

CE EMC TEST REPORT

Applicant	:	TPV Electronics (Fujian) Co., Ltd.
Address	:	Rongqiao Economic and Technological Development Zone, Fuqing City, Fujian Province, P.R. China
Equipment under Test	:	LCD Monitor
Model No.	:	**34B3***** ("*" = 0-9, A-Z, a-z, +, -, /, \ or blank)
Trade Mark	:	N/A
Report No.	:	DDT-B25102121-1E01
Issued Date	:	Nov. 19, 2025

LabSure Testing Services (Suzhou) Co., Ltd.

CONTENTS

1	Summary of Test Results	6
2	General Test Information	7
2.1	Description of EUT	7
2.2	Primary Function of EUT	7
2.3	Port of EUT	7
2.4	Accessories of EUT	8
2.5	Test peripherals	8
2.6	Block diagram EUT configuration for test	8
2.7	EUT operating mode(s)	8
2.8	Performance Criteria	9
2.9	Deviations of test standard	9
2.10	Test laboratory	9
2.11	Measurement uncertainty	10
2.12	Abbreviations	10
3	Conducted Emissions (AC mains power ports)	11
3.1	General Information	11
3.2	Test Equipment	11
3.3	Reference Standard	11
3.4	Test Arrangement	11
3.5	Test Specification and Limit	13
3.6	Test Result	13
4	Radiated Emissions (30MHz to 1GHz)	16
4.1	General Information	16
4.2	Test Equipment	16
4.3	Reference Standard	16
4.4	Test Arrangement	17
4.5	Test Specification and Limit	18
4.6	Test Result	19
5	Radiated Emissions (Above 1GHz)	21
5.1	General Information	21
5.2	Test Equipment	21
5.3	Reference Standard	21
5.4	Test Arrangement	22
5.5	Test Specification and Limit	23
5.6	Test Result	23
6	Harmonic Current Emissions	26
6.1	General Information	26
6.2	Test Equipment	26
6.3	Reference Standard	26
6.4	Test Arrangement	26
6.5	Test Specification and Limit	27
6.6	Test Result	27
7	Voltage Changes, Voltage Fluctuations and Flicker	28
7.1	General Information	28
7.2	Test Equipment	28
7.3	Reference Standard	28
7.4	Test Arrangement	28
7.5	Test Specification and Limit	28
7.6	Test Result	29
8	Electrostatic Discharge Immunity	30
8.1	General Information	30
8.2	Test Equipment	30
8.3	Reference Standard	30
8.4	Test Arrangement	30
8.5	Test Specification and Limit	31
8.6	Test Result	31

8.7 Test Photo	33
9 Radiated, Radio-frequency, Electromagnetic Field Immunity.....	34
9.1 General Information.....	34
9.2 Test Equipment	34
9.3 Reference Standard	34
9.4 Test Arrangement.....	35
9.5 Test Specification and Limit	35
9.6 Test Result.....	36
10 Electrical Fast Transient/Burst Immunity	37
10.1 General Information.....	37
10.2 Test Equipment	37
10.3 Reference Standard	37
10.4 Test Arrangement.....	38
10.5 Test Specification and Limit	39
10.6 Test Result.....	39
11 Surge Immunity	40
11.1 General Information.....	40
11.2 Test Equipment	40
11.3 Reference Standard	40
11.4 Test Arrangement.....	40
11.5 Test Specification and Limit	41
11.6 Test Result.....	42
12 Immunity to Conducted Disturbances, Induced by Radio-frequency Fields.....	43
12.1 General Information.....	43
12.2 Test Equipment	43
12.3 Reference Standard	43
12.4 Test Arrangement.....	44
12.5 Test Specification and Limit	45
12.6 Test Result.....	45
13 Power Frequency Magnetic Field Immunity.....	46
13.1 General Information.....	46
13.2 Test Equipment	46
13.3 Reference Standard	46
13.4 Test Arrangement.....	47
13.5 Test Specification and Limit	47
13.6 Test Result.....	47
14 Voltage Dips, Short Interruptions and Voltage Variations Immunity.....	48
14.1 General Information.....	48
14.2 Test Equipment	48
14.3 Reference Standard	48
14.4 Test Arrangement.....	48
14.5 Test Specification and Limit	49
14.6 Test Result.....	49
Annex A.Test Setup Photos	50

Test Report Declare

Applicant	:	TPV Electronics (Fujian) Co., Ltd.
Address	:	Rongqiao Economic and Technological Development Zone, Fuqing City, Fujian Province, P.R. China
Equipment under Test	:	LCD Monitor
Model No.	:	**34B3***** (**" = 0-9, A-Z, a-z, +, -, /, \ or blank)
Trade Mark	:	N/A

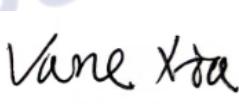
Test Standard Used:

AS/NZS CISPR 32:2015, AS/NZS CISPR 32:2015 /AMD 1:2020, CISPR 32:2015,
 CISPR 32:2015/AMD1:2019, CISPR 35:2016, EN 55032:2015, EN 55032:2015/A11:2020,
 EN 55032:2015/A1:2020, EN 55035:2017, EN 55035:2017/A11:2020, EN IEC 61000-3-2:2019,
 EN IEC 61000-3-2:2019/A1:2021, EN IEC 61000-3-2:2019/A2:2024, EN 61000-3-3:2013,
 EN 61000-3-3:2013/A1:2019, EN 61000-3-3:2013/A2:2021, BS EN 55032:2015,
 BS EN 55032:2015/A11:2020, BS EN 55032:2015/A1:2020, BS EN 55035:2017,
 BS EN 55035:2017/A11:2020, BS EN IEC 61000-3-2:2019, BS EN IEC 61000-3-2:2019/A1:2021,
 BS EN IEC 61000-3-2:2019/A2:2024, BS EN 61000-3-3:2013, BS EN 61000-3-3:2013/A1:2019,
 BS EN 61000-3-3:2013/A2:2021, IEC 61000-4-2:2008, IEC 61000-4-3:2020, IEC 61000-4-4:2012,
 IEC 61000-4-5:2014, IEC 61000-4-5:2014/AMD1:2017, IEC 61000-4-6:2023, IEC 61000-4-8:2009,
 IEC 61000-4-11:2020

We Declare:

The equipment described above is tested and assessed by LabSure Testing Services (Suzhou) Co., Ltd. and in the configuration assessed the equipment complied with the standards specified above. The tested and assessed results are contained in this test report and LabSure Testing Services (Suzhou) Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these assessments.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above standards.


Report No.:	DDT-B25102121-1E01		
Date of Receipt:	Nov. 08, 2025	Date of Test:	Nov. 10, 2025~Nov. 18, 2025

Prepared By:

Jan Cao/Engineer

Reviewed By:

Vane Xia/Director

Authorized By:

Leon Wu /EMC
Manager

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of LabSure Testing Services (Suzhou) Co., Ltd. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products. This report does not imply that the product(s) has met the criteria for certification.

The results reported herein have been performed in accordance with the laboratory's terms of accreditation.

Revision History

Rev.	Revisions	Issue Date	Revised By
---	Initial issue	Nov. 19, 2025	

1 Summary of Test Results

Description of Test Item	Standard	Result
Conducted Emissions (AC mains power ports)	EN 55032:2015, EN 55032:2015/A11:2020, EN 55032:2015/A1:2020	Pass
Radiated Emissions (30MHz to 1GHz)	EN 55032:2015, EN 55032:2015/A11:2020, EN 55032:2015/A1:2020	Pass
Radiated Emissions (Above 1GHz)	EN 55032:2015, EN 55032:2015/A11:2020, EN 55032:2015/A1:2020	Pass
Harmonic Current Emissions	EN IEC 61000-3-2:2019, EN IEC 61000-3-2:2019/A1:2021, EN IEC 61000-3-2:2019/A2:2024	N/A
Voltage Changes, Voltage Fluctuations and Flicker	EN 61000-3-3:2013, EN 61000-3-3:2013/A1:2019, EN 61000-3-3:2013/A2:2021	Pass
Electrostatic Discharge Immunity	EN 55035:2017, EN 55035:2017/A11:2020, IEC 61000-4-2:2008	Pass
Radiated, Radio-frequency, Electromagnetic Field Immunity	EN 55035:2017, EN 55035:2017/A11:2020, IEC 61000-4-3:2020	Pass
Electrical Fast Transient/Burst Immunity	EN 55035:2017, EN 55035:2017/A11:2020, IEC 61000-4-4:2012	Pass
Surge Immunity	EN 55035:2017, EN 55035:2017/A11:2020, IEC 61000-4-5:2014+AMD1:2017	Pass
Immunity to Conducted Disturbances, Induced by Radio-frequency Fields	EN 55035:2017, EN 55035:2017/A11:2020, IEC 61000-4-6:2023	Pass
Power Frequency Magnetic Field Immunity	EN 55035:2017, EN 55035:2017/A11:2020, IEC 61000-4-8:2009	Pass
Voltage Dips, Short Interruptions and Voltage Variations Immunity	EN 55035:2017, EN 55035:2017/A11:2020, IEC 61000-4-11:2020	Pass
Note: The measurement result for the sample received is <Pass> according to standard listed above when <Simple Acceptance decision rule> decision rule is applied.		

2 General Test Information

2.1 Description of EUT

EUT Name	:	LCD Monitor
Model Number	:	**34B3***** (** = 0-9, A-Z, a-z, +, -, /, \ or blank)
Model Differences	:	All models difference is in sale marketing.
Test Model	:	**34B3***** (** = 0-9, A-Z, a-z, +, -, /, \ or blank)
Sample No.	:	Y25102121-01
Power supply	:	AC 100V – AC 240V~ 50/60Hz
Test Power supply	:	AC 230V 50Hz, AC 110V 60Hz
EUT Class	:	Class B
Maximum work frequency	:	N/A

2.2 Primary Function of EUT

Function	Description
Broadcast reception function	N/A
Print	N/A
Scan	N/A
Display or display output	Display
Musical tone generating	N/A
Networking	N/A
Audio output	Audio output port
Telephony	N/A
Bluetooth	N/A
Other	N/A

2.3 Port of EUT

Port	Description
AC mains power ports	AC mains power port
DC network power port	N/A
Wired network port	N/A
Signal data/control port	One HDMI port, One DP port
Antenna port	N/A
Broadcast receiver tuner port	N/A
Audio output port	One audio output port
Video output port	N/A
Other	N/A


2.4 Accessories of EUT

Accessories	Manufacturer	Model No.	Description	Remark
AC Cable	N/A	N/A	Length: 1.2m/1.5m/1.8m,	N/A
HDMI Cable	N/A	N/A	Length: 1.2m/1.5m/1.8m,	N/A
DP Cable	N/A	N/A	Length: 1.2m/1.5m/1.8m,	N/A

2.5 Test peripherals

Device	Manufacturer	Model No.	Description	Remark
DVD	Pioneer	BDP-4100-K	N/A	N/A
PC	HP	22W8NZ3	N/A	N/A
Keyboard	DELL	K2329	N/A	N/A
Mouse	DELL	M698	N/A	N/A
Speaker	Creative	V2	N/A	N/A

2.6 Block diagram EUT configuration for test

2.7 EUT operating mode(s)

Mode 1	Connect HDMI cable from PC's HDMI port to EUT's HDMI Port. Connect DP cable from PC's DP port to EUT's DP Port. Switch source to HDMI. The test signal is color bars with moving picture element according to ITU-R BT 471-1.
Mode 2	Connect HDMI cable from PC's HDMI port to EUT's HDMI Port. Connect DP cable from PC's DP port to EUT's DP Port. Switch source to DP. The test signal is color bars with moving picture element according to ITU-R BT 471-1.

2.8 Performance Criteria

Criterion	Description
A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
B	<p>During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.</p> <p>After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended.</p> <p>The performance level may be replaced by a permissible loss of performance. If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.</p>
C	<p>Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.</p> <p>Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.</p>

2.9 Deviations of test standard

No Deviation.

2.10 Test laboratory

Lab Information	Company Name: LabSure Testing Services (Suzhou) Co., Ltd. Address: Phase II, No.16 Runsheng Road, Suzhou Industrial Park, Suzhou, People's Republic of China Tel: +86-0512-62531270, E-mail: labsure @lab-sure.com, www.lab-sure.com
Accreditation Certificate	<p>A2LA (Certificate No.: 7346.01) LabSure Testing Services (Suzhou) Co., Ltd. has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1397) LabSure Testing Services (Suzhou) Co., Ltd. has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.</p> <p>IC (IC Designation No.: 32952; CAB No.:CN0182) LabSure Testing Services (Suzhou) Co., Ltd. has been recognized to</p>

	perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
Note 1:	All tests measurement facilities use to collect the measurement data are located at Phase II, No.16 Runsheng Road, Suzhou Industrial Park, Suzhou, People's Republic of China
Note 2:	For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.
Note 3:	The test anechoic chamber in LabSure Testing Services (Suzhou) Co., Ltd. had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

2.11 Measurement uncertainty

Test Item	Uncertainty
Conducted Emissions at Mains Power Port	2.7 dB (150KHz-30MHz)
Conducted Emissions at Telecommunication Port	3.1 dB
Radiated Emissions (30MHz to 1GHz) at 10m Chamber	4.0 dB (Antenna Polarize: Hor.)
	3.7 dB (Antenna Polarize: Ver.)
Radiated Emissions (Above 1GHz) at 3m Chamber	4.4 dB(1GHz-6GHz)
	4.7 dB(6GHz-18GHz)
Harmonic Current Emissions	3.8 %

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.12 Abbreviations

For the purposes of the present document, the following abbreviations apply:

EUT: Equipment Under Test

QP: Quasi-Peak

PK: Peak,

AV: Average

CAV: CISPR Average

CDN: Coupling Decoupling Network

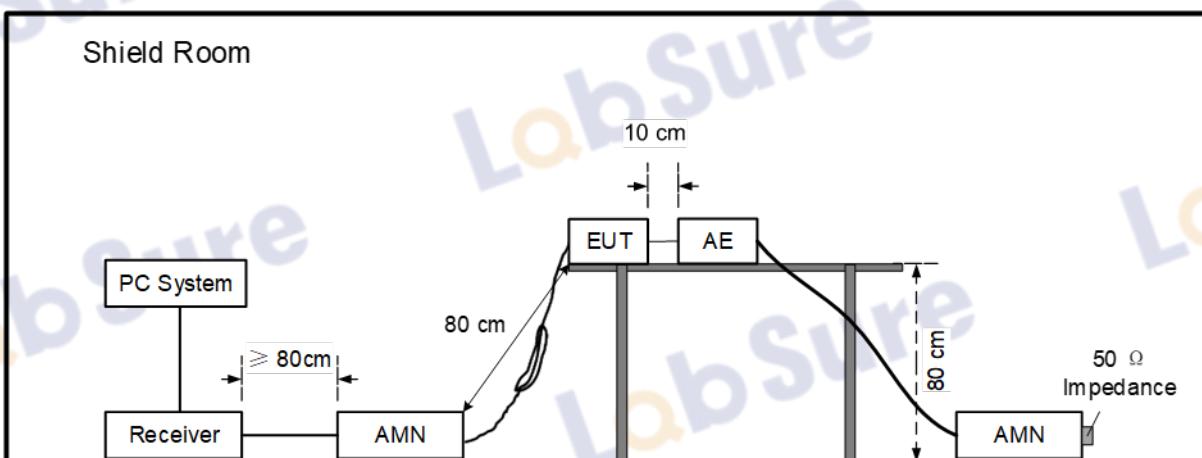
AM: Amplitude Modulation

N/A: Not Applicable

3 Conducted Emissions (AC mains power ports)

3.1 General Information

Test date	Nov. 10, 2025	Test engineer	Phil Zhou	
Climate condition	Ambient temperature	22.2°C	Relative humidity	66.9%
	Atmospheric pressure	102.4kPa		
Test place	Shield room 1			


3.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Shielding Room 1	N/A	N/A	N/A	Jan. 25, 2024	3 Year
EMI Test Receiver	R&S	ESCI3	101705	Jan. 23, 2025	1 Year
LISN	R&S	ENV216	100064	Jan. 23, 2025	1 Year
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	102704	Jan. 23, 2025	1 Year
Temperature, humidity and pressure recorder	HuaHanWei	THP40W-E	c0222020002 E	Feb. 10, 2025	1 Year
Test Software	TONSCEND	JS32-CE	5.0.0	N/A	N/A

3.3 Reference Standard

EN 55032:2015,
EN 55032:2015/A11:2020,
EN 55032:2015/A1:2020

3.4 Test Arrangement

The EUT was placed on a non-metallic table, 80cm above the ground plane. The EUT's power adapter was connected to the power mains through a line impedance stabilization network (AMN). which this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted disturbance.

The bandwidth of test receiver is set at 9 kHz.

The frequency range from 150 kHz to 30MHz is checked.

Pre-scan measurements were performed in all operating mode or resolution. But final measurements were performed in worst cases based on pre-scan measurements.

The EUT with following test modes were pre-tested:

No.	Operation Mode	Cable Length	Resolution	Rotation	Audio	Stand Position
1.	Mode 1 HDMI	1.8m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
2.		1.8m	1920x1080@120Hz	Landscape	External Speaker	HAS Stand-up
3.		1.8m	800*600@60Hz	Landscape	External Speaker	HAS Stand-up
4.		1.5m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
5.		1.2m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
6.	Mode 2 DP	1.8m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
7.		1.8m	1920x1080@120Hz	Landscape	External Speaker	HAS Stand-up
8.		1.8m	800*600@60Hz	Landscape	External Speaker	HAS Stand-up
9.		1.5m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
10.		1.2m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
11.	The worst case above with 1.5m power cord			Landscape	External Speaker	HAS Stand-up
12.	The worst case above with 1.2m power cord			Landscape	External Speaker	HAS Stand-up
13.	The worst case above with 1.8m power cord			Portrait (-90 degree)	External Speaker	HAS Stand-up
14.	The worst case above with 1.8m power cord			Portrait (-270 degree)	External Speaker	HAS Stand-up
15.	The worst case above with 1.8m power cord			Landscape	External Speaker	HAS Stand-down
16.	The worst case above with 1.8m power cord			Landscape	Headphone	HAS Stand-up
17.	The worst case above with 1.8m power cord			Landscape	Internal Speaker	HAS Stand-up

3.5 Test Specification and Limit

Class B

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

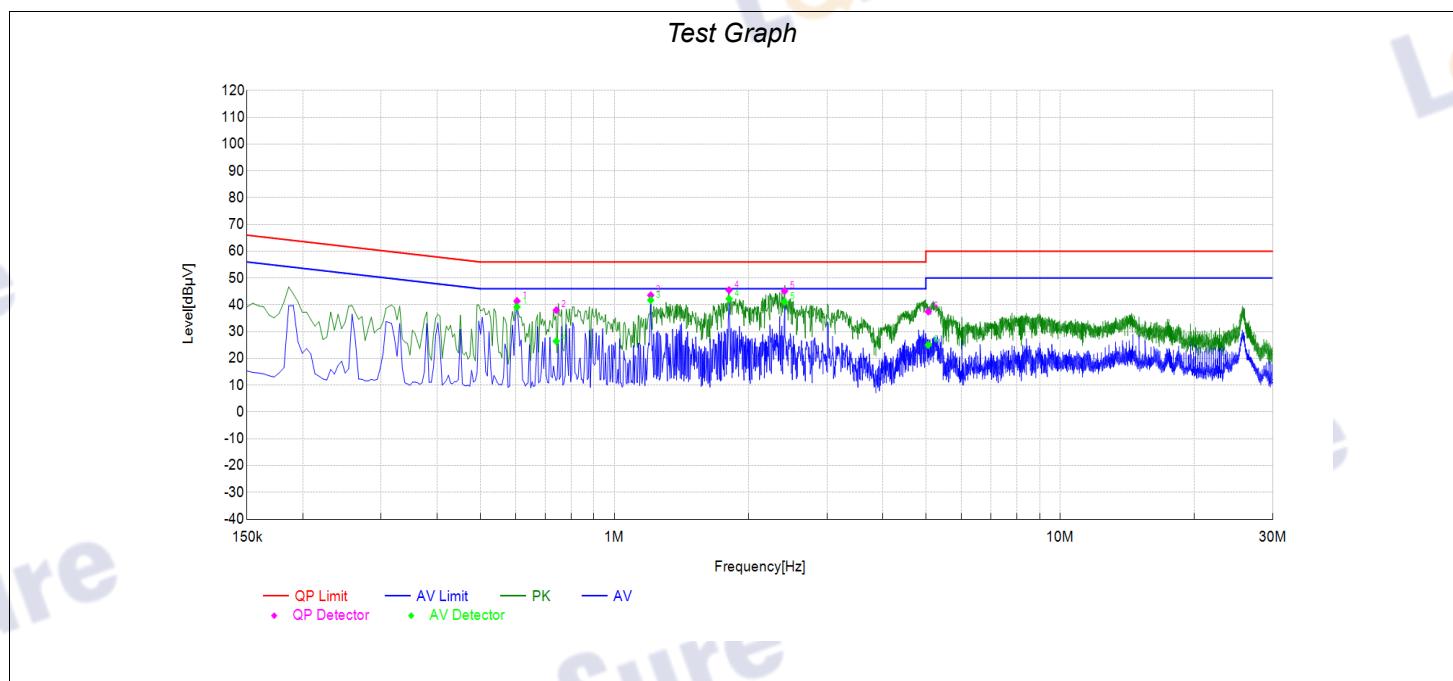
Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

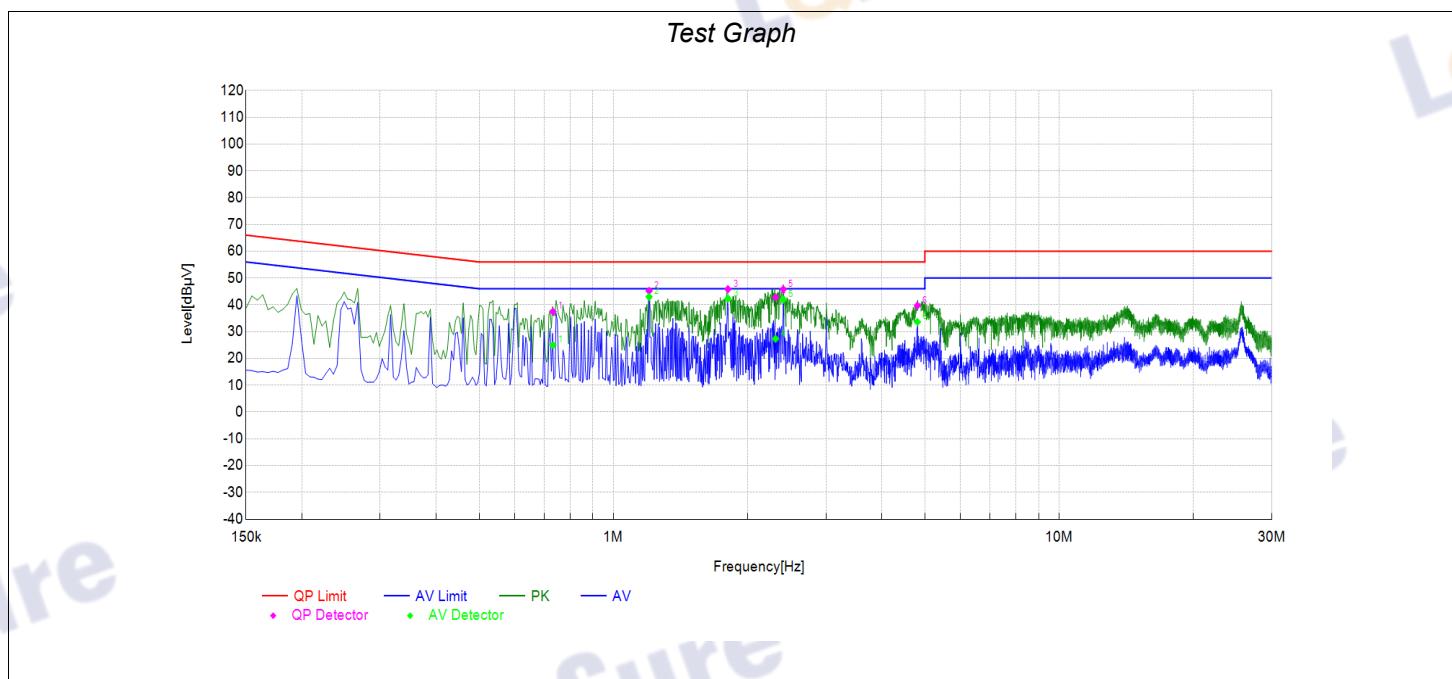
Note for test result

Note1): According pre-test, the worst test modes decided as below and reported. Only data of worst mode was reported in test result.

Note2) Line = Polarity of input power (Live or Neutral), N: Abbreviation of Neutral Polarity, L1: Abbreviation of Live Polarity,


Note3) Level (Quasi-Peak and/or C/Average) = Meter Reading + Factor,

Note4) Factor = AMN (or AAN) Insertion Loss + Cable Loss,


Note5) Margin = Limit – Level (Quasi-Peak and/or C/Average)

3.6 Test Result

Sample No.	Operation Mode	Remarks	Result
Y25102121-01	Mode 1	Final measurement, minimum margin 3.03 dB	Pass
Y25102121-01	Mode 2	Pre-scan measurement	Pass

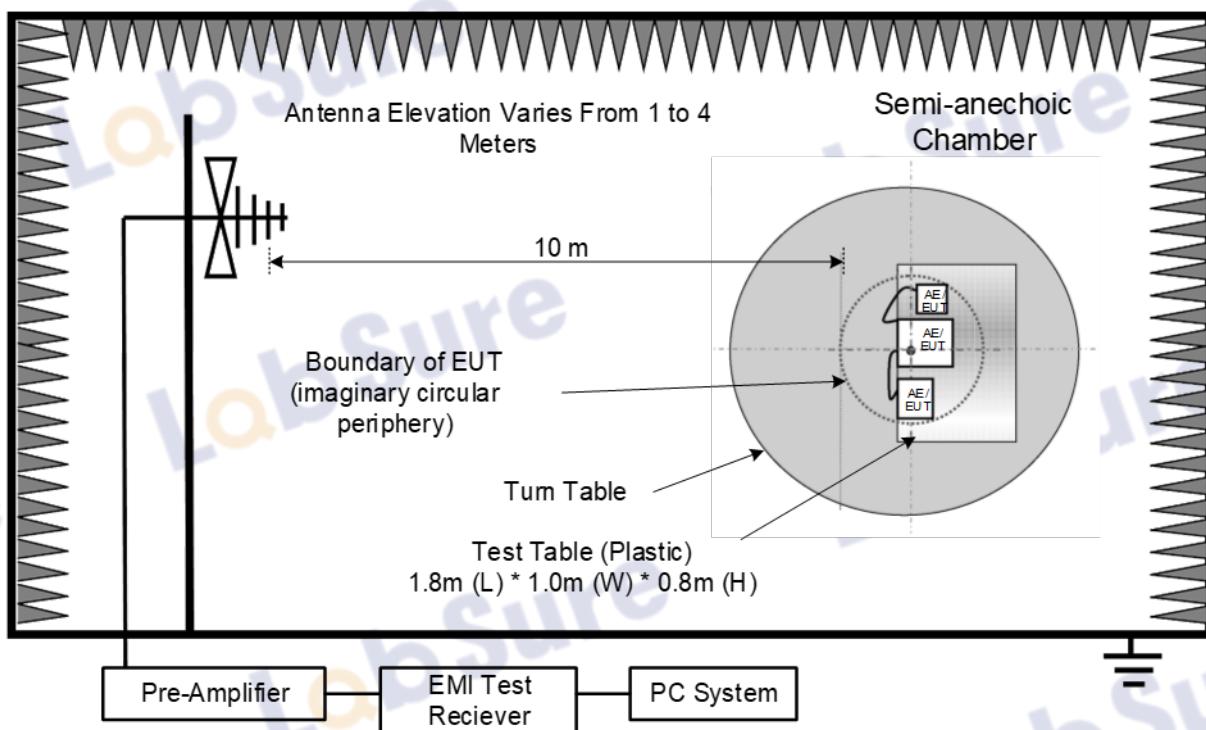
Final Data List													
NO.	Frequency [MHz]	Factor [dB]	QP Reading [dBμV]	QP Value [dBμV]	QP Limit [dBμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBμV]	AV Limit [dBμV]	AV Margin [dB]	Phase	Verdict	
1	0.6050	19.07	22.31	41.38	56.00	14.62	20.12	39.19	46.00	6.81	N	PASS	
2	0.7410	18.99	19.01	38.00	56.00	18.00	7.42	26.41	46.00	19.59	N	PASS	
3	1.2071	18.90	24.65	43.55	56.00	12.45	22.84	41.74	46.00	4.26	N	PASS	
4	1.8091	19.03	26.44	45.47	56.00	10.53	23.20	42.23	46.00	3.77	N	PASS	
5	2.4094	19.18	25.97	45.15	56.00	10.85	21.90	41.08	46.00	4.92	N	PASS	
6	5.0630	19.92	17.56	37.48	60.00	22.52	5.10	25.02	50.00	24.98	N	PASS	

Final Data List													
NO.	Frequency [MHz]	Factor [dB]	QP Reading [dBμV]	QP Value [dBμV]	QP Limit [dBμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBμV]	AV Limit [dBμV]	AV Margin [dB]	Phase	Verdict	
1	0.7323	18.99	18.46	37.45	56.00	18.55	5.94	24.93	46.00	21.07	L	PASS	
2	1.2030	18.90	26.31	45.21	56.00	10.79	24.07	42.97	46.00	3.03	L	PASS	
3	1.8076	19.03	26.81	45.84	56.00	10.16	23.26	42.29	46.00	3.71	L	PASS	
4	2.3124	19.15	23.59	42.74	56.00	13.26	8.17	27.32	46.00	18.68	L	PASS	
5	2.4061	19.18	26.62	45.80	56.00	10.20	22.79	41.97	46.00	4.03	L	PASS	
6	4.8099	19.87	19.82	39.69	56.00	16.31	13.73	33.60	46.00	12.40	L	PASS	

4 Radiated Emissions (30MHz to 1GHz)

4.1 General Information

Test date	Nov. 10, 2025	Test engineer	Phil Zhou	
Climate condition	Ambient temperature	18.5°C	Relative humidity	63.0%
	Atmospheric pressure	102.3kPa		
Test place	10m Chamber			


4.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
10m Anechoic Chamber	N/A	N/A	N/A	Jan. 25, 2024	3 Year
EMI Test Receiver	R&S	ESCI7	101195	Jan. 23, 2025	1 Year
Temperature and humidity recorder	HuaHanWei	TH10R	C00286000E E1	Feb. 10, 2025	1 Year
Hybrid antenna	SCHWARZBECK	VULB 9163	01679	Feb. 23, 2024	3 Year
Low Noise Amplifier	Tonscend	TAP10M1G40 N	AP24A80603 34	Jan. 23, 2025	1 Year
Hybrid antenna	SCHWARZBECK	VULB 9163	01699	Aug. 02, 2024	3 Year
Low Noise Amplifier	Tonscend	TAP10M1G40 N	AP24G80603 54	Jan. 23, 2025	1 Year
EMI Test Receiver	R&S	ESR7	101322	Jan. 23, 2025	1 Year
Test Software	TONSCEND	JS32-RE	5.0.0	N/A	N/A

4.3 Reference Standard

EN 55032:2015,
 EN 55032:2015/A11:2020,
 EN 55032:2015/A1:2020

4.4 Test Arrangement

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber.

Test antenna was located 10m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded.

Spectrum frequency from 30MHz to 1GHz was investigated.

For final emissions measurements at each frequency of interest, the EUT were rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded.

For emissions from 30MHz to 1GHz, Quasi-Peak values were measured with EMI Receiver and the bandwidth of Receiver is 120 kHz.

Final measurements consisted of 3 steps. First step, frequency fine tuning to find exact emission frequency. Second step, rechecking to search for maximum height and azimuth for interference from EUT. In final step, there are conducted measuring with quasi-peak detector for points which are detected from 1st step & 2nd step. Results checked manually and points close to the limit line were re-measured.

Pre-scan measurements were performed in all operating mode or condition. But final measurements were performed in worst cases based on pre-scan measurements.

The EUT with following test modes were pre-tested:

No.	Operation Mode	Cable Length	Resolution	Rotation	Audio	Stand Position
18.	Mode 1 HDMI	1.8m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
19.		1.8m	1920x1080@120Hz	Landscape	External Speaker	HAS Stand-up
20.		1.8m	800*600@60Hz	Landscape	External Speaker	HAS Stand-up
21.		1.5m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
22.		1.2m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
23.	Mode 2 DP	1.8m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
24.		1.8m	1920x1080@120Hz	Landscape	External Speaker	HAS Stand-up
25.		1.8m	800*600@60Hz	Landscape	External Speaker	HAS Stand-up
26.		1.5m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
27.		1.2m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
28.	The worst case above with 1.5m power cord			Landscape	External Speaker	HAS Stand-up
29.	The worst case above with 1.2m power cord			Landscape	External Speaker	HAS Stand-up
30.	The worst case above with 1.8m power cord			Portrait (-90 degree)	External Speaker	HAS Stand-up
31.	The worst case above with 1.8m power cord			Portrait (-270 degree)	External Speaker	HAS Stand-up
32.	The worst case above with 1.8m power cord			Landscape	External Speaker	HAS Stand-down
33.	The worst case above with 1.8m power cord			Landscape	Headphone	HAS Stand-up
34.	The worst case above with 1.8m power cord			Landscape	Internal Speaker	HAS Stand-up

4.5 Test Specification and Limit

Class B

Frequency	Field Strengths Limits at 10m measuring distance dB(μ V)/m
30MHz to 230MHz	30
230MHz to 1000MHz	37

Note: (1) The smaller limit shall apply at the cross point between two frequency bands.

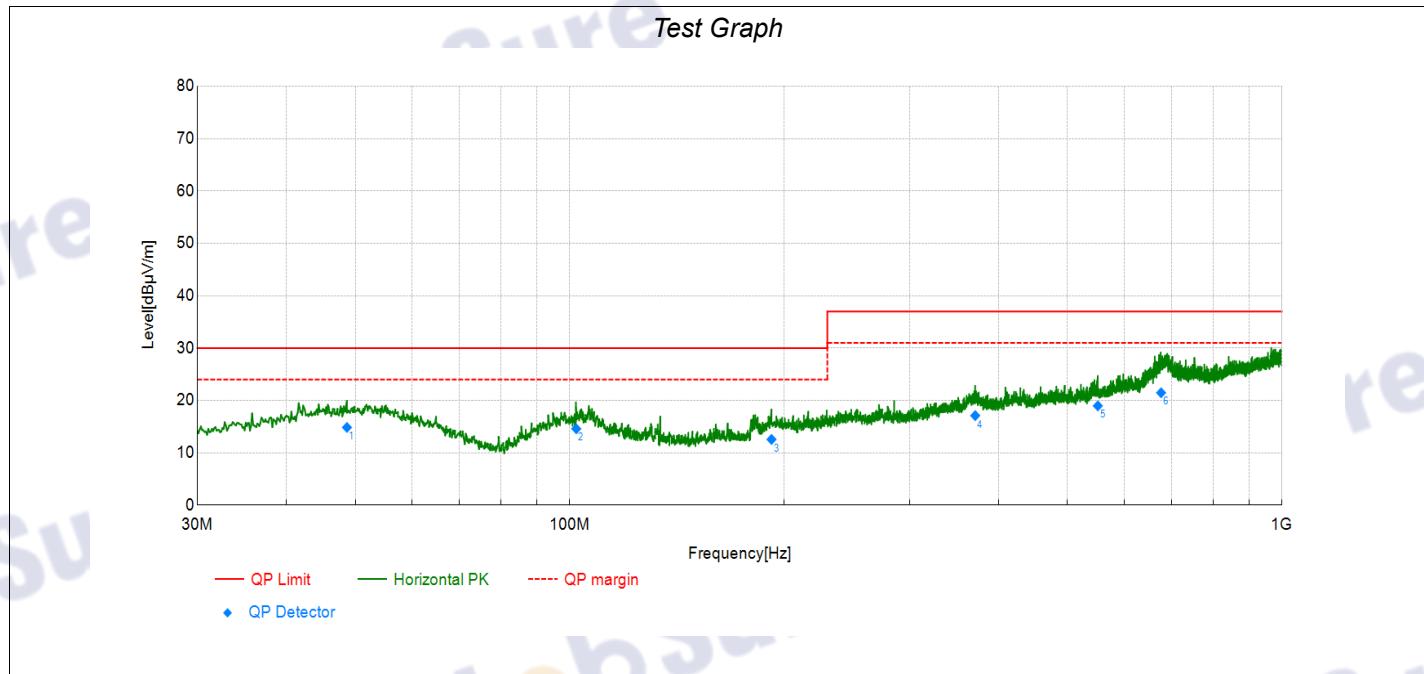
(2) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Note for test result

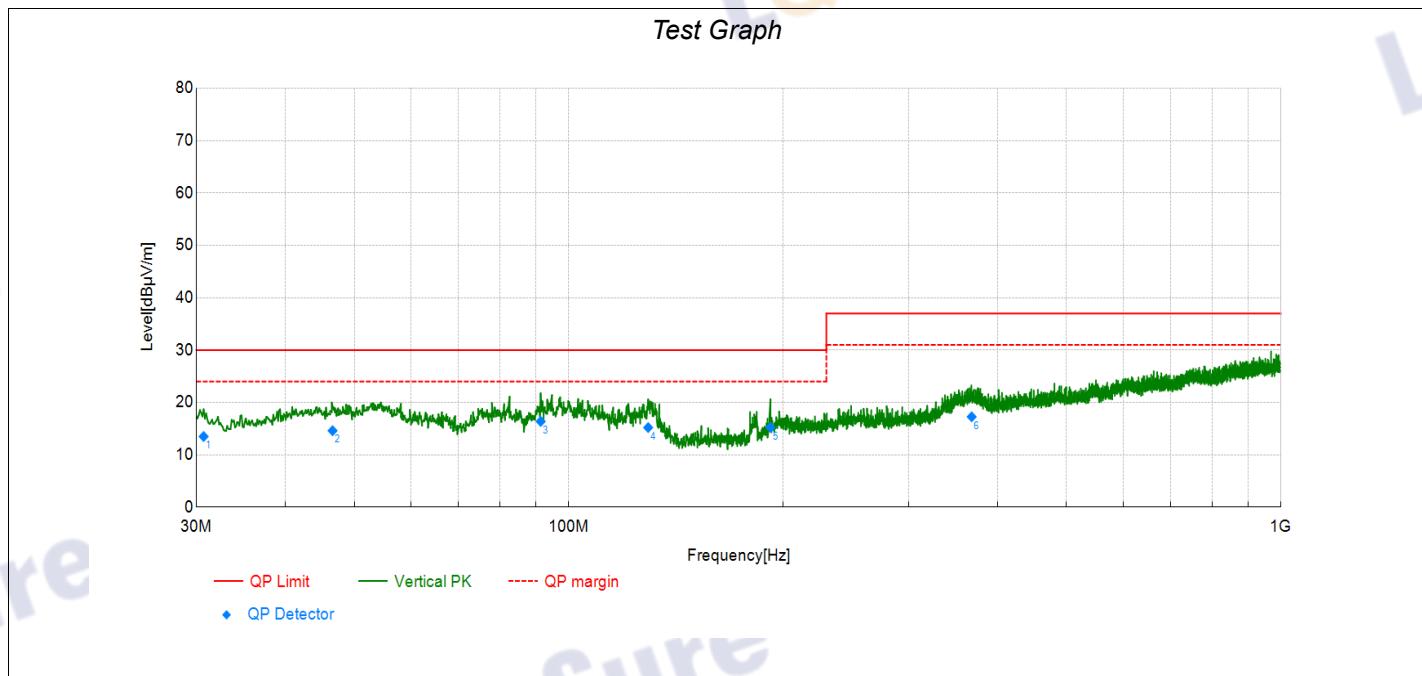
Note1): According pre-test, the worst test modes decided as below and reported. Only data of worst mode was reported in test result.

Note2) (P): Abbreviation of Antenna Polarity

Note3) Receiving antenna polarization: Horizontal and/or Vertical. Antenna Height: 1 m to 4 m


Note4) Level QP (Quasi-Peak) = Reading QP + Factor

Note5) Factor = Antenna Factor + Cable Loss - Amp. Gain


Note6) Margin = Limit – Level QP

4.6 Test Result

Sample No.	Operation Mode	Remarks	Result
Y25102121-01	Mode 1	Final measurement, minimum margin 13.62 dB	Pass
Y25102121-01	Mode 2	Pre-scan measurement	Pass

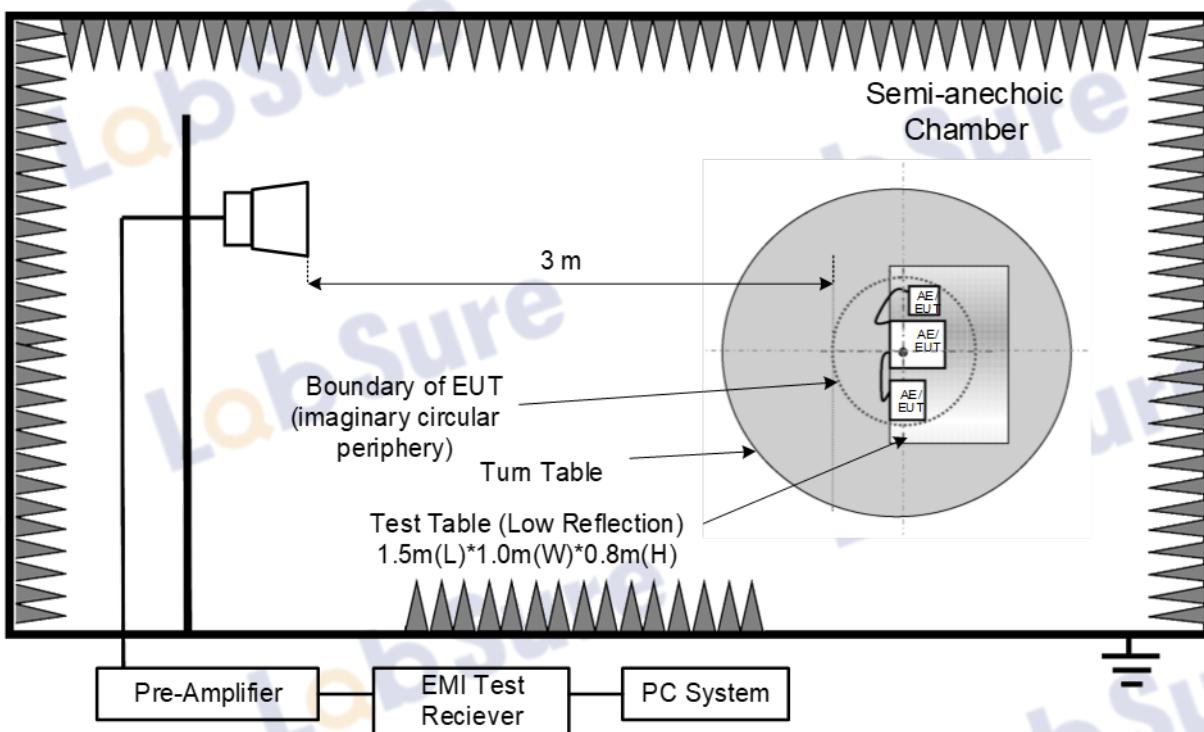
Final Data List										
NO.	Frequency [MHz]	Factor [dB/m]	QP Reading [dB μ V]	QP Value [dB μ V/m]	QP Limit [dB μ V/m]	QP Margin [dB]	Height [cm]	Angle [°]	Pol	Verdict
1	48.67	-19.97	34.81	14.84	30.00	15.16	400	158	H	PASS
2	102.14	-21.52	36.11	14.59	30.00	15.41	400	314	H	PASS
3	191.99	-22.07	34.63	12.56	30.00	17.44	400	0	H	PASS
4	370.96	-17.14	34.24	17.10	37.00	19.90	100	291	H	PASS
5	551.38	-13.84	32.81	18.97	37.00	18.03	100	246	H	PASS
6	676.51	-12.09	33.56	21.47	37.00	15.53	100	15	H	PASS

Final Data List										
NO.	Frequency [MHz]	Factor [dB/m]	QP Reading [dBμV]	QP Value [dBμV/m]	QP Limit [dBμV/m]	QP Margin [dB]	Height [cm]	Angle [°]	Pol	Verdict
1	30.73	-24.42	37.91	13.49	30.00	16.51	100	78	V	PASS
2	46.61	-20.46	35.06	14.60	30.00	15.40	400	12	V	PASS
3	91.35	-23.78	40.16	16.38	30.00	13.62	100	189	V	PASS
4	129.30	-25.02	40.23	15.21	30.00	14.79	100	189	V	PASS
5	191.99	-22.14	37.36	15.22	30.00	14.78	100	338	V	PASS
6	367.92	-17.40	34.66	17.26	37.00	19.74	100	354	V	PASS

5 Radiated Emissions (Above 1GHz)

5.1 General Information

Test date	Nov. 14, 2025	Test engineer	Caleb Fu	
Climate condition	Ambient temperature	22.3°C	Relative humidity	55.1%
	Atmospheric pressure	101.3kPa		
Test place	3m Chamber			


5.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
3m Anechoic Chamber	N/A	N/A	N/A	May. 18, 2024	3 Year
Horn Antenna	ETS	ETS 3117	157735	Jan. 19, 2024	3 Year
Pre-Amplifier_HF	COM-MW	HDMI8-1000-18000-1012	9BH231242575	Jan. 23, 2025	1 Year
Temperature, humidity and pressure recorder	HuaHanWei	THP40W-E	c0222020002F	Feb. 10, 2025	1 Year
Spectrum Analyzer	R&S	FSV40-N	101730	Jan. 23, 2025	1 Year
Test Software	TONSCEND	JS32-RE	5.0.0	N/A	N/A

5.3 Reference Standard

EN 55032:2015,
EN 55032:2015/A11:2020,
EN 55032:2015/A1:2020

5.4 Test Arrangement

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.

If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz.

Measurements within 20 dB of the limit were then maximized by adjusting turntable position. Final measurements were made using an C/Average detector.

Results checked manually and points close to the limit line were re-measured.

Pre-scan measurements were performed in all operating mode or resolution. But final measurements were performed in worst cases based on pre-scan measurements.

The EUT with following test modes were pre-tested:

No.	Operation Mode	Cable Length	Resolution	Rotation	Audio	Stand Position
35.	Mode 1 HDMI	1.8m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
36.		1.8m	1920x1080@120Hz	Landscape	External Speaker	HAS Stand-up
37.		1.8m	800*600@60Hz	Landscape	External Speaker	HAS Stand-up
38.		1.5m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up

39.		1.2m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
40.	Mode 2 DP	1.8m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
41.		1.8m	1920x1080@120Hz	Landscape	External Speaker	HAS Stand-up
42.		1.8m	800*600@60Hz	Landscape	External Speaker	HAS Stand-up
43.		1.5m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
44.		1.2m	3440x1440@144Hz	Landscape	External Speaker	HAS Stand-up
45.	The worst case above with 1.5m power cord			Landscape	External Speaker	HAS Stand-up
46.	The worst case above with 1.2m power cord			Landscape	External Speaker	HAS Stand-up
47.	The worst case above with 1.8m power cord			Portrait (-90 degree)	External Speaker	HAS Stand-up
48.	The worst case above with 1.8m power cord			Portrait (-270 degree)	External Speaker	HAS Stand-up
49.	The worst case above with 1.8m power cord			Landscape	External Speaker	HAS Stand-down
50.	The worst case above with 1.8m power cord			Landscape	Headphone	HAS Stand-up
51.	The worst case above with 1.8m power cord			Landscape	Internal Speaker	HAS Stand-up

5.5 Test Specification and Limit

Class B

Frequency range Limits (GHz)	Limits dB(μ V/m)	
	Peak	C/Average
1 ~ 6	74	54

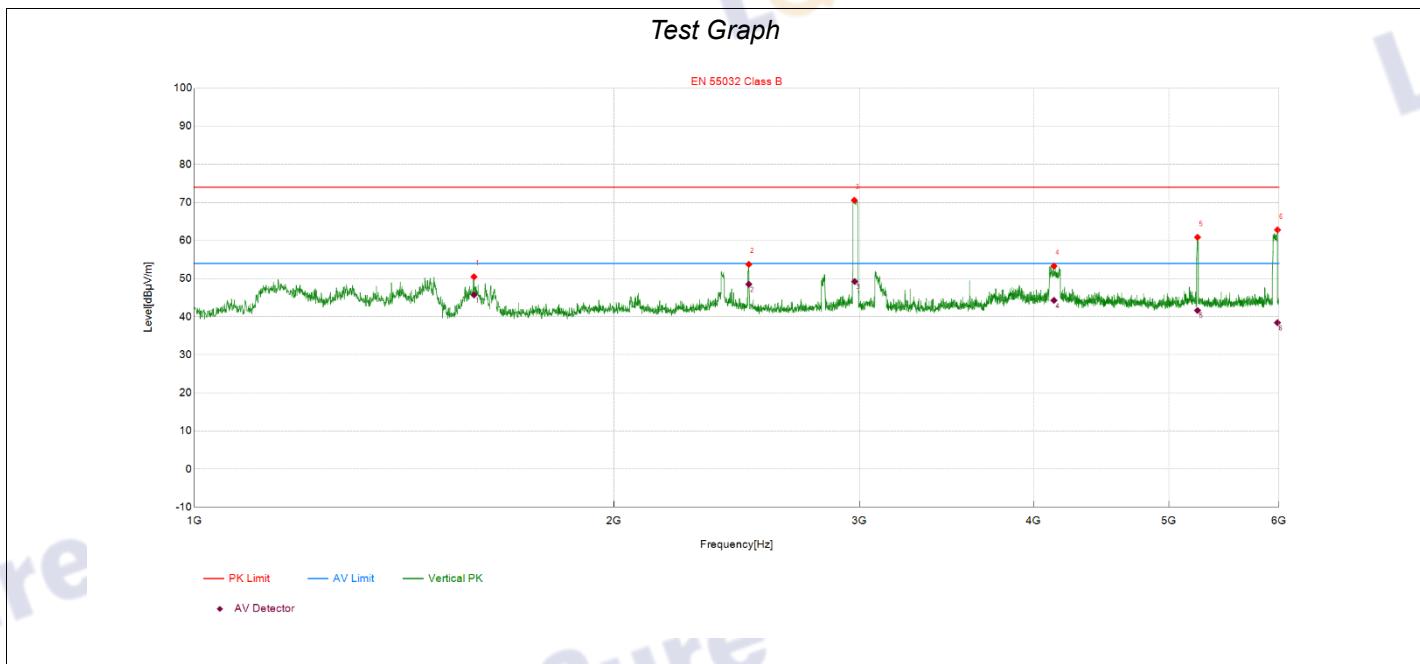
Note: The lower limit shall apply at the transition frequency

Note for test result

Note1): According pre-test, the worst test modes decided as below and reported. Only data of worst mode was reported in test result.

Note2) (P) : Abbreviation of Antenna Polarity

Note3) Reading PK / C/AV: Received raw Peak / C/Average signal

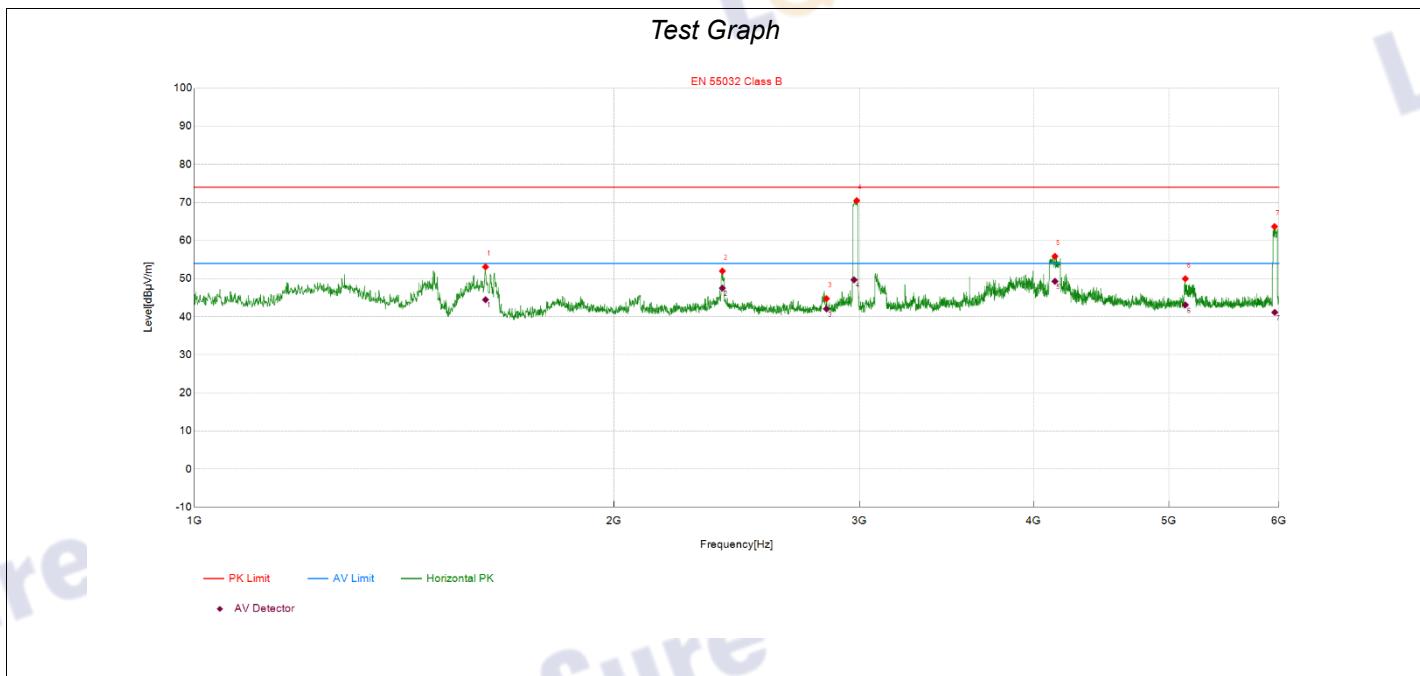

Note4) Level PK / C/AV = Reading PK / C/AV + Factor, Real signal Peak / C/Average level

Note5) Factor = Antenna factor + Cable loss – Amplifier gain

Note6) Margin PK / C/AV = Limit – Level PK / C/AV

5.6 Test Result

Sample No.	Operation Mode	Remarks	Result
Y25102121-01	Mode 1	Final measurement, minimum margin 3.43dB	Pass
Y25102121-01	Mode 2	Pre-scan measurement	Pass



Suspected Data List

NO.	Frequency [MHz]	Reading [dB μ V]	Level [dB μ V/m]	Factor [dB/m]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Det	Pol	Verdict
1	1587.50	70.28	50.47	-19.81	74.00	23.53	100	338	PK	V	PASS
2	2499.38	67.22	53.75	-13.47	74.00	20.25	200	7	PK	V	PASS
3	2975.00	83.39	70.57	-12.82	74.00	3.43	100	359	PK	V	PASS
4	4136.88	64.28	53.29	-10.99	74.00	20.71	100	32	PK	V	PASS
5	5243.75	69.05	60.86	-8.19	74.00	13.14	200	33	PK	V	PASS
6	5985.00	69.61	62.80	-6.81	74.00	11.20	200	301	PK	V	PASS

Final Data List

NO.	Frequency [MHz]	Factor [dB/m]	AV Reading [dB μ V]	AV Value [dB μ V/m]	AV Limit [dB μ V/m]	AV Margin [dB]	Height [cm]	Angle [°]	Pol	Verdict
1	1587.50	-19.81	65.54	45.73	54.00	8.27	100	338	V	PASS
2	2499.38	-13.47	62.00	48.53	54.00	5.47	200	7	V	PASS
3	2977.15	-12.82	62.06	49.24	54.00	4.76	100.6	356	V	PASS
4	4136.88	-10.99	55.28	44.29	54.00	9.71	100	32	V	PASS
5	5243.75	-8.19	49.83	41.64	54.00	12.36	200	33	V	PASS
6	5983.98	-6.81	45.24	38.43	54.00	15.57	207.1	295	V	PASS

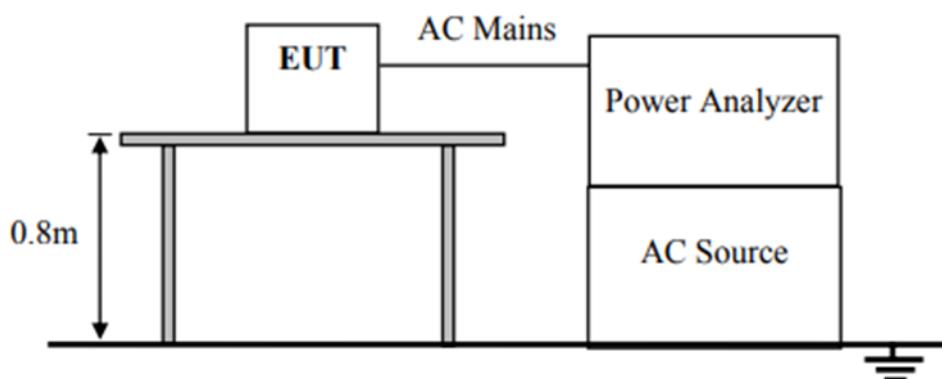
Suspected Data List												
NO.	Frequency [MHz]	Reading [dB μ V]	Level [dB μ V/m]	Factor [dB/m]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Det	Pol	Verdict	
1	1618.13	72.77	53.08	-19.69	74.00	20.92	100	328	PK	H	PASS	
2	2392.50	65.37	52.00	-13.37	74.00	22.00	200	352	PK	H	PASS	
3	2841.25	57.74	44.75	-12.99	74.00	29.25	200	359	PK	H	PASS	
4	2986.88	83.32	70.49	-12.83	74.00	3.51	200	11	PK	H	PASS	
5	4143.75	66.81	55.86	-10.95	74.00	18.14	200	360	PK	H	PASS	
6	5139.38	58.19	49.98	-8.21	74.00	24.02	100	279	PK	H	PASS	
7	5955.00	70.46	63.67	-6.79	74.00	10.33	100	41	PK	H	PASS	

Final Data List											
NO.	Frequency [MHz]	Factor [dB/m]	AV Reading [dB μ V]	AV Value [dB μ V/m]	AV Limit [dB μ V/m]	AV Margin [dB]	Height [cm]	Angle [°]	Pol	Verdict	
1	1618.13	-19.69	64.16	44.47	54.00	9.53	100	328	H	PASS	
2	2392.50	-13.37	60.88	47.51	54.00	6.49	200	352	H	PASS	
3	2841.25	-12.99	55.05	42.06	54.00	11.94	200	359	H	PASS	
4	2973.91	-12.83	62.51	49.68	54.00	4.32	206.4	18	H	PASS	
5	4143.75	-10.95	60.24	49.29	54.00	4.71	200	360	H	PASS	
6	5139.38	-8.21	51.31	43.10	54.00	10.90	100	279	H	PASS	
7	5957.34	-6.79	47.94	41.15	54.00	12.85	100.6	44	H	PASS	

6 Harmonic Current Emissions

6.1 General Information

Test date	Nov. 12, 2025	Test engineer	Rachel Wang	
Climate condition	Ambient temperature	24.2°C	Relative humidity	55.7%
	Atmospheric pressure	102.1kPa		
Test place	Shield room 1			


6.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Shielding Room 1	N/A	N/A	N/A	Jan. 25, 2024	3 Year
Harmonic & Flicker test System	EMC PARTNER	HAR1000-1P	103488	Jan. 23, 2025	1 Year
Temperature, humidity and pressure recorder	HuaHanWei	THP40W-E	c0222020002 E	Feb. 10, 2025	1 Year
Test Software	EMC PARTNER	HARCS	Ver6.2	N/A	N/A

6.3 Reference Standard

EN IEC 61000-3-2:2019,
 EN IEC 61000-3-2:2019/A1:2021,
 EN IEC 61000-3-2:2019/A2:2024

6.4 Test Arrangement

6.5 Test Specification and Limit

Limits for Class D equipment

Harmonic order	Maximum permissible harmonic current per watt	Maximum permissible harmonic current
n	mA/W	A
3	3.4	2.30
5	1.9	1.14
7	1.0	0.77
9	0.5	0.40
11	0.35	0.33
13 ≤ n ≤ 39 (odd harmonics only)	3.85/n	See Table 1

6.6 Test Result

Sample No.	Operation Mode	Remarks	Result
Y25102121-01	Mode 1	Power is less than 75W, this test item is not required.	N/A

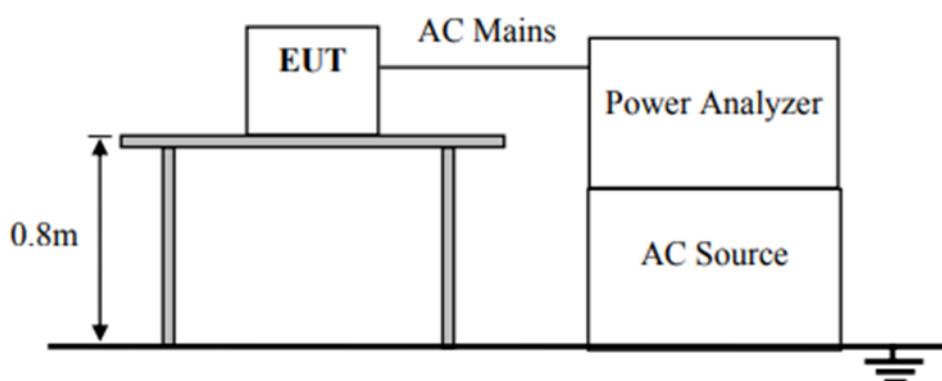
Note: The test should comply with the requirements of EN IEC 61000-3-2:2019+A1:2021+A2:2024. Because the rated power of EUT is less than 75 W, there is no need to perform the harmonics current test according to EN IEC 61000-3-2:2019+A1:2021+A2:2024. For further details, please refer to Clause 7, Note 1 of EN IEC 61000-3-2:2019+A1:2021+A2:2024 which states: “For the following categories of equipment, limits are not specified in this document” :

- equipment with a rated power of 75 W or less, other than lighting equipment.

7 Voltage Changes, Voltage Fluctuations and Flicker

7.1 General Information

Test date	Nov. 12, 2025	Test engineer	Rachel Wang	
Climate condition	Ambient temperature	24.2°C	Relative humidity	55.7%
	Atmospheric pressure	102.1kPa		
Test place	Shield room 1			


7.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Shielding Room 1	N/A	N/A	N/A	Jan. 25, 2024	3 Year
Harmonic & Flicker test System	EMC PARTNER	HAR1000-1P	103488	Jan. 23, 2025	1 Year
Temperature, humidity and pressure recorder	HuaHanWei	THP40W-E	c0222020002 E	Feb. 10, 2025	1 Year
Test Software	EMC PARTNER	HARCS	Ver6.2	N/A	N/A

7.3 Reference Standard

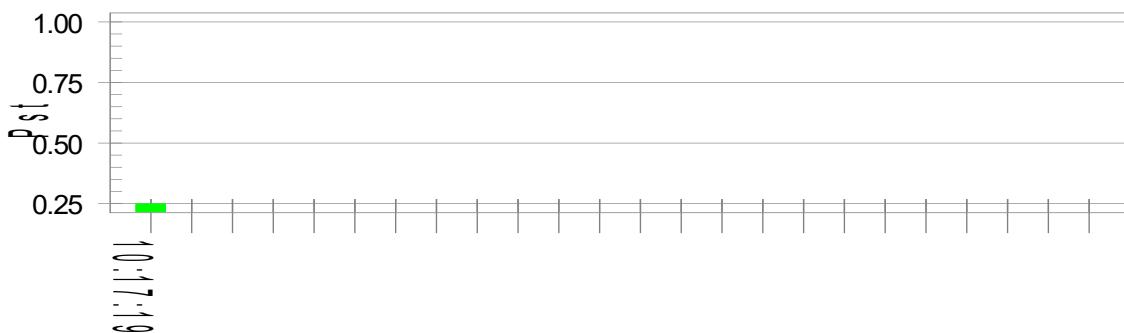
EN 61000-3-3:2013,
 EN 61000-3-3:2013/A1:2019,
 EN 61000-3-3:2013/A2:2021

7.4 Test Arrangement

7.5 Test Specification and Limit

short-term flicker indicator, Pst	the relative steady-state voltage change, dc	the value of d(t) during a voltage change, d(t) > 3.3 %	the maximum relative voltage change, dmax
1.0	3.3 %	500 ms	4 %

7.6 Test Result


Sample No.	Operation Mode	Remarks	Result
Y25102121-01	Mode 1	Test completed, Result: PASSED	Pass

Test Result: Pass

Status: Test Completed

Pst₁ and limit line

European Limits

Parameter values recorded during the test:

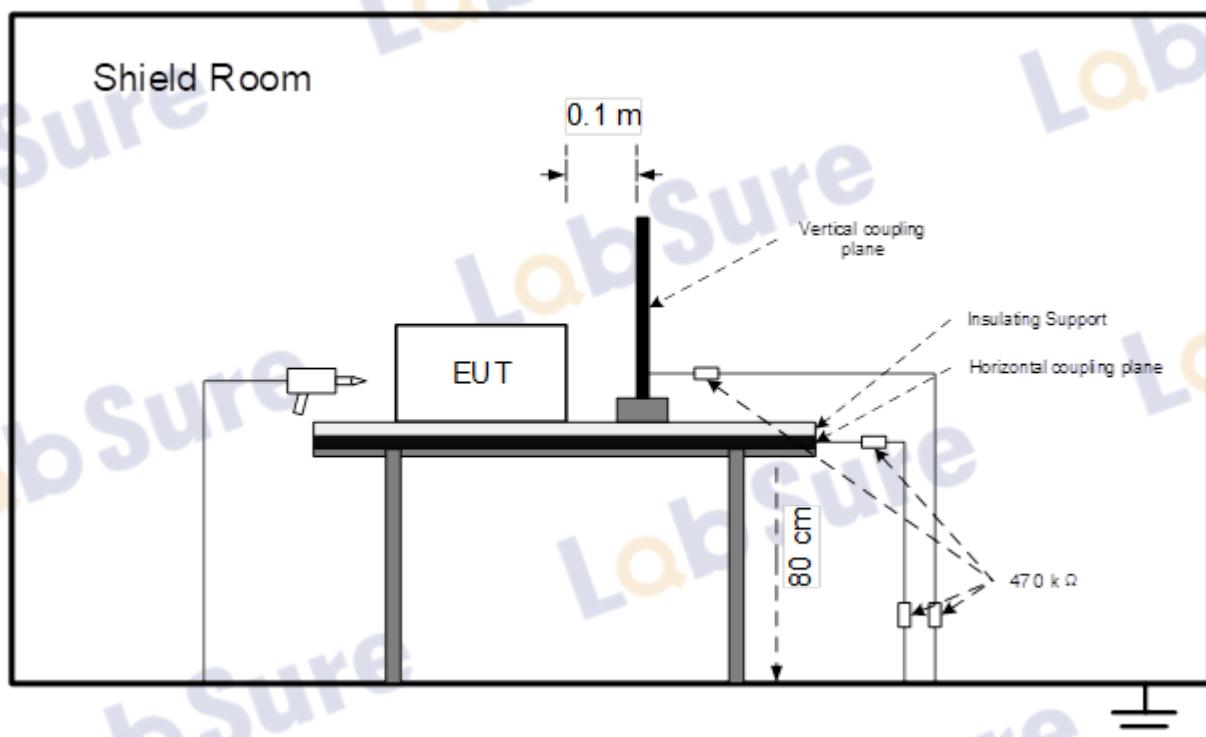
Vrms at the end of test (Volt): 229.96

T-max (mS):	0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.00	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.250	Test limit:	1.000	Pass

8 Electrostatic Discharge Immunity

8.1 General Information

Test date	Nov. 17, 2025	Test engineer	Ethan Luo	
Climate condition	Ambient temperature	23.2°C	Relative humidity	59.3%
	Atmospheric pressure	103.2kPa		
Test place	Shield Room 2			


8.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Shielding Room 2	N/A	N/A	N/A	Jan. 25, 2024	3 Year
ESD Generator	TESEQ	NSG437	405	Feb. 05, 2025	1 Year
Temperature, humidity and pressure recorder	HuaHanWei	THP40W-E	c0222020002d	Feb. 10, 2025	1 Year

8.3 Reference Standard

EN 55035:2017,
EN 55035:2017/A11:2020
IEC 61000-4-2:2008

8.4 Test Arrangement

Air Discharge:

The test was applied on non-conductive surfaces of EUT. The round discharge tip of the discharge electrode was approached as fast as possible to touch the EUT. After each discharge, the discharge electrode was removed from the EUT. The generator was re-triggered for a new single discharge and repeated 20 times for each pre-selected test point. This procedure was repeated until all the air discharge completed.

Contact Discharge:

All the procedure was same as air discharge. Except that the generator was re-triggered for a new single discharge. The tip of the discharge electrode was touching the EUT before the discharge switch was operated.

Indirect discharge for horizontal coupling plane:

At least 20 single discharges were applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

Indirect discharge for vertical coupling plane:

At least 20 single discharges were applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, was placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges were applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

8.5 Test Specification and Limit

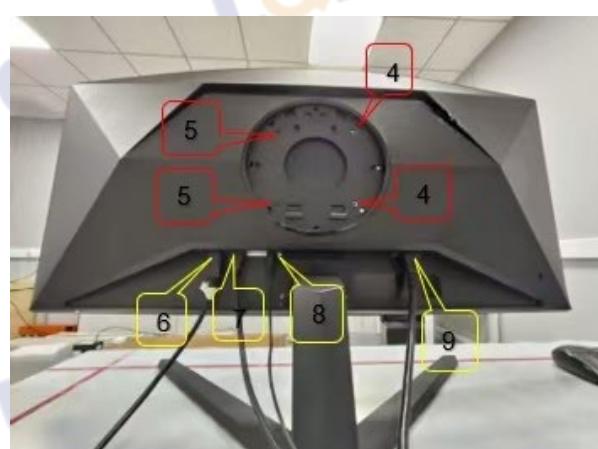
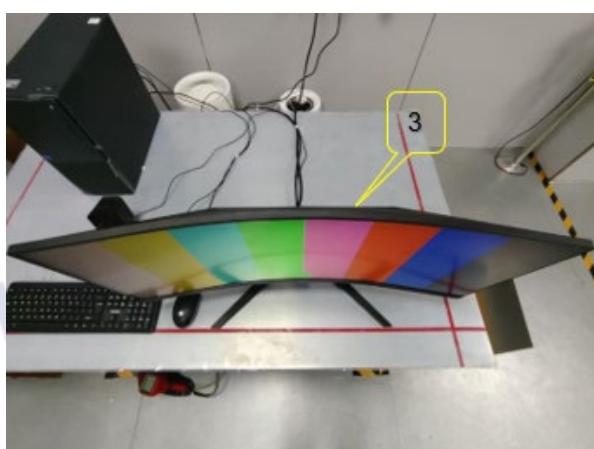
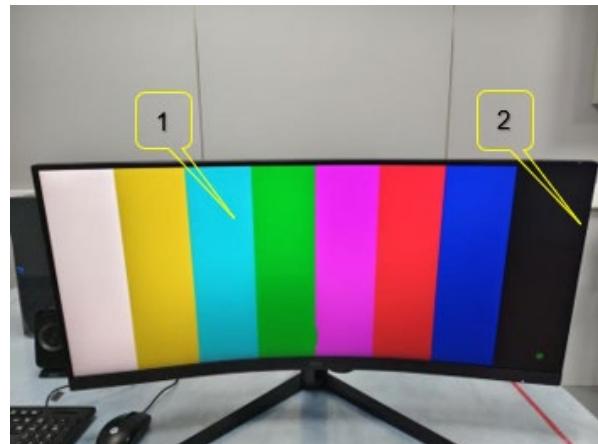
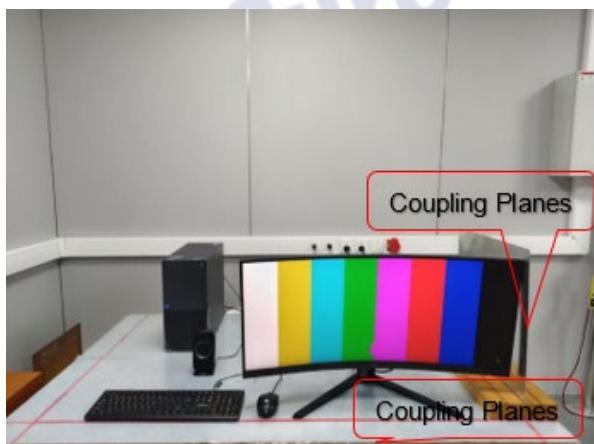
Test Level		Performance Criteria	
Air Discharge	$\pm 2\text{kV}$, $\pm 4\text{kV}$, $\pm 8\text{kV}$		
Contact Discharge	$\pm 4\text{kV}$	B	

8.6 Test Result

Sample No. Y25102121-01						
Operation Mode	Discharge Method	Test Level	Test Point	Required	Observation	Result
Mode 1	Contact Discharge	$\pm 4\text{kV}$	Coupling Plate	B	A ⁽¹⁾	Pass
Mode 1	Contact Discharge	$\pm 4\text{kV}$	4	B	A ⁽²⁾	Pass
Mode 1	Contact Discharge	$\pm 4\text{kV}$	5	B	A ⁽¹⁾	Pass
Mode 1	Air Discharge	$\pm 2\text{kV}$	1,2,3,6,7,8,9	B	A ⁽¹⁾	Pass
Mode 1	Air Discharge	$\pm 4\text{kV}$	1,2,3,6,7,8,9	B	A ⁽¹⁾	Pass
Mode 1	Air Discharge	$\pm 8\text{kV}$	1,2,3,6,7,8,9	B	A ⁽¹⁾	Pass

Mode 2	Contact Discharge	$\pm 4\text{kV}$	Coupling Plate	B	A ⁽¹⁾	Pass
Mode 2	Contact Discharge	$\pm 4\text{kV}$	4	B	A ⁽²⁾	Pass
Mode 2	Contact Discharge	$\pm 4\text{kV}$	5	B	A ⁽¹⁾	Pass
Mode 2	Air Discharge	$\pm 2\text{kV}$	1,2,3,6,7,8,9	B	A ⁽¹⁾	Pass
Mode 2	Air Discharge	$\pm 4\text{kV}$	1,2,3,6,7,8,9	B	A ⁽¹⁾	Pass
Mode 2	Air Discharge	$\pm 8\text{kV}$	1,2,3,6,7,8,9	B	A ⁽¹⁾	Pass

Remark





(1) A: Operation as intend, no loss of function during test and after test.
 (2) During the test, the EUT screen flickered. After the test, the EUT screen automatically returned to normal.

Test Point

No.	Description	No.	Description	No.	Description
1	Screen	2	Gap	3	Plastic shell
4	Screw hole	5	Screw	6	DP Port
7	HDMI Port	8	Audio Port	9	Power Supply Port

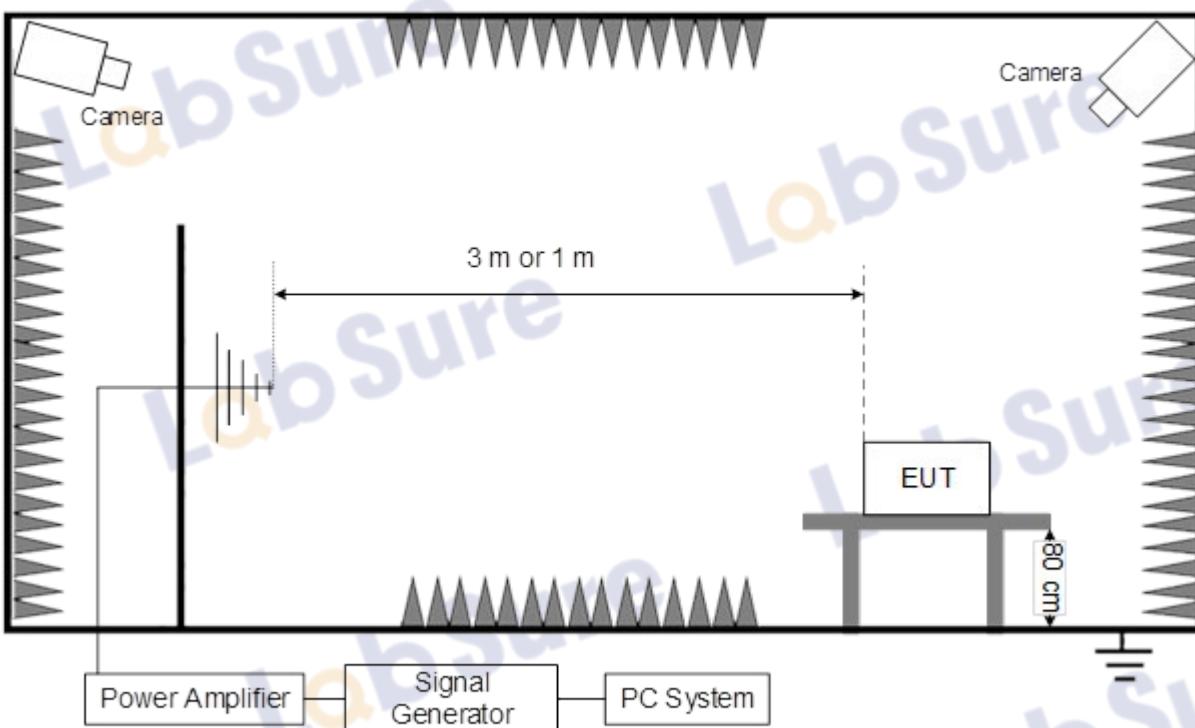
Discharge Point PhotoContact Air

8.7 Test Photo

9 Radiated, Radio-frequency, Electromagnetic Field Immunity

9.1 General Information

Test date	Nov. 17, 2025	Test engineer	Ethan Luo	
Rachel	Ambient temperature	23.2°C	Relative humidity	60.3%
	Atmospheric pressure	103.2kPa		
Test place	874 Chamber			


9.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
874 ALSE Chamber	N/A	N/A	N/A	Jan. 24, 2024	3 Year
Power Meter	Agilent	E4419B	GB43317524	Jan. 23, 2025	1 Year
Average Power Sensor	Keysight	E9304A H18	MY63020017	Jan. 23, 2025	1 Year
Signal Generator	R&S	SMB100A	103232	Jan. 23, 2025	1 Year
Power Amplifier	RUITU	LHDMIA1G6 G200	202412809	Jan. 23, 2025	1 Year
Power Amplifier	R&S	BBA100	100926	Jan. 23, 2025	1 Year
Broadband Antenna	SCHWARZBECK	STLP 9129	00066	N/A	N/A
Average Power Sensor	Keysight	E9304A H18	MY41437580	Jan. 23, 2025	1 Year
Temperature, humidity and pressure recorder	HuaHanWei	THP40W-E	c0222020002 F	Feb. 10, 2025	1 Year
OSP	SCHWARZBECK	OSP 120	N/A	N/A	N/A
Audio Analyzer	R&S	UPV	101570	Jan. 23, 2025	1 Year
Test Software	TONSCEND	JS35-RS	5.0.0	N/A	N/A

9.3 Reference Standard

EN 55035:2017,
 EN 55035:2017/A11:2020,
 IEC 61000-4-3:2020

9.4 Test Arrangement

The EUT is initially placed with one face coincident with the calibration plane. The EUT face being illuminated shall be contained within the UFA unless partial illumination is being applied.

The frequency ranges to be considered are swept with the signal modulated, pausing to adjust the RF signal level or to switch oscillators and antennas as necessary.

Where the frequency range is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.

The dwell time of the amplitude modulated carrier at each frequency shall not be less than the time necessary for the EUT to be exercised and to respond, but shall in no case be less than 0,5 s. The sensitive frequencies (e.g., clock frequencies) shall be analyzed separately according to the requirements in product standards.

The test shall normally be performed with the generating antenna facing each side of the EUT.

When equipment can be used in different orientations (i.e. vertical or horizontal) all sides shall be exposed to the field during the test. When technically justified, some EUTs can be tested by exposing fewer faces to the generating antenna. In other cases, as determined for example by the type and size of EUT or the frequencies of test, more than four azimuths may need to be exposed.

The polarization of the field generated by each antenna necessitates testing each selected side twice, once with the antenna positioned vertically and again with the antenna positioned horizontally.

9.5 Test Specification and Limit

Swept frequency test		Performance Criteria
Frequency (MHz)	80 to 1000	A
Field Strength	3V/m rms voltage level of the unmodulated signal	
Modulation	AM modulated to a depth of 80% by a sine wave of 1kHz (note 1)	
Step Size	1% increments	
Dwell time	<5 Sec.	

Spot frequency test		Performance Criteria
Frequency (MHz)	1800, 2600, 3500, 5000	A
Field Strength	3V/m rms voltage level of the unmodulated signal	
Modulation	AM modulated to a depth of 80% by a sine wave of 1kHz (note 1)	
Dwell time	<5 Sec.	

Note 1: The 1kHz modulation may be replaced by a different audio modulation frequency more appropriate for a given EUT if, for example, 1kHz is not within the operating audio range of the EUT.

For audio output function (if applied):

Performance criterion A

During the test the audio output function shall be maintained. The measured acoustic interference ratio and/or the measured electrical interference ratio during the test shall be -20 dB or better.

9.6 Test Result

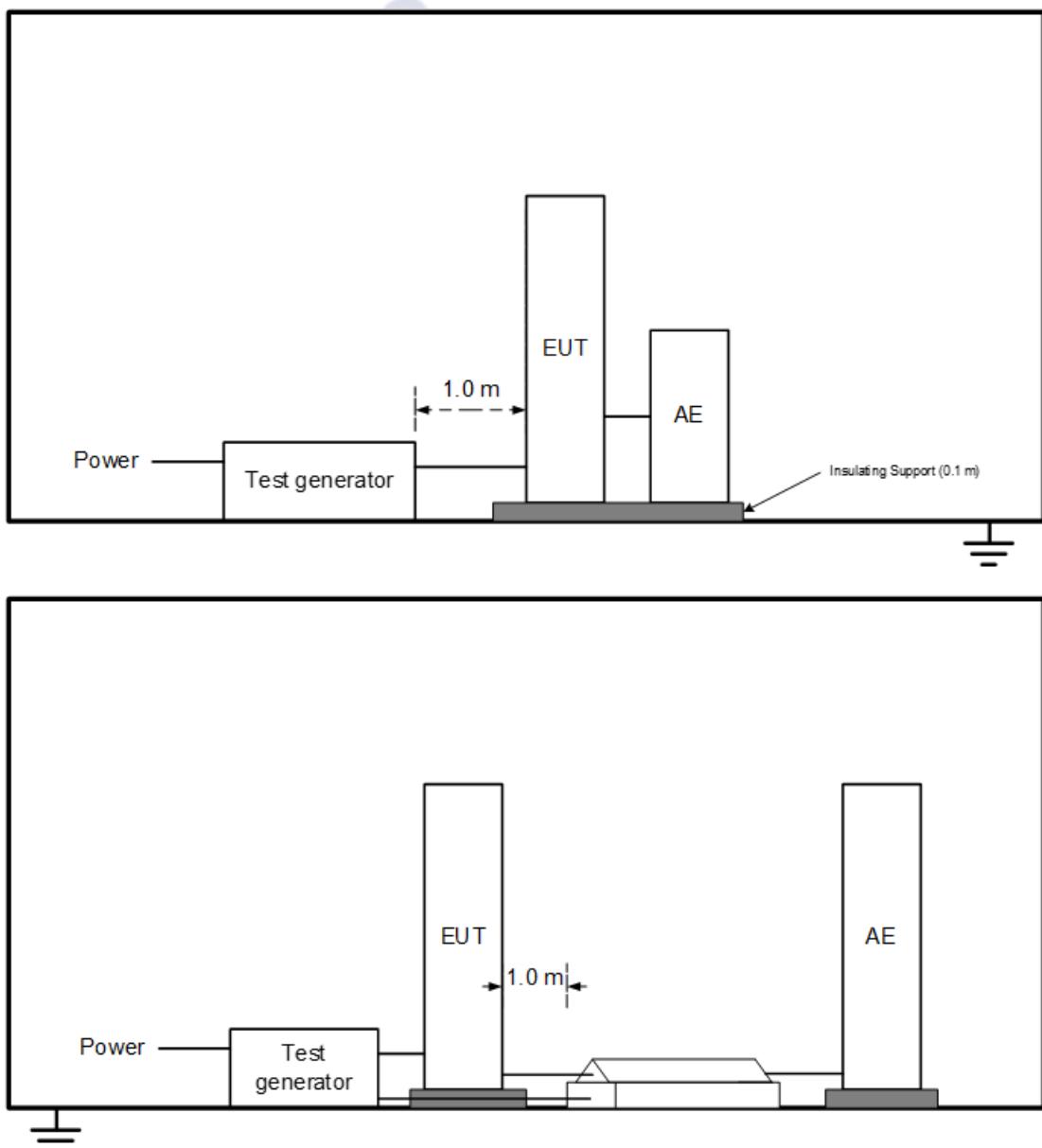
Sample No. Y25102121-01						
Test distance: 3m						
Steps: 1%		Dwell time: 1s		Modulation: 1KHz 80% AM		
Operation Mode	EUT Position	Antenna: Horizontal		Antenna: Vertical		Result
		Required	Observation	Required	Observation	
Mode 1	Front side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Mode 1	Back side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Mode 1	Left side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Mode 1	Right side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Mode 2	Front side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Mode 2	Back side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Mode 2	Left side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Mode 2	Right side	A	A ⁽¹⁾	A	A ⁽¹⁾	Pass
Remark						
(1)	A: Operation as intend, no loss of function during test and after test					

Audio output function result: <input type="checkbox"/> this device without audio output function.			
Method	Port	Acoustic interference ratio L1-L0 (dB) Required: ≤-20dB	Result
acoustic measurement	N/A	N/A	N/A
electrical measurement	Audio out	-35.5	Pass

10 Electrical Fast Transient/Burst Immunity

10.1 General Information

Test date	Nov. 18, 2025	Test engineer	Ethan Luo	
Climate condition	Ambient temperature	24.7°C	Relative humidity	60.5%
	Atmospheric pressure	102.7kPa		
Test place	EMC Room 2			


10.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMS Test Generator	TESEQ	NSG 3060	1338	Jan. 23, 2025	1 Year
CDN	TESEQ	CDN 3061	210	Jan. 23, 2025	1 Year
Temperature and humidity recorder	HuaHanWei	TH10R	c00286000Ec d	Feb. 10, 2025	1 Year
One-way autotransformer	TESEQ	VAR 3005-D16	094	Jan. 23, 2025	1 Year

10.3 Reference Standard

EN 55035:2017,
EN 55035:2017/A11:2020,
IEC 61000-4-4:2012

10.4 Test Arrangement

The EUT and its simulators were placed on the ground reference plane and were insulated from it by an insulating support $0.1\text{m} \pm 0.01\text{m}$ thick.

The minimum distance between the EUT and all other conductive structures (e.g. the walls of a shielded room), except the ground reference plane shall be more than 0.5 m .

All cables to the EUT shall be placed on the insulation support 0.1 m above the ground reference plane. Cables not subject to electrical fast transients shall be routed as far as possible from the cable under test to minimize the coupling between the cables.

10.5 Test Specification and Limit

Test Level			Performance Criteria
Test voltage	±1kV For AC mains Port	±0.5kV for DC input or signal Port	B
Repetition Frequency	5kHz	5kHz	
Burst Duration	15ms	15ms	
Burst Period	300ms	300ms	
Inject Time(s)	120s	120s	
Inject Method	Direct for AC mains port	Direct for signal port Direct for dc input port	
Inject Line	AC Mains or adapter	DC input of adapter or Capacitive coupling clamp	

Note: This test shall be additionally performed on analogue/digital data ports, and DC network power ports, of radio equipment and associated ancillary equipment, if the cables may be longer than 3 m.

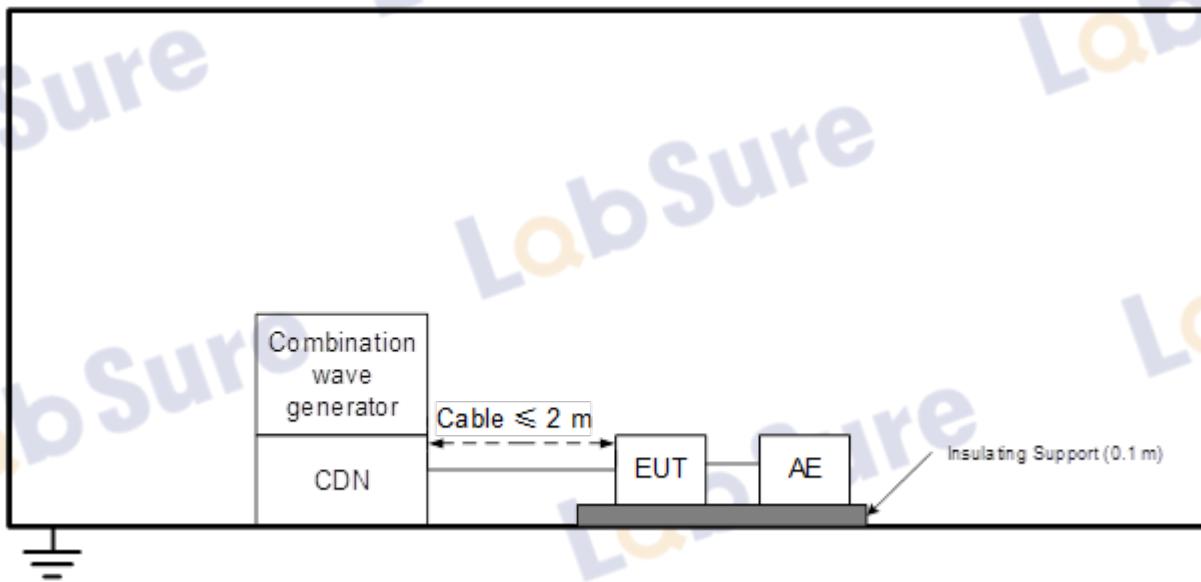
10.6 Test Result

Sample No. Y25102121-01						
Injected Port	AC Mains		Coupling		Direct	
Burst Period:	300ms		Test Time:		120s	
Repetition Frequency	5KHz		Burst Durations		15ms	
Operation Mode	Line	Test Voltage	Required	Observation		Result
				Positive	Negative	
Mode 1	L	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	N	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	L-N	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	L-PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	N-PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	L-N-PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	N	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-N	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	N-PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-N-PE	±1kV	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Remark						
(1)	A: Operation as intend, no loss of function during test and after test.					

11 Surge Immunity

11.1 General Information

Test date	Nov. 18, 2025	Test engineer	Ethan Luo	
Climate condition	Ambient temperature	24.7°C	Relative humidity	60.5%
	Atmospheric pressure	102.7kPa		
Test place	EMC Room 2			


11.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMS Test Generator	TESEQ	NSG 3060	1338	Jan. 23, 2025	1 Year
CDN	TESEQ	CDN 3061	210	Jan. 23, 2025	1 Year
Temperature and humidity recorder	HuaHanWei	TH10R	c00286000Ec d	Feb. 10, 2025	1 Year
One-way autotransformer	TESEQ	VAR 3005-D16	094	Jan. 23, 2025	1 Year

11.3 Reference Standard

EN 55035:2017,
 EN 55035:2017/A11:2020,
 IEC 61000-4-5:2014+AMD1:2017

11.4 Test Arrangement

EUT should be configured in representative operating conditions.

At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are applied during test.

Different phase angles are done individually, if applied.

Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.5 Test Specification and Limit

Test level for AC mains ports		Performance Criterion
Line to Line	1kV 1.2/50(8/20) μ s	B
Line to Ground	2kV 1.2/50(8/20) μ s	B
Analogue/digital data port, Port type: unshielded symmetrical		Performance Criterion
Line to Ground	1 kV and 4kV 10/700(5/320) μ s (used with the primary protection)	C
Line to Ground	1 kV 10/700(5/320) μ s (used without the primary protection)	C
Note: Applicable only to ports which, according to the manufacturer's specification, the cable lengths greater than 3m.		
Analogue/digital data port, Port type: coaxial or shielded		Performance Criterion
Shield to ground	0.5 kV 1.2/50(8/20) μ s	B
Note: Applicable only to ports which, according to the manufacturer's specification, the cable lengths greater than 3m.		
DC network power port		Performance Criterion
Line to reference ground	0.5 kV 1.2/50(8/20) μ s	B
Note: Applicable only to ports which, according to the manufacturer's specification, 1. The cable lengths greater than 3m; 2. May connect directly to outdoor cables.		

The number of pulses applied shall be as follows:

- Five positive pulses line-to-neutral at 90° phase
- Five negative pulses line-to-neutral at 270° phase

The following additional pulses are required only if the EUT has an earth connection or if the EUT is earthed via any AE.

- Five positive pulses line-to-earth at 90° phase
- Five negative pulses line-to-earth at 270° phase
- Five negative pulses neutral-to-earth at 90° phase
- Five positive pulses neutral-to-earth at 270° phase

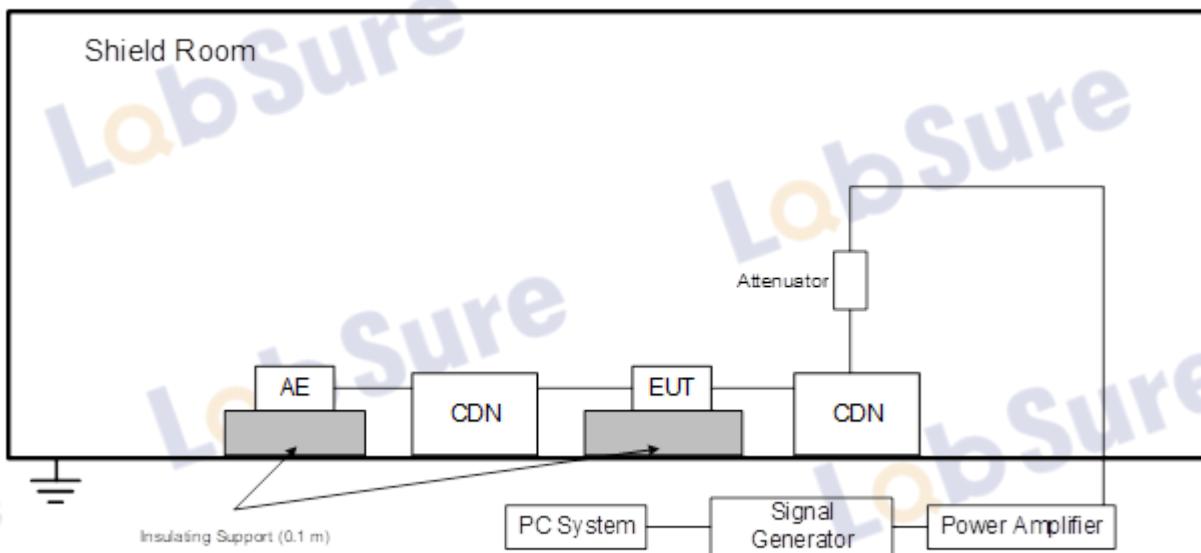
11.6 Test Result

Sample No. Y25102121-01						
Injected Port	AC Mains		Wave Type	1.2/50us-8/20us		
Pulse Interval	60s		Pulse times:	5 times at each polarity		
Operation Mode	Coupling Line	Level	Required	Observation		Result
				Positive	Negative	
Mode 1	L-N	$\pm 0.5\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	L-N	$\pm 1\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	L-PE	$\pm 0.5\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	L-PE	$\pm 1\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	L-PE	$\pm 2\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	N-PE	$\pm 0.5\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	N-PE	$\pm 1\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 1	N-PE	$\pm 2\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-N	$\pm 0.5\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-N	$\pm 1\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-PE	$\pm 0.5\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-PE	$\pm 1\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	L-PE	$\pm 2\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	N-PE	$\pm 0.5\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	N-PE	$\pm 1\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Mode 2	N-PE	$\pm 2\text{kV}$	B	A ⁽¹⁾	A ⁽¹⁾	Pass
Remark						
(1)	A: Operation as intend, no loss of function during test and after test.					

12 Immunity to Conducted Disturbances, Induced by Radio-frequency Fields

12.1 General Information

Test date	Nov. 18, 2025	Test engineer	Ethan Luo	
Climate condition	Ambient temperature	24.7°C	Relative humidity	60.5%
	Atmospheric pressure	102.7kPa		
Test place	Shield Room 2			



12.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Shielding Room 2	N/A	N/A	N/A	Jan. 25, 2024	3 Year
Average Power Sensor	Keysight	E9304A H18	MY58370011	Jan. 23, 2025	1 Year
Signal Generator	R&S	SMC100A	101337	Jan. 23, 2025	1 Year
Power Meter	Agilent	E4419B	MY45103696	Jan. 23, 2025	1 Year
Average Power Sensor	Keysight	E9304A H18	MY41497367	Jan. 23, 2025	1 Year
Directional Coupler	JunKe	DDTO-1-40	23062841	Jan. 23, 2025	1 Year
CDN	3ctest	CDN M2M3	ES064002623 009	Jan. 23, 2025	1 Year
Temperature and humidity recorder	HuaHanWei	TH10R	c00286000Ec 8	Feb. 10, 2025	1 Year
Power Amplifier	AR	100A400M3	306482	Jan. 23, 2025	1 Year
Audio Analyzer	R&S	UPV	101570	Jan. 23, 2025	1 Year
Test Software	TONSCEND	JS35-CS	5.0.0	N/A	N/A

12.3 Reference Standard

EN 55035:2017,
 EN 55035:2017/A11:2020,
 IEC 61000-4-6:2023

12.4 Test Arrangement

The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at a distance 0.1 m to 0.3 m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be at least 30 mm.

The disturbance signal described below is injected to EUT through CDN.

The EUT operates within its operational mode(s).

Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

12.5 Test Specification and Limit

Test Level		Performance Criteria
Frequency and Field Strength	0.15MHz to 10MHz, 3V rms voltage level of the unmodulated signal	A
	10MHz to 30MHz, 3V to 1V rms voltage level of the unmodulated signal	
	30MHz to 80MHz, 1V rms voltage level of the unmodulated signal	
Modulation	AM modulated to a depth of 80% by a sine wave of 1kHz, (note 1)	
Step Size	1% increments	
Dwell time	<5 Sec.	

Note 1: The 1kHz modulation may be replaced by a different audio modulation frequency more appropriate for a given EUT if, for example, 1kHz is not within the operating audio range of the EUT.

For audio output function (if applied):

Performance criterion A

During the test the audio output function shall be maintained. The measured acoustic interference ratio and/or the measured electrical interference ratio during the test shall be -20 dB or better.

12.6 Test Result

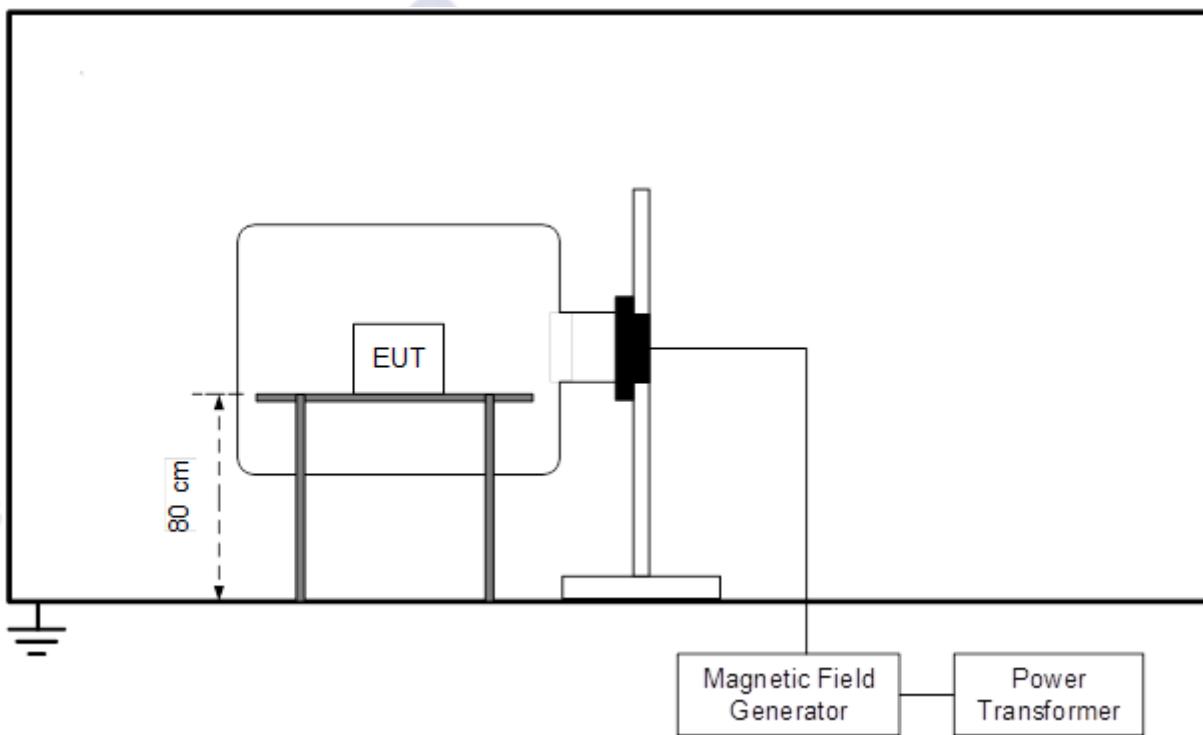
Sample No. Y25102121-01						
Steps: 1%		Dwell time: 1s		Modulation: 1KHz 80% AM		
Operation mode	Frequency Range	Injected Position	Level	Required	Observation	Result
Mode 1	0.15MHz ~ 10MHz	AC	3V	A	A ⁽¹⁾	Pass
Mode 1	10MHz ~ 30MHz	AC	3V ~ 1V	A	A ⁽¹⁾	Pass
Mode 1	30MHz ~ 80MHz	AC	1V	A	A ⁽¹⁾	Pass
Mode 2	0.15MHz ~ 10MHz	AC	3V	A	A ⁽¹⁾	Pass
Mode 2	10MHz ~ 30MHz	AC	3V ~ 1V	A	A ⁽¹⁾	Pass
Mode 2	30MHz ~ 80MHz	AC	1V	A	A ⁽¹⁾	Pass
Remark						
(1)	A: Operation as intend, no loss of function during test and after test.					

Audio output function result: <input type="checkbox"/> this device without audio output function.			
Method	Port	Acoustic interference ratio L1-L0 (dB) Required: ≤-20dB	Result
<input type="checkbox"/> acoustic measurement	N/A	N/A	N/A
<input checked="" type="checkbox"/> electrical measurement	Audio Out	-42.8	Pass

13 Power Frequency Magnetic Field Immunity

13.1 General Information

Test date	Nov. 18, 2025	Test engineer	Ethan Luo	
Climate condition	Ambient temperature	24.7°C	Relative humidity	60.5%
	Atmospheric pressure	102.7kPa		
Test place	EMC Room 2			


13.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMS Test Generator	TESEQ	NSG 3060	1338	Jan. 23, 2025	1 Year
TRUE RMS CLAMP METER	FLUKE	319	N/A	Jan. 23, 2025	1 Year
Temperature and humidity recorder	HuaHanWei	TH10R	c00286000Ec d	Feb. 10, 2025	1 Year
One-way autotransformer	TESEQ	VAR 3005-D16	094	Jan. 23, 2025	1 Year
Power frequency magnetic field generator	TESEQ	MFO 6502	123	Jan. 23, 2025	1 Year
Power frequency magnetic field coil	TESEQ	INA 702	199	Jan. 23, 2025	1 Year

13.3 Reference Standard

EN 55035:2017,
EN 55035:2017/A11:2020,
IEC 61000-4-8:2009

13.4 Test Arrangement

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m). Then induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

13.5 Test Specification and Limit

Magnetic Field Strength (A/m)	Performance Criterion
1	A

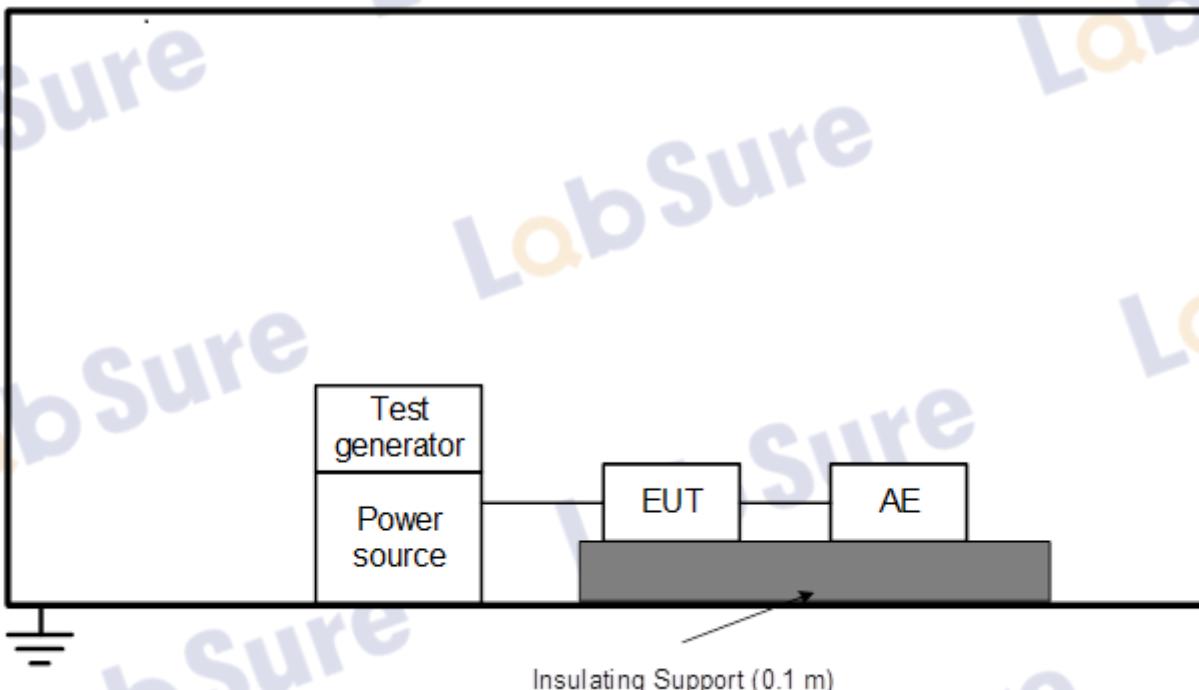
13.6 Test Result

Sample No. Y25102121-01					
Operation Mode	Test Level	Coil Orientation	Required	Observation	Result
Mode 1	1A/m	X	A	A ⁽¹⁾	Pass
Mode 1	1A/m	Y	A	A ⁽¹⁾	Pass
Mode 1	1A/m	Z	A	A ⁽¹⁾	Pass
Mode 2	1A/m	X	A	A ⁽¹⁾	Pass
Mode 2	1A/m	Y	A	A ⁽¹⁾	Pass
Mode 2	1A/m	Z	A	A ⁽¹⁾	Pass
Remark					
(1)	A: Operation as intend, no loss of function during test and after test.				

14 Voltage Dips, Short Interruptions and Voltage Variations Immunity

14.1 General Information

Test date	Nov. 18, 2025	Test engineer	Ethan Luo	
Climate condition	Ambient temperature	24.7°C	Relative humidity	60.5%
	Atmospheric pressure	102.7kPa		
Test place	EMC Room 2			


14.2 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMS Test Generator	TESEQ	NSG 3060	1338	Jan. 23, 2025	1 Year
CDN	TESEQ	CDN 3061	210	Jan. 23, 2025	1 Year
Temperature and humidity recorder	HuaHanWei	TH10R	c00286000Ec d	Feb. 10, 2025	1 Year
One-way autotransformer	TESEQ	VAR 3005-D16	094	Jan. 23, 2025	1 Year

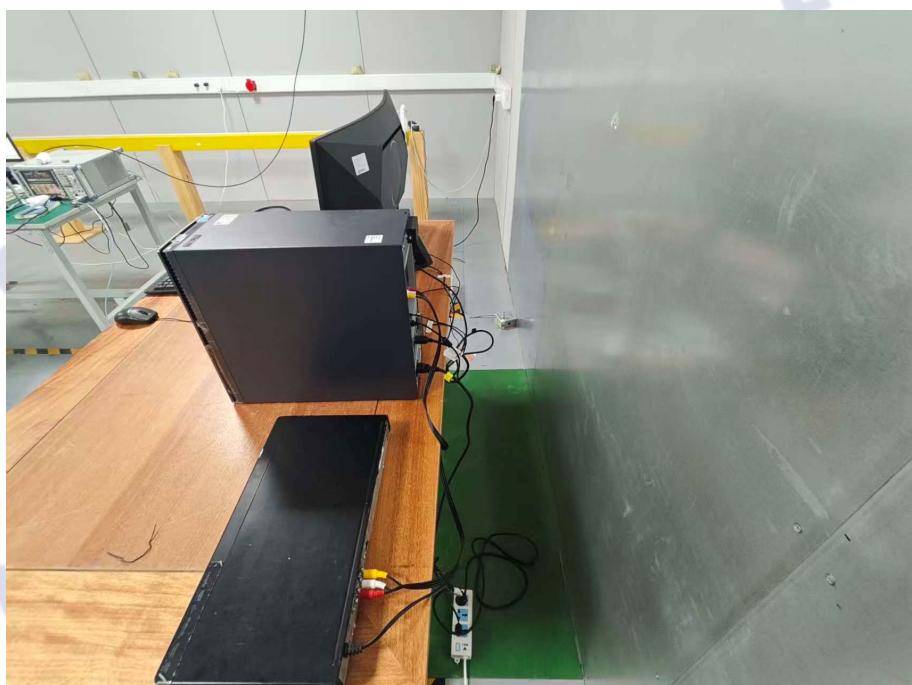
14.3 Reference Standard

EN 55035:2017,
EN 55035:2017/A11:2020,
IEC 61000-4-11:2020

14.4 Test Arrangement

The EUT and test generator were setup as shown. The interruptions are introduced at selected phase angles with specified duration. Record any degradation of performance.

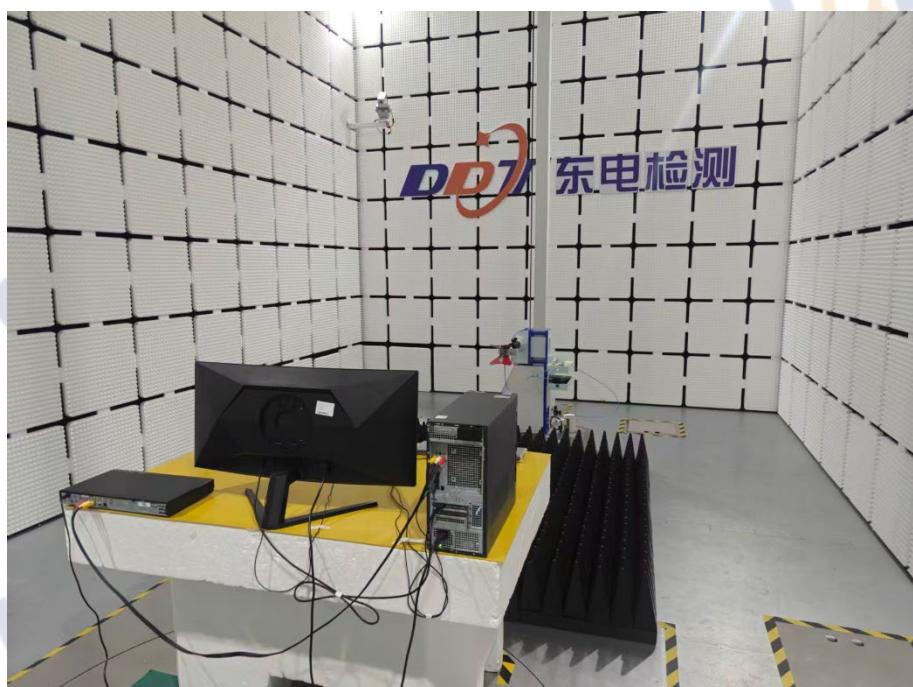
14.5 Test Specification and Limit

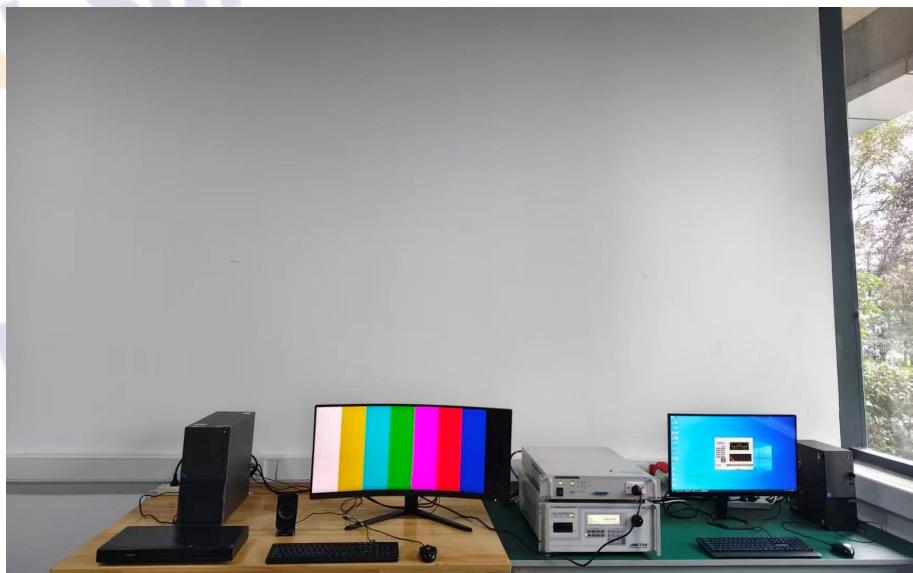

Test Level %UT	Duration (in period)	Performance Criterion
<5	0.5	B
70	25 for 50Hz/30 for 60Hz	C
<5	250 for 50Hz/300 for 60Hz	C

14.6 Test Result

Sample No. Y25102121-01							
Operation Mode	Operation Voltage	%Ur	Duration (in period)	Phase Angle	Required	Observation	Result
Mode 1	110V 60Hz	0	0.5P	0°,180°	B	A ⁽¹⁾	Pass
Mode 1	110V 60Hz	70	30P	0°,180°	C	A ⁽¹⁾	Pass
Mode 1	110V 60Hz	0	300P	0°,180°	C	B ⁽²⁾	Pass
Mode 1	230V 50Hz	0	0.5P	0°,180°	B	A ⁽¹⁾	Pass
Mode 1	230V 50Hz	70	25P	0°,180°	C	A ⁽¹⁾	Pass
Mode 1	230V 50Hz	0	250P	0°,180°	C	B ⁽²⁾	Pass
Mode 2	110V 60Hz	0	0.5P	0°,180°	B	A ⁽¹⁾	Pass
Mode 2	110V 60Hz	70	30P	0°,180°	C	A ⁽¹⁾	Pass
Mode 2	110V 60Hz	0	300P	0°,180°	C	B ⁽²⁾	Pass
Mode 2	230V 50Hz	0	0.5P	0°,180°	B	A ⁽¹⁾	Pass
Mode 2	230V 50Hz	70	25P	0°,180°	C	A ⁽¹⁾	Pass
Mode 2	230V 50Hz	0	250P	0°,180°	C	B ⁽²⁾	Pass
Remark							
(1)	A: Operation as intend, no loss of function during test and after test.						
(2)	B: During the test, the EUT lost power and went black screen. After the test, the EUT was re-powered on and the screen automatically returned to normal.						

Annex A. Test Setup Photos


A.1 Conducted Emissions (AC mains power ports)


A.2 Radiated Emissions (30MHz to 1GHz)

A.3 Radiated Emissions (Above 1GHz)



A.4 Voltage Changes, Voltage Fluctuations and Flicker

A.5 Electrostatic Discharge Immunity

A.6 Radiated, Radio-frequency, Electromagnetic Field Immunity

A.7 Electrical Fast Transient/Burst Immunity

A.8 Surge Immunity

A.9 Immunity to Conducted Disturbances, Induced by Radio-frequency Fields

A.10 Power Frequency Magnetic Field Immunity

A.11 Voltage Dips, Short Interruptions and Voltage Variations Immunity

Statement

1. The report is invalid without the inspection and testing special seal of the company.
2. This report is invalid if altered.
3. This report is responsible for the conformance testing of sample(s) received.
4. This report shall not be reproduced, without the written approval of test laboratory. The copy of the report not stamped again with the inspection and testing special seal is invalid.
5. Item with “*” is not accredited by CNAS.
6. Item with “☆” was subcontracted to other laboratories.
7. The report without CMA mark indicated that either test item(s) not accredited by CMA or test item(s) accredited by CMA but the report is only used for development or quality control which purposes within the company that has no effect on social proof.
8. Any objections must be raised to our company within 15 days on receiving the report, overdue will not be accepted.
9. The sample(s) must be collected within three months, overdue will be dealt with by our company.
10. The report is invalid without the signature of editor, reviewer, approver.

Test Laboratory: LabSure Testing Services (Suzhou) Co., Ltd.

Address: Phase II, No.16 Runsheng Road, Suzhou Industrial Park, Suzhou, China.

Postcode: 215127

Tel: +86-0512-62531270

Fax: +86-0512-62531270

Website: www.lab-sure.com

END OF REPORT