	Y	60	А	A	PASS
Enclosure	1 A/m	Z	60	А	A	PASS

60Hz

Test Mode	Test Level	Antenna aspect	Duration (s)	Criteria	Results	Judgment
Enclosure	1 A/m	х	60	А	A	PASS
Enclosure	1 A/m	Y	60	А	А	PASS
Enclosure	1 A/m	Z	60	А	А	PASS

- 1). N/A denotes test is not applicable in this test report.
- 2) Criterion A: No observation of any performance degradation.
- 3) Criterion B: Some degradation of performance is observed but the equipment continues to operate as intended.
- 4) Criterion C: Loss of functionality, but self-recoverable by user, without loss of information or settings.

7.9 VOLTAGE DIPS, SHORT INTERRUPTIONS AND VOLTAGE VARIATIONS IMMUNITY TEST

7.9.1 TEST SPECIFICATION

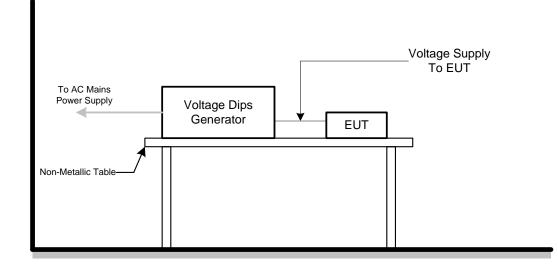
Basic Standard	EN 61000-4-11
Required Performance	B (For >95% Voltage Dips)
	C (For 30% Voltage Dips)
	C (For >95% Voltage Interruptions)
Test Duration Time	Minimum three test events in sequence
Interval between Event	Minimum ten seconds
Phase Angle	0°/180°
Test Cycle	3 times

7.9.2 MEASUREMENT INSTRUMENTS

Item	Kind of Equipment	Manufacturer	Type No.	Series Model	Calibrated until
1	THE MODULAR SOLUTION FOR 6 KV APPLICATIONS	Teseq	NSG 3060	1423	Aug. 11, 2019

Remark: "N/A" denotes no model no., no serial No. or no calibration specified. All calibration period of equipment list is one year.

7.9.3 TEST PROCEDURE


The EUT shall be tested for each selected combination of test levels and duration with a sequence of three dips/interruptions with intervals of 10 s minimum (between each test event). Each representative mode of operation shall be tested. Abrupt changes in supply voltage shall occur at zero crossings of the voltage waveform.

7.9.4 DEVIATION FROM TEST STANDARD

No deviation

7.9.5 TEST SETUP

7.9.6 TEST RESULTS

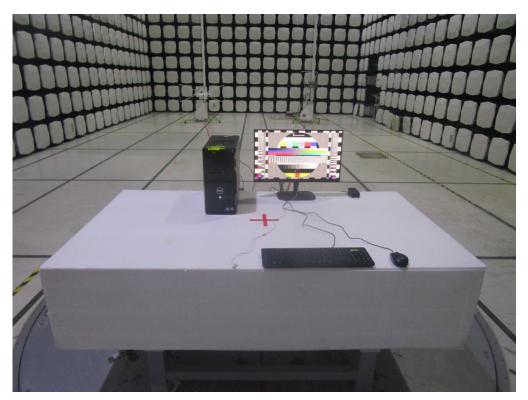
EUT	LCD Monitor	Model Name	24B2
Temperature	23°C	Relative Humidity	53%
Test Voltage	AC 230V/50Hz		
Test Mode	HDMI 1920*1080/60Hz		

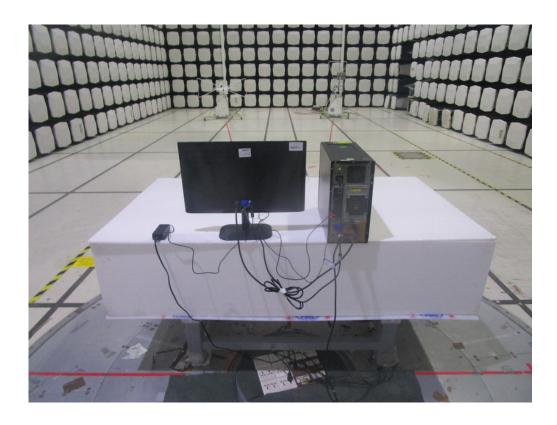
AC 100V/50Hz				
Voltage Reduction	Periods	Criteria	Results	Judgment
Voltage dip >95%	0.5	В	А	PASS
Voltage dip 30%	25	С	А	PASS
Interruption>95%	250	С	С	PASS

AC 230V/50Hz				
Voltage Reduction	Periods	Criteria	Results	Judgment
Voltage dip >95%	0.5	В	А	PASS
Voltage dip 30%	25	С	А	PASS
Interruption>95%	250	С	С	PASS

AC 240V/50Hz				
Voltage Reduction	Periods	Criteria	Results	Judgment
Voltage dip >95%	0.5	В	А	PASS
Voltage dip 30%	25	С	A	PASS
Interruption>95%	250	С	С	PASS

- 1). N/A denotes test is not applicable in this test report.
- 2) Criterion A: No observation of any performance degradation.
- 3) Criterion B: Some degradation of performance is observed but the equipment continues to operate as intended.
- 4) Criterion C: Loss of functionality, but self-recoverable by user, without loss of information or settings.

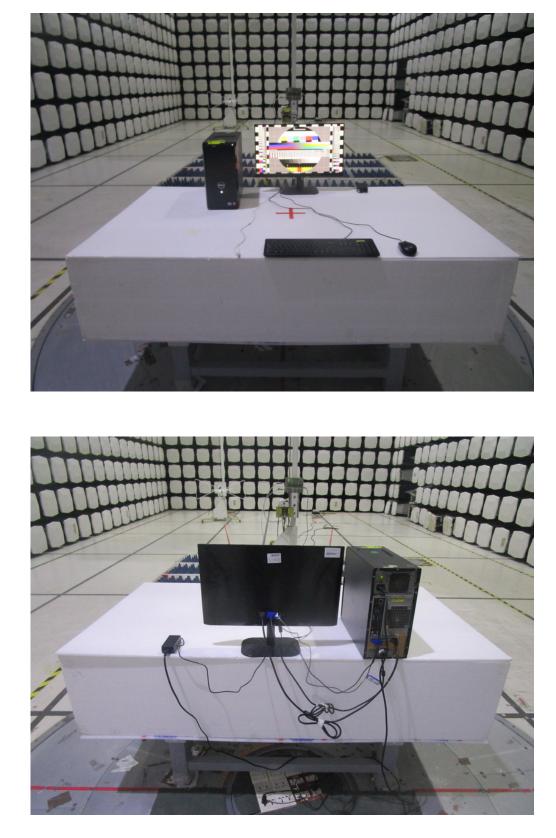




8. EUT TEST PHOTO

EN 55032:2012+AC:2013 & 2015

Radiated emissions up to 1 GHz

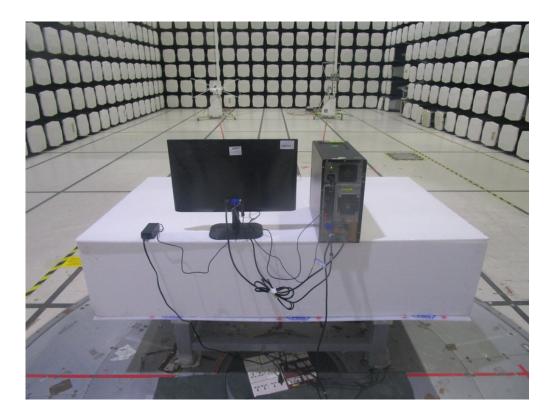


Report No.: BTL-EMC-1-1904C060

3TL

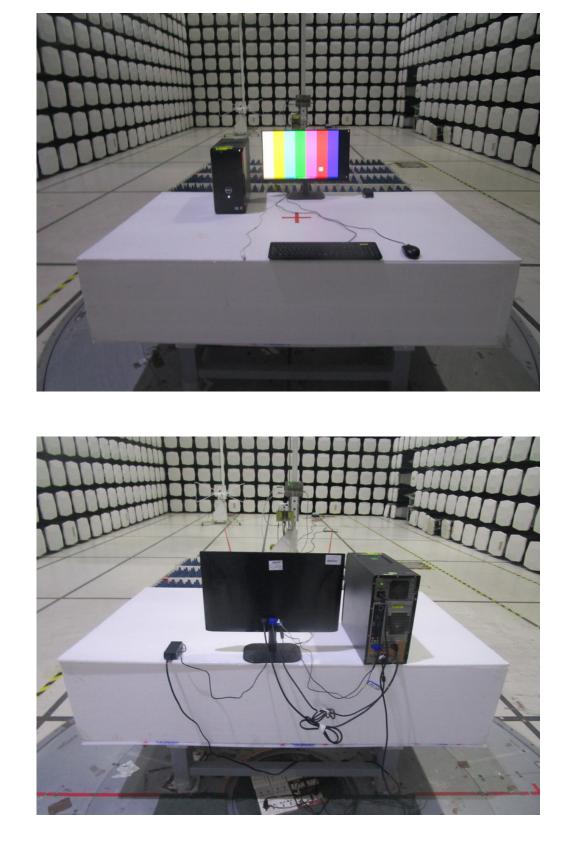
Radiated emissions above 1 GHz

Conducted emissions AC mains power port

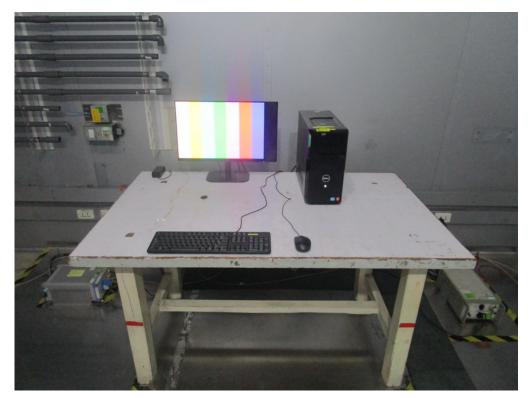


EN 55032:2015+AC:2016

Radiated emissions up to 1 GHz

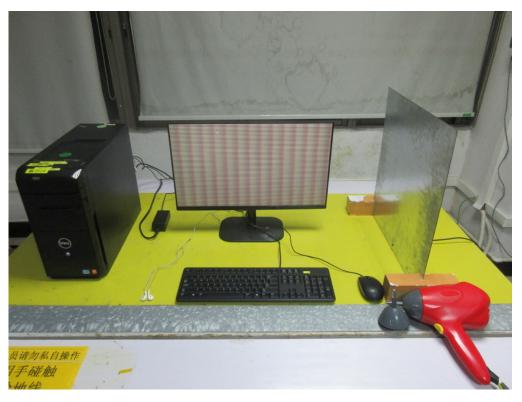


3TL



Radiated emissions above 1 GHz

Conducted emissions AC mains power port

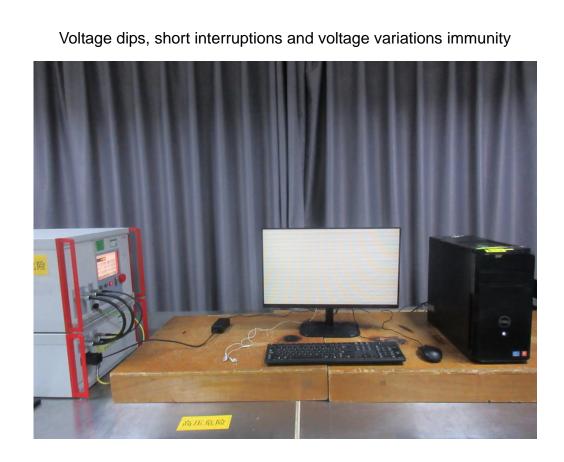

Harmonic current emissions

Voltage changes, voltage fluctuations and flicker

Radiated, radio-frequency, electromagnetic field immunity

Electrical fast transient/burst immunity

Surge immunity


Immunity to conducted disturbances, induced by radio-frequency fields

Power frequency magnetic field immunity

End of Test Report